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When the Wind Blows: Spatial Spillover Effects of Urban Air Pollution 

 

ABSTRACT 

This paper investigates the existence and magnitude of air pollution spillovers in 

Chinese cities. Estimation of this spillover effect is complicated because neighboring 

cities share similar business/pollution cycles and meteorological conditions and 

because spatial and temporal changes in wind direction can be fairly frequent. To 

circumvent these empirical challenges, we exploit spatial and temporal variations in 

PM10 concentrations for the 108 major cities located in China’s Eastern Monsoon 

Region during the East Asian winter and summer monsoon seasons. We have three 

main findings. First, we find large pollution spillover effects in Chinese cities: a city’s 

average PM10 concentration is expected to increase by 0.09-0.21 units during the winter 

monsoon season and by 0.06-0.10 units during the summer monsoon season, if the 

average PM10 concentrations in cities upwind of this city increase by one unit. Second, 

high levels of precipitation and strong winds can effectively mitigate air pollution, 

while the temperature effects on air quality vary by time of day. Third, the percentage 

contributions of PM10 pollution from upwind cities to local PM10 levels vary by region 

and can be as large as 30%. Our findings suggest that pollution control policies must 

be coordinated between cities and provinces to effectively abate urban air pollution. 
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1. Introduction 

China’s poor air quality has put the country in the world’s spotlight. In many 

Chinese cities, pollution levels exceeded the World Health Organization air quality 

guidelines on more than 250 days in 2011 (Cheng et al., 2013). International media has 

described air quality in China as “hazardous to human health”. 1  Negative health 

consequences have been repeatedly reported, including premature death (Yang et al., 

2013; Zhang et al., 2010) and significant reduction in average life expectancy (Chen et 

al., 2013a). Air pollution is also linked to China’s growing social unrest in recent years.2  

This paper aims at identifying the contributions of various pollution sources to 

ambient air pollution concentrations in Chinese cities. As the economics literature is 

relatively new to this topic, we first give a brief overview of previous approaches used 

by atmospheric scientists to set the stage for our study. These approaches can be divided 

into two major categories, including the air sampling approach and Air Quality (AQ) 

models. The air sampling approach entails measuring the content of particulate and 

gaseous contaminants in collected air samples. By analyzing ambient gases and aerosol 

properties in air samples,3 atmospheric scientists can pin down the contributions of 

various sources, such as primary emissions vs. secondary formation and local sources 

vs. regional transport, to ambient pollution concentrations (Guo et al., 2014). However, 

results based on this approach are quite sensitive to sampling sites, duration of sampling 

periods and sampling methods (Katz, 1969).4  

                                                        
1 “China smog sparks red alerts in 10 cities,” BBC news, December 24, 2015. 

2 “Chinese anger over pollution becomes main cause of social unrest,” Bloomberg, March 6, 2013. 

3 Common measurements include pollutant concentrations, size distribution, chemical composition, 

and temporal evolution of air pollutants. 

4 For instance, using the data collected at Peking University located in northwestern Beijing (an urban 

site) between April 2009 and January 2010, Zhang et al. (2013) showed that industrial pollution and 

secondary inorganic aerosol formation were the major sources of the city’s air pollution, while traffic 

emissions played only an insignificant role. Based on the data collected from the same site during a 

different time period, from September to November 2013, Guo et al. (2014) concluded that nitrogen 

oxides (NOx) from local transportation and sulfur dioxide (SO2) from regional industrial sources were 

the main sources of air pollution in Beijing.  
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The AQ models are another widely-used approach to assess the contributions of 

various factors to ambient air pollution concentrations. Instead of analyzing collected 

air samples, the AQ models utilize complex mathematical techniques to simulate 

transport and diffusion processes of air pollutants in the atmosphere. An example is 

Models-3/Community Multi-scale Air Quality (CMAQ), developed by the US 

Environmental Protection Agency (EPA). Using CMAQ and a modified version of 

the model (MM5–CMAQ), respectively, Streets et al. (2007) and Chen et al. (2007) 

concluded that neighboring provinces, such as Hebei, Shandong, and Tianjin, had a 

large influence on Beijing’s air quality. Although the AQ models can identify 

pollution sources by building source-destination relationships, several studies have 

pointed out that simulation results based on the AQ models are sensitive to grid 

resolutions (Queen et al., 2008; Queen and Zhang, 2008), and the computational costs 

of running these AQ models can be quite substantial (see Capaldo et al., 2000). 

In this paper, we employ an econometric approach. We develop a spatial dynamic 

panel data (SDPD) model to quantify the effects of various local and neighboring 

factors on air quality in Chinese cities. We also use this framework to assess the 

percentage contributions of air pollution spillovers from upwind cities to local air 

pollution. As compared to the atmospheric approaches mentioned above, the SDPD 

model developed here has at least three advantages. First, by explicitly including an 

extensive list of explanatory variables, our approach leads to a clearer understanding of 

the impacts of various local and neighboring factors on urban air quality. Our SDPD 

model includes not only meteorological factors (as in most atmospheric studies), but 

also considers the effects on local air quality of agricultural activities, energy 

consumption, holidays/weekends, and air pollution from upwind cities. Second, our 

approach allows us to fully utilize high-frequency data consisting of daily 
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meteorological conditions and air pollution, while most of the AQ models use only 

seasonal/monthly data to minimize computational costs (Capaldo et al., 2000). Third, 

as compared to the atmospheric approaches, our approach yields more robust results 

that are not sensitive to study periods, study sites, and estimation techniques, which are 

explained in detail in the results section.  

However, estimation of this pollution spillover effect is complicated for two reasons. 

One, the observed pollution in a city is an outcome of local activities and possible 

spillovers from upwind cities and neighboring cities usually share similar 

business/pollution cycles and meteorological conditions, which make separating 

pollution spillovers from locally generated pollution difficult. Two, we observe 

frequent spatial and temporal changes in wind direction in our data, making it even 

more difficult than in other contexts5 to identify pollution spillovers. For example, wind 

can carry air pollutants from one city to its downwind areas on one day. These 

pollutants, together with pollutants generated from the downwind areas, could be 

transported back to the original city on the following day, due to changes in wind 

direction.  

To circumvent the empirical challenges noted above, we restrict our focus to 

observations of the 108 major cities located in the Eastern Monsoon Region (EMR) in 

China6 during the East Asian winter monsoon (EAWM) and the East Asian summer 

monsoon (EASM) seasons. The most notable feature of the EAWM is strong and stable 

northwesterly winds across the east flank of the Siberian high and the East Asia coast 

including China’s EMR (Zhou, 2011), while the prevailing winds have been southerly 

and southwesterly during the EASM season (Ding, 1994). By restricting our sample to 

                                                        
5 Such as transboundary water pollution spillovers (Sigman, 2002). 
6 According to climatological and topographical characteristics, China can be divided into three main 

regions, including the Eastern Monsoon Region, the Qinghai-Tibetan Plateau Region and the 

Northwestern Arid Region (Figure 1). 
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these major cities in the EMR during the two monsoon seasons, we can obtain clean 

estimates of pollution spillover effects. This identification strategy is similar to that 

used by Jia and Ku (2016). They assess the impacts of cross-border air pollution from 

China to South Korea by exploiting the meteorological phenomenon known as Asian 

dust, in which yellow dust clouds, together with air pollution in China, are transported 

eastward to South Korea by strong westerly winds.  

We conduct this analysis by compiling a unique city-level panel that contains 

daily air quality and weather information for the 108 major cities located in the EMR 

from 2009 to 2013 (see Figure 1). We use the concentration of particulate matter with 

a diameter of 10 μm or less (PM10) as our dependent variable. We focus on PM10 for 

two reasons. First, PM10 is the primary air pollutant in Chinese cities (Chan and Yao, 

2008). Second, PM10 can travel long distances (Duce et al., 1980; Parrington et al., 

1983; Tsunogai and Kondo, 1982), while other major air pollutants, such as SO2, 

NOx, ozone, and carbon monoxide, are either exclusively from local emissions 

sources or can only be transported within relatively small geographic regions (Guo et 

al., 2014). Therefore, focusing on PM10 can better serve our research purpose, which 

is to examine the existence and magnitude of spatial spillover effects of urban air 

pollution.  

Our regression model includes a wide range of local and neighboring factors as 

explanatory variables. Local factors include a temporally lagged dependent variable, 

which represents a city’s air pollution stock; weather conditions, such as temperature, 

precipitation, solar radiation, wind speed, relative humidity and atmospheric pressure; 

the gasoline price, which is used to control for PM10 released from vehicle exhaust; and 

open-field burning of crop residues during post-harvest seasons. We account for the 

effect of PM10 from upwind cities on local PM10 concentrations by creating a spatially-
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weighted PM10 variable that depends on physical distance between cities, wind 

direction, wind speed and emission strength in upwind cities. Finally, we augment the 

model by using city-year-month fixed effects to minimize the potential estimation 

biases originating from omitted variables. The high dimensional fixed effects capture a 

wide range of the unobserved factors within a city-year-month that may affect city-

average PM10 concentrations. These unobserved factors may include economic shocks, 

seasonal coal combustion for heat and power generation, dust generated from 

occasional sand storms and/or from the construction of new buildings and roads, 

number of vehicles, and perhaps others. 

We find strong evidence of the existence of spatial spillover effects of PM10 

pollution in China. Holding all else the same, a one-unit increase in PM10 

concentrations in upwind cities of a city is expected to raise that city’s PM10 

concentration by 0.09-0.21 unit during the winter monsoon season, and by 0.06-0.13 

during the summer monsoon season. Impacts of upwind air pollution on local PM10 

concentrations vary across regions, with cities located in the North China Plain and 

Yangtze River Delta regions most affected by air pollution from upwind cities.  

Our findings are highly relevant to the design of China’s air pollution control 

strategies. If air pollutants are generated mostly from local sources, such as traffic 

emissions and/or coal burning, an effective pollution abatement strategy should target 

these local sources. On the other hand, if air pollutants are found to come primarily 

from upwind areas, collective efforts for regional air pollution abatement would be 

called for. With the lack of rigorous empirical analysis, China’s air pollution control 

strategies have been shown to perform quite poorly. At present, the common strategy 

adopted by many Chinese cities to improve air quality is to relocate large-scale and 

heavily polluting factories to suburbs and to neighboring provinces. For instance, to 
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host the 2008 Olympic Games, China relocated several large, heavily polluting firms 

to Beijing’s neighboring cities as one of a series of actions to improve Beijing’s air 

quality (Chen et al., 2013b). However, Guo et al. (2014) showed that relocating 

polluting firms is a poor pollution abatement strategy, because Beijing’s neighboring 

cities/provinces contributed significantly to ambient air pollution concentrations in 

Beijing after the Olympic Games. By using high quality data and a rigorous approach 

to identify the effects of various local and neighboring factors on urban air quality, 

our results may stimulate public policy debates regarding how to effectively design 

China’s air pollution control policies. 

In addition to using a new approach to assess the impacts of various factors on air 

pollution, this paper contributes to the existing literature in four major aspects. First, 

our spatial econometric model is novel. When conducting spatial econometric 

analyses, many studies specify spatial weights matrices based on either geographical 

criteria or economic dependence between regions/sectors. These studies typically 

assume that spatial weights matrices are time-invariant (see Anselin and Bera, 1997; 

Won Kim et al., 2003), ignoring the fact that, under certain circumstances, spatial 

dependence of two regions/sectors may change over time. In contrast to these studies, 

we allow our spatial weights matrix to change daily according to wind direction and 

wind speed in upwind cities. Although our approach is different from the atmospheric 

approaches, our results are fairly comparable to the atmospheric evidence. 

Second, our data set is rich and comprehensive. Existing studies examining the 

spatial spillover effects of air pollution in China have primarily focused on Beijing 

and the data used in these earlier studies span only a short period of time (see Guo et 

al., 2014; Zhang et al., 2013). Our city-level panel data set includes major Chinese 

cities located in the EMR and contains detailed information on daily air quality and 
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weather conditions for these cities during the period 2009-2013. The unique data 

structure enables us to construct city-year-month fixed effects, which can minimize 

the potential estimation biases due to omitted variables.  

Third, the study provides a new way to construct an instrumental variable for air 

quality. When examining the impacts of air pollution on housing values, Chay and 

Greenstone (2005) used nonattainment status as the instrumental variable for air 

quality.7 Luechinger (2009) improved Chay and Greenstone’s approach and used the 

changes in SO2 concentration due to the mandated installation of SO2 emissions 

control equipment in upwind areas as an instrument for SO2 pollution. We 

demonstrate that air pollution from areas upwind of a city can serve as a valid 

instrumental variable for that city’s air quality. That is because air pollution levels are 

likely to be spatially correlated, but local economic indicators, such as housing values, 

unemployment rates and labor income, are unlikely to be correlated with air pollution 

in other regions. 

Lastly, although this paper focuses on air pollution, our research contributes to a 

broader literature on the design of efficient environmental policies to control 

transboundary pollution. Several studies in the US have documented negative spatial 

externalities of agricultural runoffs (Goetz and Zilberman, 2000; Griffin and Bromley, 

1982), and analyzed optimal management strategies for groundwater pumping  

(Brozović et al., 2010; Chakravorty and Umetsu, 2003; Kuwayama and Brozović, 

2013; Pfeiffer and Lin, 2012). In line with these studies, our empirical findings also 

suggest that collective efforts between adjacent cities/provinces are needed to control 

for transboundary air pollution.   

                                                        
7 Under the Clean Air Act, the US EPA designates a county as in “nonattainment” status if pollution 

concentrations in this county exceed the federally determined ceiling. 
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The rest of the paper is organized as follows. Section 2 discusses related 

background on regional transport of particulate matter. Section 3 illustrates various 

factors that may affect urban PM10 concentrations in China. Section 4 presents our 

empirical model and identification strategy. Section 5 describes data sources and 

summary statistics. Section 6 presents baseline results. Section 7 considers a variety 

of robustness checks. Section 8 assesses the percentage contributions of PM10 

pollution from upwind cities. Section 9 concludes.  

 

2. Regional transport of particulate matter  

Particulate matter (PM) is a mixture of small particles and liquid droplets floating 

in the air. The composition of PM varies with location, time, and weather conditions 

(Allen et al., 1997). It mainly includes aerosols, smoke, fumes, dust and ash, 

originating from both human and nature activities. PM can be created directly from 

fossil fuel combustion, road or windblown dust, and combustion of agricultural and 

forest biomass, or can be formed in the atmosphere through multiphase chemical 

reactions. Natural sources, such as volcanoes, dust storms, and wildfires, also 

contribute to the overall PM formation.  

PM can be divided into two types according to size: PM10 (or coarse particles) and 

PM2.5 (or fine particles) with a diameter of 2.5 μm or less. PM10 and PM2.5 behave 

differently in the atmosphere. In general, PM10 may spread out more rapidly than 

PM2.5 and usually can be found close to the emission sources, while PM2.5 can be 

transported long distances by wind. However, the long-distance transport of major 

particle components of PM10, such as yellow sand and aerosols, has also been 

observed. For instance, Duce et al. (1980) and Parrington et al. (1983) found that 

Asian dust was transported to the tropical North Pacific and Hawaiian islands, 
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respectively. Recent studies have also discovered that yellow sand originating from 

dust storms in Mongolia, the Gobi desert, and the Loess Plateau can be transported by 

wind to Taiwan and Korea (Jia and Ku, 2016; Kim and Park, 2001; Lin, 2001).  

Transporting PM in the atmosphere from emission sources to destinations is a 

very complex process (Arya, 1999). The transport processes of PM in the atmosphere 

can be divided into two independent processes: (i) advection of PM in the direction of 

wind by mean air motion; and (ii) mass diffusion due to concentration gradients. 

Diffusion occurs in both the horizontal crosswind direction and the vertical crosswind 

direction (Ermak, 1977). Ermak (1977) developed an analytical model for air 

pollutant transport from a point source, assuming flat terrain, constant average wind 

velocity, and unlimited atmosphere in the vertical direction. He showed that the 

steady-state downwind pollutant concentration is positively correlated with emission 

strength, and negatively correlated with distance and average wind speed at the point 

source (see Eq. (5) in Ermak, 1977). These analytical findings are consistent with 

other well-known atmospheric dispersion models, such as the Gaussian plume model 

(Foster-Wittig et al., 2015) and the CALINE3 model, which is one of the US EPA’s 

preferred air pollutant dispersion models (Mishra and Padmanabhamutry, 2003). 

Building on the conceptual insights presented in Ermak (1977), we construct our 

spatial weights matrices, which are discussed in detail in Section 4. 

 

3. Contributing factors to PM10 pollution in Chinese cities 

Based on their origins, we categorize the factors affecting a city’s PM10 

concentration into local and neighboring factors. Local factors include weather, 

combustion of fossil fuels, economic activities, and city-specific environmental 
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protection measures. Neighboring factors refer to PM10 transported from upwind 

regions by the passage of wind. In this section, we discuss each of these factors.  

 

3.1 Local factors 

Weather conditions, such as precipitation, wind, temperature, sunshine, relative 

humidity, and atmospheric pressure, have been well recognized as important factors 

affecting ambient PM10 concentrations. Precipitation can increase the weight of PM 

that is floating in the air and cause the particles to fall. Strong winds can facilitate 

atmospheric dispersion and thus reduce PM10 concentrations. While wind affects the 

horizontal movement of PM10, the literature on atmospheric pollution suggests that 

temperature influences the vertical movement of PM10 (Arya, 1999). When ground 

temperature increases, warm air tends to rise, expand, and move to areas with cold air, 

which causes air to move vertically. The vertical movement of air as a result of 

temperature rise can move PM10 away from the ground level, and reduce ground-level 

PM10 concentrations. Other weather variables, such as sunshine hours, relative 

humidity, and atmospheric pressure, are also important factors affecting local PM10 

concentrations (Arya, 1999; Pankow et al., 1993).  

The primary source of PM10 pollution in Chinese cities is combustion of fossil 

fuels, including vehicle fuel consumption and coal burning for winter heating and 

industrial production. China’s private car sector has experienced explosive growth 

during the past decade. The number of privately owned vehicles in Chinese cities 

increased from 7.7 million in 2001 to 88.4 million in 2012, with an average annual 

rate of growth of nearly 25% (NBS, 2012). A recent emission inventory indicates that, 

although contributions of vehicles to urban air pollution differ by region, vehicle 
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emissions are a major contributor to the overall PM problem in many Chinese cities.8 

As the primary energy source in China, burning coal in industrial sectors, such as 

cement, paper, and chemical factories, is also associated with the release of PM.  

Rapid urbanization is another important local factor contributing to the formation 

of PM10. Massive infrastructure construction in China in the past decade has 

generated a significant amount of dust.9 Finally, as noted above, the burning of crop 

residues and occasional sand storms have also contributed to poor air quality.  

On the mitigation side, central and local governments have undertaken various 

efforts to improve air quality, including closing heavily polluting facilities, regulating 

the content of gasoline and diesel, saving energy during construction, and requiring 

coal-powered plants to install and operate dust-removing technologies (Zhao and 

Gallagher, 2007). Driving restrictions have also been implemented by some Chinese 

cities to reduce traffic congestion and improve air quality, although the impacts of 

those policies are found to be mixed (Viard and Fu, 2015; Wang et al., 2014).   

 

3.2 Neighboring factors 

Because wind can transport certain air pollutants from one region to other regions, 

ambient PM10 concentrations in areas downwind of a city are expected to be 

negatively affected by PM10 released in that city. Guo et al. (2014) discovered that 

pollutants emitted from industrial sectors in Beijing’s neighboring provinces 

contributed substantially to the PM formation in Beijing. Kallos et al. (1998) found 

evidence that the wind blew polluted air from southern Europe to Africa. The US 

                                                        
8 “China vehicle emissions control annual report,” available at: 

http://transportpolicy.net/index.php?title=China:_Compliance_and_Enforcement 

9 The Chinese-language version of the website is available at: 

http://www.bjepb.gov.cn/bjepb/323474/331443/331937/333896/396191/index.html 

http://transportpolicy.net/index.php?title=China:_Compliance_and_Enforcement
http://www.bjepb.gov.cn/bjepb/323474/331443/331937/333896/396191/index.html
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EPA also believes that international transport of air pollution has a significant 

negative impact on US air quality.10 

 

4. Empirical methodology 

4.1 Model specification 

 Following the above discussion, we estimate a regression model that accounts for 

both spatial and temporal correlations of PM10 concentrations and considers a variety 

of local and neighboring factors that may affect urban PM10 concentrations. Formally, 

we estimate: 

𝑃𝑀𝑖,𝑦𝑚𝑑 = 𝜏𝑃𝑀𝑖,𝑦𝑚𝑑−1 + 𝜌1 ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑

𝐽

𝑗≠𝑖

𝑃𝑀𝑗,𝑦𝑚𝑑 + 𝜌2 ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑−1

𝐽

𝑗≠𝑖

𝑃𝑀𝑗,𝑦𝑚𝑑−1 

                     +  𝑋𝑖,𝑦𝑚𝑑𝛽 + 𝜇𝑖,𝑦𝑚 + 𝜀𝑖,𝑦𝑚𝑑        (1) 

where 𝑃𝑀𝑖,𝑦𝑚𝑑  denotes the daily average PM10 concentration for city i on day d in 

month m of year y, while 𝑃𝑀𝑗,𝑦𝑚𝑑 denotes the daily average PM10 concentration for 

city i’s upwind city j on the same day. 𝜔𝑖𝑗,𝑦𝑚𝑑 (𝜔𝑖𝑗,𝑦𝑚𝑑−1) is the weight assigned to 

the upwind city j by city i on day d (d-1) in month m of year y. Thus, 

∑ 𝜔𝑖𝑗,𝑦𝑚𝑑
𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑  (∑ 𝜔𝑖𝑗,𝑦𝑚𝑑−1

𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑−1) denotes the aggregate amount of 

PM10 transported from cities upwind of city i to city i on day d (d-1) in month m of year 

y. In the remainder of this paper, we call ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑
𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑 “the spatially-lagged 

PM10 variable”, and call ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑−1
𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑−1  “the spatially and temporally-

lagged PM10 variable”. As noted above, we restrict our sample to observations of cities 

located in China’s EMR during the East Asian monsoon seasons. Thus, PM10 

concentrations in city i may be affected by PM10 pollution spilled over from upwind 

                                                        
10 “International transport of air pollution,” available at: 

http://www.millenniumbulkeiswa.gov/comments/MBTL-EIS-0002256-58930.pdf  
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cities during a given monsoon season, but city i’s PM10 concentrations are unlikely to 

influence PM10 concentrations in its upwind cities during the same monsoon season. 

 𝑋𝑖,𝑦𝑚𝑑 is a vector of variables describing local conditions in city i on day d in month 

m of year y. 𝜇𝑖,𝑦𝑚 denotes the city-year-month fixed effects that capture a wide range 

of the unobserved factors that are common to a city in a given year and month, such as 

seasonal coal consumption (in particular in North China, where coal is used for winter 

home and office heating), construction of buildings, subways and new roads, occasional 

sand storms, and policies implemented by different levels of government to improve 

air quality. The high dimensional fixed effects can also account for the effects of 

regional economic shocks and/or changes in regional meteorological conditions in a 

given year and month on PM10 pollution. 𝜀𝑖,𝑦𝑚𝑑 are the idiosyncratic error terms.  

 The atmospheric pollution literature suggests that there exists some degree of 

natural dilution of air pollution (Mayer, 1999). We make two assumptions to simplify 

our regression model (1). First, we assume that the temporal dependency of PM10 

concentrations in a city exists only between day d and day d-1. 𝜏 captures this temporal 

dependency. Second, a city’s PM10 concentration on a given day is assumed to be 

affected by PM10 pollution in cities upwind of this city on the same day and the previous 

day. 𝜌1  and 𝜌2  represent the spatial correlations of PM10 concentrations. Our main 

hypothesis is to test whether 𝜌1 = 𝜌2 = 0 , namely the null hypothesis that spatial 

spillover effects of PM10 do not exist.11  

 𝑋𝑖,𝑦𝑚𝑑 includes weather, fuel prices, dummy variables for post-harvest seasons of 

crops, and dummy variables for weekends and national holidays. We consider a 

                                                        
11 We also considered adding spatially and temporally-lagged PM10 variables for more than one period 

as additional explanatory variables. We find that coefficient estimates of these additional variables are 

not statistically significant and coefficient estimates of other variables are close to our baseline 

estimates. For brevity, these results are not reported, but are available upon request. 



16 

 

comprehensive set of weather variables, including daily precipitation, sunshine 

duration, maximum temperature (Tmax), minimum temperature (Tmin), average wind 

speed, relative humidity and atmospheric pressure. Because private vehicles in China 

are usually powered with gasoline, we use gasoline price as an explanatory variable to 

control for the effects of vehicle emissions on city-average PM10 concentrations. An 

increase in gasoline price is expected to reduce vehicle miles traveled and thus total 

fuel consumption, which in turn may reduce urban PM10 concentrations. To reduce 

emissions from crop residue burning, Chinese governments at different levels have 

imposed bans on open-field burning of crop residues during post-harvest seasons. 

However, illicit burning of crop residues still occurs across China’s agricultural 

heartland because it is a cheap way to remove crop residues from fields, while 

enhancing soil fertility. To control for the effects of farmers’ illicit burning of crop 

residues on PM10 pollution, we include dummies for the post-harvest seasons of three 

major crops in China, including corn, wheat and rice. 𝛽 reflects the effects of these local 

factors on city-average PM10 concentrations. 

 

4.2 Weighting scheme 

To estimate 𝜌1 and 𝜌2 in Eq. (1), the spatial weights matrices, including 𝜔𝑖𝑗,𝑦𝑚𝑑 

and 𝜔𝑖𝑗,𝑦𝑚𝑑−1, must be specified. Atmospheric studies emphasize the importance of 

wind speed and wind direction in dispersing air pollutants across regions (Chan and 

Yao, 2008; Nieuwenhuijsen et al., 2007). In light of this, we use three sources of 

information to specify our spatial weights matrices:  

𝜔𝑖𝑗,𝑦𝑚𝑑 = {

𝐺𝐷𝑃𝑗,𝑦

𝑓(𝑑𝑖,𝑗)𝑤𝑠𝑗,𝑦𝑚𝑑
              𝑖𝑓 𝑔𝑖,𝑗 = 𝑤𝑑𝑗,𝑦𝑚𝑑  and  

𝑑𝑖,𝑗

𝑤𝑠𝑗,𝑦𝑚𝑑
≤ 24 ℎ𝑜𝑢𝑟𝑠

0                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (2) 
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The first source of information is the geographical distance between the centroid of 

city i and the centroid of city i’s upwind city j, denoted by 𝑑𝑖,𝑗. The value of the weight 

assigned to city j by city i is negatively correlated with 𝑑𝑖,𝑗. If city j is geographically 

close to city i, we assign a large weight to city j. Otherwise, a small weight will be 

assigned. Atmospheric studies suggest that the amount of air pollutants transported 

from a city to downwind areas of this city by wind may not be a linear function of 

distance. Rather, this transport process is highly complex and is expected to be a 

nonlinear function of distance. In the empirical analysis, we consider several functional 

forms, represented by 𝑓(𝑑𝑖,𝑗) in Eq. (2), to characterize this process and to examine the 

robustness of our results.  

The second source of information is the geographical location of city j relative to 

city i (denoted by 𝑔𝑖,𝑗) and the wind direction in city j on day d in month m of year y 

(denoted by 𝑤𝑑𝑗,𝑦𝑚𝑑). In addition to distance, spatial interaction of PM is most likely 

to occur if there is sufficient air flow so that wind can carry PM10 from city j to cities 

downwind of city j. Thus, we assign a positive weight to city j if there is wind blowing 

from city j toward city i, i.e., 𝑔𝑖,𝑗 = 𝑤𝑑𝑗,𝑦𝑚𝑑. For instance, if city j is located northeast 

of city i, the PM10 concentration in city i on day d in month m of year y is affected by 

city j’s PM10 concentration on the same day if and only if city j has a northeast wind 

blowing on that day. We use 16 cardinal directions to characterize 𝑔𝑖,𝑗 and 𝑤𝑑𝑗,𝑦𝑚𝑑. 

The third source of information is the wind speed in city i’s upwind cities, denoted 

by 𝑤𝑠𝑗,𝑦𝑚𝑑. The speed of wind affects horizontal movement of PM and determines 

how long it can take PM to travel from the origin city j to the destination city i. 

Atmospheric studies find that pollutant concentrations in cities downwind of city j are 

negatively correlated with the wind speed in city j (Ermak, 1977). Lastly, we multiply 
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1

𝑓(𝑑𝑖,𝑗)𝑤𝑠𝑗,𝑦𝑚𝑑
 by GDP in city j in year y, denoted by 𝐺𝐷𝑃𝑗,𝑦, to capture the effect of city 

j’s emission strength on PM10 concentrations in downwind cities.  

When specifying 𝜔𝑖𝑗,𝑦𝑚𝑑, we assign positive weights to city j if it takes less than 

24 hours to transport PM10 from city j to city i. Using the same approach, we also 

specify 𝜔𝑖𝑗,𝑦𝑚𝑑−1. Here, 𝜔𝑖𝑗,𝑦𝑚𝑑−1 is specified differently from 𝜔𝑖𝑗,𝑦𝑚𝑑 in that, when 

specifying 𝜔𝑖𝑗,𝑦𝑚𝑑−1, we assign positive weights to city j if it takes more than 24 

hours but less than 48 hours to transport PM10 from city j to city i, 24 ℎ𝑜𝑢𝑟𝑠 <

 
𝑑𝑖,𝑗

𝑤𝑠𝑗,𝑦𝑚𝑑−1
≤ 48 ℎ𝑜𝑢𝑟𝑠.  

 

4.3 Method of estimation 

When panel lengths are short and the number of “individuals” is large, the 

standard method is to apply GMM to estimate dynamic panel models with fixed 

individual effects,12 while OLS estimates are inconsistent (Nickell, 1981). However, 

this inconsistency tends to be negligible when panel lengths are large (Deryugina and 

Hsiang, 2014). With daily observations, our panel has a large number of time periods. 

Moreover, using OLS allows us to account for spatial correlation and autocorrelation 

of the error terms, while avoiding using weak instruments, which is a common issue 

for GMM estimators (Roodman, 2009). Therefore, we use OLS to estimate Eq. (1), 

with standard errors clustered within province-year-month-day and within cities (see 

Cameron et al., 2011; Hsiang, 2010). The former (clustering standard errors within 

province-year-month-day) accounts for spatial correlation across cities within each 

province-year-month-day, while the latter (clustering standard errors within cities) 

                                                        
12 Another leading procedure estimating SDPD models is the (quasi) maximum likelihood estimation 

(MLE) (Lee and Yu, 2014). 
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accounts for serial correlation within each city. We also allow for the 

heteroscedasticity of the error terms. 

 

 5. Data 

We compile the data from three major sources. This section describes data sources 

and reports summary statistics. 

 

5.1 PM10 data 

We use the approach introduced by Andrews (2008) to construct daily PM10 

concentrations for the 108 major cities included in our sample over the period 2009-

2013, based on the daily air pollution index (API) reported by the Ministry of 

Environmental Protection (MEP). API is a composite index of PM10, SO2, and NO2.13 

Daily concentrations of the three pollutants are recorded by monitoring stations in 

each city and are rescaled for ease of comparison. The pollutant that has the highest 

concentration on a day is identified as the “major pollutant” for that day. The MEP 

uses a piece-wise linear conversion formula to compute a city’s daily average API 

based on the concentration of the “major pollutant” in that city. However, the MEP 

reported only daily average API and “major pollutants” for each city during our study 

period. Hence, daily PM10 data can be retrieved only if PM10 was reported as the 

“major pollutant” on a particular day, which leads to an unbalanced panel. In our 

sample, PM10 accounts for more than 75% of the “major pollutants”. 

Concerns have been raised regarding the validity of the officially reported API 

data. Wang et al. (2009) collected PM samples at Peking University, located in 

                                                        
13 For a comprehensive discussion about the construction of API, see 

http://www.aqhi.gov.hk/pdf/related_websites/APIreview_report.pdf 

http://www.aqhi.gov.hk/pdf/related_websites/APIreview_report.pdf
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northwestern Beijing, for six weeks in 2008. They found that the self-measured PM10 

concentrations were about 30% higher than those reported by the Beijing 

Environmental Protection Bureau. Using daily air pollution data during the period 

2001-2010, Ghanem and Zhang (2014) showed that many Chinese cities may have 

manipulated the official API data, especially for API scores around 100.14 Chen et al. 

(2012) confirmed such API discontinuity, but showed a significant correlation of API 

with another commonly used air pollution measure, namely Aerosol Optical Depth 

(AOD) from NASA satellites. Therefore, although the official API data are subject to 

manipulation, they are the best available measurement for air quality in urban China 

and still provide useful information about air pollution in Chinese cities. 

We select Beijing (located in northern China) and Chengdu (a major city located 

in western China) as two representative cities to get a sense of daily PM10 co-

movement between the two cities and their upwind cities. We plot daily PM10 

concentrations in 2012 for each of the two cities and their two upwind cities during 

the winter and summer monsoon seasons. Figure 2 shows that PM10 concentrations 

between the two cities and their upwind cities are positive and statistically significant 

(p < 1%). For instance, during the winter monsoon season, the correlation coefficients 

between Beijing and its two upwind cities are 0.32 and 0.26, while the correlation 

coefficients between Chengdu and its two upwind cities are 0.67 and 0.60. During the 

summer monsoon season, PM10 correlations for the two cities and their upwind cities 

are also large and statistically significant (p < 1%). 

 

 

                                                        
14 That is because the number of “blue sky” days (a blue sky day is defined as a day for which the 

average API is below 100) was used as a measure for environmental performance of local officials by 

the central government. 
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5.2 Weather data  

We gather weather data from the China Meteorological Data Sharing Service 

System, which records daily weather information for 820 weather stations in China. 

The fine-scale weather data set also contains coordinates of each weather station, 

enabling us to match weather data with our air pollution data. Each of the cities 

included in the sample has at least one weather station. For cities with several weather 

stations, we construct weather variables by taking a simple average of these weather 

variables across these stations.  

According to Ding (1994), the winter monsoon is defined as between November 

and March. The summer monsoon period differs substantially across regions in China. 

The summer monsoon in southern China typically starts in the middle of April and 

ends in September, while southerly winds dominate northern China in the middle of 

July and begin to weaken from August 10 (Ding, 1994). We define the summer 

monsoon as between July 15 and August 10, which is the time period during which 

southerly winds dominate the entire China’s EMR. Figure 3 plots the distributions of 

wind direction during the monsoon seasons and verifies that the prevailing winds 

have been southerly (with cardinals of 6-12) during the summer monsoon season, and 

China’s EMR is dominated by northerly winds during the winter monsoon season 

(with cardinals of 1-5 and 13-16). 

 

5.3 Other control variables 

We obtain gasoline prices from the National Development and Reform 

Commission (NDRC) for the sample period.15 The NDRC is the nation’s top 

economic planner, and it sets baseline fuel prices in China. State-owned retailers are 

                                                        
15 See http://www.sdpc.gov.cn/zcfb/zcfbgg/index_2.html, last accessed on March 26, 2016.  

http://www.sdpc.gov.cn/zcfb/zcfbgg/index_2.html
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allowed to adjust retail fuel prices within a tight 8% up or down band of the baseline 

prices. The frequency of fuel price adjustments ranges from days to weeks, depending 

on the fluctuations in international prices of crude oil. China has been revising the 

fuel pricing policy and changing the frequency of fuel price adjustments to better 

reflect the international prices of crude oil, but the pricing mechanism implemented 

by the NDRC is still not fully market-driven (Zhang and Xie, 2016). We collect 

province-level post-harvest seasons of corn, wheat and rice from the Ministry of 

Agriculture of China.16 

 

5.4 Summary statistics 

Table 1 reports summary statistics of key variables. With the daily specification 

for our observations, we have a total number of 47,881 and 9,713 observations during 

the winter and summer monsoon seasons, respectively. We find that all variables 

exhibit significant variability during the sample period.17 From Figure 1, we find two 

apparent patterns: (i) average PM10 concentrations in most cities during the winter 

monsoon season are significantly higher than that during the summer monsoon 

season; and (ii) there exist considerable variations in average PM10 concentrations 

across Chinese cities. Table 2 shows that correlations of weather variables are 

generally significant (p < 1%), suggesting that, to account for the simultaneous 

variations in weather variables, these weather variables should be incorporated in the 

regression analysis to minimize estimation biases originating from omitted variables. 

 

                                                        
16 The Chinese language version of the website is available at 

http://202.127.42.157/moazzys/nongshi.aspx, last accessed on March 26, 2016. 

17 Based on the Augmented Dickey-Fuller (ADF), the Elliott-Rothenberg-Stock DF-GLS, and the 

Phillips-Perron (PP) test statistics, we find that PM10 concentrations, weather variables, and gasoline 

price are stationary. For brevity, these test statistics are not reported here.  

http://202.127.42.157/moazzys/nongshi.aspx
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6. Baseline results 

In this section, we report the baseline results based on the observations during the 

winter monsoon season in Table 3, while the corresponding results based on the 

sample during the summer monsoon season are summarized in Table 4. In each table, 

we conduct the spatial analysis of urban air pollution using three different model 

specifications. Specifically, in Model 1, we include only local factors, namely a 

temporally-lagged dependent variable, weather variables, gasoline price, and dummy 

variables for post-harvest seasons of rice, corn and wheat, as explanatory variables to 

examine the variations in city-average PM10 concentrations during the sample period. 

In Model 2, we add “the spatially-lagged PM10 variable” to examine whether a city’s 

PM10 concentration is affected by contemporaneous PM10 transport from upwind 

cities. In Model 3, we incorporate “the spatially and temporally-lagged PM10 

variable” as an additional explanatory variable. The three model specifications 

incorporate weekend and holiday dummies and city-year-month fixed effects. In the 

baseline analysis, we specify 𝑓(𝑑𝑖,𝑗) in Eq. (2) as a linear function of distance, i.e., 

𝑓(𝑑𝑖,𝑗) = 𝑑𝑖,𝑗. This assumption will be relaxed in the robustness check section.  

 

6.1 Temporal dependence of PM10 concentrations 

Coefficient estimates of the temporally lagged PM10 variable are positive and 

statistically significant (p < 1%) in all three model specifications, indicating that city-

average PM10 concentrations are temporally correlated. Holding all else the same, if 

the average PM10 level in a city on a given day increases by one unit during the winter 

monsoon season, the average PM10 concentration for the same city on the following 

day is expected to increase by 0.43-0.46 units. The remaining portion (0.54-0.57 

units) of the increase in PM10 concentration is diluted by nature. The temporal 
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dependence of PM10 concentrations during the summer monsoon season is 

considerably smaller, at 0.31-0.32. 

 

6.2 Spatial spillovers of PM10 pollution 

In Models 2 and 3, the coefficient estimates of “the spatially-lagged PM10 

variable” are positive and statistically significant (p < 1%). The parameter estimate of 

this variable is 0.11-0.12 when the analysis is conducted using the winter monsoon 

sample and is 0.08 when the analysis is conducted using the summer monsoon 

sample. This provides strong evidence for the existence of spatial spillover effects of 

PM10. With the linear specifications of the two models, the coefficient estimates of 

this variable can be interpreted as follows: for each unit increase in PM10 

concentrations in a city’s upwind cities, the average PM10 concentration in this city is 

expected to increase by 0.11-0.12 units during the winter monsoon season and by 0.08 

during the summer monsoon season, holding all else the same.  

Compared to the contemporaneous pollution spillover effects, the negative 

impacts on local air quality of the one-day lagged PM10 pollution transported from 

upwind cities are much smaller. The coefficient estimate of “the spatially and 

temporally-lagged PM10 variable” is insignificant for the summer monsoon sample. 

Although it is statistically significant (p < 1%) for the winter monsoon sample, it is 

about 45% smaller than the coefficient estimate of “the spatially-lagged PM10 

variable”. That probably is the case because, when PM10 travels long distance and 

when wind speed is slow, most of the PM10 from upwind cities will be diluted by 

natural ecosystems (Kalthoff et al., 2000).  
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6.3 Effects of other local factors on PM10 concentrations 

Coefficient estimates of the precipitation and wind speed variables are negative 

and statistically significant (p < 1%), and remain fairly comparable across different 

model specifications. This suggests that increased precipitation and strong winds can 

effectively reduce ground-level PM10 concentrations and improve urban air quality. 

These findings are in agreement with the well-established literature on atmospheric 

pollution (see Arya, 1999).  

Temperature effects on PM10 concentrations differ over time during a day. The 

parameter estimate of Tmin is found to be negative and statistically significant (p < 

1%) for the winter monsoon sample, suggesting that higher Tmin can reduce city-

average PM10 concentrations. The mechanism behind this finding is simple. Studies 

on atmospheric pollution have discovered that, when temperature increases, warmer 

air near the surface becomes lighter than colder air above it, creating an uplift of air. 

The vertical movement of air can bring PM10 away from the surface and thus reduce 

ground-level PM10 concentrations (Arya, 1999). The coefficient estimate of Tmin has a 

positive sign but it is insignificant for the summer monsoon sample. The coefficient 

estimate of Tmax is found to be positive and statistically significant (p < 1%). While 

Tmin typically occurs before sunrise, Tmax usually occurs during the early to middle 

afternoon. Human activities, such as construction and driving for recreation, are 

expected to be highest during the early to middle afternoon, and may generate PM10 

that is not captured by our explanatory variables. That may explain the positive 

coefficient estimate of the Tmax variable. Coefficient estimates of other weather 

variables, including sunshine hours, relative humidity and atmospheric pressure, are 

consistent with well-established atmospheric evidence (Seinfeld and Pandis, 2006). 
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Parameter estimates of other control variables have expected signs and statistical 

significance. Coefficient estimates of the dummy variables for post-harvest seasons of 

rice, corn and wheat are insignificant, possibly because post-harvest seasons of the 

three crops are collected at provincial scale and the city-year-month fixed effects may 

have absorbed some of the effects of burning residues on PM10 concentrations. The 

coefficient estimate of gasoline price is negative and statistically significant for the 

winter monsoon sample, suggesting that by reducing fuel consumption increased 

gasoline prices have effectively improved air quality during the winter months. The 

coefficient estimate of this variable is insignificant for the summer monsoon sample, 

possibly because car travel during the summer months is more responsive to changes 

in income than to changes in fuel prices (Dargay and Gately, 1999). 

 

7. Robustness checks 

The results presented above regarding the impacts of various factors on ambient 

PM10 concentrations make intuitive sense. But how robust are they? In this section, 

we examine the sensitivity of our results in nine different scenarios. For brevity, we 

summarize estimated pollution spillover effects (the sum of the point estimates of “the 

spatially-lagged PM10 variable” and “the spatially and temporally-lagged PM10 

variable) and their 95% confidence bands across various scenarios in Figure 4.18  

 

7.1 Results by spatial weights matrix and econometric estimation strategy 

The first set of robustness checks addresses the sensitivity of our results to 

variations in spatial weights matrices and econometric estimation strategies. In 

                                                        
18 Across the various scenarios that we considered, coefficient estimates of other control variables are 

fairly close to our baseline estimates. For brevity, they are not reported. 
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Scenarios (1)-(3), we consider three nonlinear forms of distance function suggested 

by Ermak (1977) to construct our spatial weights matrix. Specifically, we consider a 

quadratic distance function 𝑓(𝑑𝑖,𝑗) = 𝑑𝑖,𝑗 + 𝑑𝑖,𝑗
2  in Scenario (1), a square root distance 

function 𝑓(𝑑𝑖,𝑗) = 𝑑𝑖,𝑗
0.5 in Scenario (2), and an exponential distance function 

𝑓(𝑑𝑖,𝑗) = exp (𝑑𝑖,𝑗) in Scenario (3). In Scenario (4), we replicate the above analysis 

by estimating standard errors that are clustered within cities and within region-year-

month-days (rather than within cities and within city-year-month-days in the baseline 

analysis). We consider this scenario mainly due to the concern that the error terms 

may be correlated because a shock occurring in a region on a given day may affect 

PM10 concentrations for all cities located in that region on that day. In Scenario (5), 

we use city-year-season fixed effects and month fixed effects to control for the 

unobserved factors (rather than city-year-month fixed effects in the baseline analysis). 

We find that estimated pollution spillover effects in these five scenarios are almost 

identical to our baseline estimates, suggesting that our results are robust to variations 

in spatial weights matrices and econometric estimation strategies. 

 

7.2 Results by variable and sample 

Neighboring cities are likely to experience similar shocks due to changes in 

regional business/pollution cycles and meteorological conditions. To separate the 

pollution spillovers caused by idiosyncratic changes in wind direction from these 

regional shocks, we add an additional variable in Eq. (1) in Scenario (6). This new 

variable is another weighted average of PM10 concentrations in nearby cities, where 

weights are based solely on distance between cities but not on wind direction. This 

variable is expected to control for regional shocks because of changes in regional 

business/pollution cycles and meteorological conditions, which are most likely to be 
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correlated across nearby cities and are unrelated to wind direction. As shown in 

Figure 4, we find that the estimates of the pollution spillover effects are still positive 

and statistically significant (p < 1%), but they are about 42-49% smaller than our 

baseline estimates.  

Although the prevailing wind directions are northerly during the winter monsoon 

season and southerly during the summer monsoon season, wind directions in some 

cities during the monsoon seasons still occasionally change (see Figure 3). In 

Scenario (7), we further restrict our sample by dropping observations that are not 

strictly following prevailing wind directions during the two monsoon seasons. 

Estimated pollution spillover effects in this scenario are statistically significant (p < 

1%), and their magnitudes are broadly consistent with our baseline estimates. 

 

7.3 Results by terrain feature 

Lastly, we examine the role of terrain features in affecting regional spillovers of 

PM10 pollution in Scenarios (8) and (9). A flat terrain facilitates unobstructed 

movement of wind and thus air pollution. China has four major plains, including 

Northeast China Plain, North China Plain, Yangtze Plain and Guanzhong Plain. We 

divide our sample into two subsamples based on whether a city is located in plain or 

non-plain regions. As expected, we find that estimated spillover effects in plain 

regions are considerably (24-37%) larger than the baseline estimates, while estimated 

spillover effects in non-plain regions are substantially (37-58%) smaller than our 

baseline estimates19.  

 

                                                        
19 The estimated spillover effect in non-plain regions during the summer monsoon season is statistically 

insignificant. 
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8. Assessment of the upwind impacts  

The results presented above show how various factors affect city-average PM10 

concentrations and their statistical significance. In this section, we estimate the 

percentage contributions of PM10 transported from upwind cities to local PM10 

concentrations for each of the cities included in our sample. To achieve this goal, we 

first estimate our baseline Model 3 for each city as a time series regression analysis, 

and obtain city-specific parameter estimates of 𝜌1 and 𝜌2. We then compute 𝜃𝑖 for 

city i: 

𝜃𝑖 =
∑ 𝐸(𝑃𝑀𝑗)

𝐽
𝑗≠𝑖

𝐸(𝑃𝑀𝑖)
        (3) 

where 𝐸(𝑃𝑀𝑖) denotes the predicted PM10 concentration for city i and ∑ 𝐸(𝑃𝑀𝑗)𝐽
𝑗≠𝑖  

represents the sum of the PM10 transported from J upwind cities of city i on days d 

and d-1. When calculating 𝐸(𝑃𝑀𝑖), we first obtain city-specific predicted values of 

𝑃𝑀𝑖,𝑦𝑚𝑑 for day d in month m of year y. We then compute the average of the 

predicted values of 𝑃𝑀𝑖,𝑦𝑚𝑑 over time to get 𝐸(𝑃𝑀𝑖). Similarly, we use city-specific 

parameter estimates of 𝜌1 and 𝜌2, multiplied by sample means of 

∑ 𝜔𝑖𝑗,𝑦𝑚𝑑
𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑 and ∑ 𝜔𝑖𝑗,𝑦𝑚𝑑−1

𝐽
𝑗≠𝑖 𝑃𝑀𝑗,𝑦𝑚𝑑−1, respectively, to compute 

∑ 𝐸(𝑃𝑀𝑗)𝐽
𝑗≠𝑖 . Hence, 𝜃𝑖 measures the “average” contribution of PM10 transported 

from upwind cities to city i’s PM10 concentrations.  

Figure 5 shows that there exist large variations in estimated 𝜃𝑖 across cities, 

ranging from 0% to 30% during the winter monsoon season and from 0% to 26% 

during the summer monsoon season. Of the cities included in the sample, we find that 

the cities located in the North China Plain and Yangtze River Delta regions are most 

affected by PM10 pollution from upwind cities. These are expected results because: (i) 

the two regions have a large number of adjacent cities and (ii) the two regions have 
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relatively flat terrain that facilitates pollution diffusion across regions. The estimated 

percentage contributions of PM10 pollution from upwind cities are comparable with 

the findings reported in Guo et al. (2014) and Liu et al. (2016) that focus on cities in 

the North China Plain region.  

Most of the cities that are least affected by PM10 pollution from upwind cities 

during the winter monsoon season are located in mountainous areas. Their local 

terrains can effectively prevent wind from carrying air pollutants from other regions. 

During the summer monsoon season, the cities with smallest upwind impacts are 

located in Central China, which are expected given that the prevailing wind directions 

are southerly during the summer months and the cities located in southern China have 

much lower PM10 levels relative to cities in northern China (see Figure 1). 

 

 9. Conclusions and discussion 

In this paper, we exploit spatial and temporal variations in PM10 concentrations 

for major cities located in China’s EMR during the East Asian monsoon seasons to 

examine the effects of various local and neighboring factors on PM10 concentrations 

in Chinese cities. To fully incorporate the spatial and temporal dynamics of PM10 

concentrations, we develop a dynamic spatial panel model. The spatial weights matrix 

constructed in the model considers not only geographical distance between cities, but 

also wind direction, wind speed, and emission strength in upwind cities. The spatial 

econometric model we developed in this paper is novel, as it is the first empirical 

study that allows a spatial weights matrix to change over time. In contrast to the 

approaches used by atmospheric studies, findings based on our regression framework 

remain remarkably robust to locations, econometric estimation strategies, data and 

variables.   
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Our regression results provide strong evidence of the existence of spatial spillover 

effects of air pollution. Coefficient estimates of weather variables are consistent with 

the findings presented in the atmospheric pollution literature. Other variables have 

intuitive signs and magnitudes as well. For example, city-average PM10 concentrations 

are temporally correlated, and higher gasoline prices help to improve air quality. We 

also find that the percentage contributions of pollution from upwind cities to local 

PM10 levels vary across regions, with cities located in the North China Plain and 

Yangtze River Delta regions most affected by pollution from upwind cities.  

Our findings have important public policy implications for the effective design of 

China’s air pollution control policies. Given the existence of transboundary air 

pollution across regions, China’s widely-adopted strategy of relocating large-scale 

and heavily polluting factories to suburbs or neighboring cities will not be effective. 

To effectively abate transboundary air pollution, pollution control policies must be 

coordinated between cities and provinces to address this negative externality. Our 

findings also support the idea that China should adopt a version of the US EPA’s 

Good Neighbor Rule, which is designed to address interstate transport of air pollution.  

Several caveats apply. First, because daily PM10 data used in the sample are not 

continuous, we may have underestimated the true spatial spillover effects of PM10. 

Second, our sample includes only 108 major Chinese cities in the EMR. While we 

investigate the spatial correlations of PM10 among these major cities, there are many 

small and medium-size cities located between these major cities. PM10 generated in 

those cities could be transported by wind to the major cities in the sample. As a result, 

our estimated spatial spillover effects could be smaller or larger than the actual 

estimates. The last major caveat is that we cannot conduct a cost-benefit analysis to 

quantify the costs and benefits of abating PM10. On the cost side, there exist a number 
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of options to reduce PM10 emissions, with marginal abatement costs varying by city 

and by abatement option. The relationship between emissions and concentrations is 

quite complex and varies across locations (Lanigan, 1993). Thus, it is quite difficult to 

predict how PM10 concentrations will change when emission levels change. On the 

benefit side, it is difficult to estimate the benefits stemming from reduced PM10 

concentrations, because the benefits depend not only on reduced PM10 concentrations, 

but also on initial PM10 levels. Moreover, estimating the benefits due to reduced PM10 

concentrations would require us to project the potential reduction of the number of 

days when activity is restricted because of air pollution, as well as estimates on 

reduced health costs and increased output from increased work time, all of which vary 

by city. We can conclude by pointing to a multiplier effect of pollution abatement. If 

all cities lower their PM10 concentrations by one unit, average PM10 concentrations in 

Chinese cities can decrease by up to 1.7 units during the winter monsoon season and 

by up to 1.1 units during the summer monsoon season. 
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Table 1. Descriptive statistics 

Variable     Unit Monsoon 

Season 

Mean SD Min Max 

PM10 concentration µg/m3 Winter 101.2 60.6 5.9 600.0 

  Summer 62.0 30.7 9.8 361.9 

Precipitation 0.1 mm Winter 13.7 49.2 0.0 3204.0 

  Summer 65.9 177.7 0.0 2670.0 

Sunshine duration 0.1 hour Winter 45.2 38.3 0.0 121.0 

  Summer 62.3 42.9 0.0 145.0 

Tmax 0.1°C Winter 109.2 89.7 -256.0 370.0 

  Summer 310.2 39.2 125.0 428.0 

Tmin 0.1°C Winter 26.3 93.6 -352.0 253.0 

  Summer 233.6 33.8 107.0 326.0 

Average wind speed 0.1 m/s Winter 24.0 15.8 0.0 203.0 

  Summer 21.8 12.2 0.0 131.0 

Atmospheric pressure 0.1hPa Winter 9869.2 546.5 7776.0 10431.0 

  Summer 9703.1 503.0 7892.0 10147.0 

Relative humidity 1% Winter 66.5 18.5 10.0 100.0 

  Summer 77.6 10.6 34.0 100.0 

Gasoline price Yuan/ton Winter 8514.6 937.1 6320.0 10380.0 

  Summer 8610.9 728.0 7250.0 9780.0 

Notes: The sample includes 108 cities from 2009 to 2013. N=47,881 during the winter monsoon season and 

N=9,713 during the summer monsoon season. 
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Table 2a. Correlations of weather variables during the winter monsoon season 

 Precipitation Sunshine 

duration 

Tmax Tmin Average wind 

speed 

Atmospheric 

pressure 

Sunshine duration -0.281*** -     

Tmax -0.149*** 0.313*** -    

Tmin 0.039*** -0.215*** 0.640*** -   

Average wind speed 0.117*** -0.040*** -0.100*** 0.021*** -  

Atmospheric pressure -0.093*** 0.124*** -0.515*** -0.508*** 0.012*** - 

Relative humidity 0.302*** -0.565*** -0.138*** 0.170*** -0.144*** -0.224*** 

Notes: The Pearson's correlation coefficients of weather variables, after removing weather station and year fixed effects, are reported in the table. N=47,881. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 

 

 

Table 2b. Correlations of weather variables during the summer monsoon season 

 Precipitation Sunshine 

duration 

Tmax Tmin Average wind 

speed 

Atmospheric 

pressure 

Sunshine duration -0.368*** -     

Tmax -0.334*** 0.678*** -    

Tmin -0.212*** 0.125*** 0.502*** -   

Average wind speed 0.146*** -0.013 -0.025** 0.166*** -  

Atmospheric pressure -0.168*** 0.056*** -0.153*** -0.236*** -0.215*** - 

Relative humidity 0.406*** -0.689*** -0.700*** -0.326*** -0.081*** -0.005 

Notes: The Pearson's correlation coefficients of weather variables, after removing weather station and year fixed effects, are reported in the table. N=9,713 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 3. Baseline results: Winter monsoon (dependent variable: PM10 concentration) 

Variables 
Model 1: Local 

factors only 

Model 2: Add 

spatial PM10 

Model 3: Add 

lagged spatial PM10 

Temporally-lagged PM10 0.458*** 0.446*** 0.430*** 

 (0.012) (0.013) (0.013) 

Spatially-lagged PM10   0.116*** 0.111*** 

 (0.011) (0.010) 

Spatially and temporally-lagged 

PM10  

  0.061*** 

  (0.009) 

Precipitation -0.103*** -0.101*** -0.101*** 

 (0.016) (0.015) (0.015) 

Sunshine duration -0.172*** -0.159*** -0.158*** 

 (0.021) (0.020) (0.020) 

Tmax 0.278*** 0.271*** 0.278*** 

 (0.018) (0.018) (0.017) 

Tmin -0.135*** -0.135*** -0.141*** 

 (0.022) (0.022) (0.022) 

Average wind speed -0.384*** -0.429*** -0.448*** 

 (0.054) (0.060) (0.062) 

Atmospheric pressure -0.056*** -0.045*** -0.045*** 

 (0.013) (0.012) (0.012) 

Relative humidity -0.022 0.003 0.019 

 (0.058) (0.055) (0.054) 

Gasoline price -0.005** -0.006** -0.006** 

 (0.003) (0.003) (0.003) 

Post-harvest season of rice -0.287 -0.034 0.377 

 (2.466) (2.392) (2.335) 

R2 0.310 0.326 0.332 

Notes: City-year-month fixed effects and dummy variables for weekends and national holidays are included 

in all model specifications. Dummy variables for post-harvest seasons of corn and wheat are omitted 

because the harvest of the two crops does not occur during the winter monsoon season. Robust standard 

errors are in parentheses, adjusted for spatial correlation, autocorrelation, and heteroscedasticity of the error 

terms. N=47,881. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 4. Baseline results: Summer monsoon (dependent variable: PM10 concentration) 

Variables 

Model 1: 

Local factors 

only 

Model 2: Add 

spatial PM10 

Model 3: Add 

lagged spatial 

PM10 

Temporally-lagged PM10 0.321*** 0.315*** 0.313*** 

 (0.020) (0.020) (0.019) 

Spatially-lagged PM10   0.082*** 0.082*** 

 (0.013) (0.013) 

Spatially and temporally- lagged 

PM10  

  0.015 

  (0.011) 

Precipitation -0.011*** -0.012*** -0.012*** 

 (0.002) (0.002) (0.002) 

Sunshine duration -0.143*** -0.137*** -0.136*** 

 (0.022) (0.022) (0.022) 

Tmax 0.340*** 0.329*** 0.329*** 

 (0.033) (0.033) (0.033) 

Tmin 0.025 0.022 0.022 

 (0.031) (0.031) (0.031) 

Average wind speed -0.257*** -0.265*** -0.267*** 

 (0.043) (0.044) (0.044) 

Atmospheric pressure 0.017 0.021 0.022 

 (0.018) (0.018) (0.018) 

Relative humidity 0.139 0.136 0.136 

 (0.088) (0.087) (0.086) 

Gasoline price 0.004 0.004 0.003 

 (0.005) (0.005) (0.005) 

Post-harvest season of rice  -1.483 -1.340 -1.340 

 (1.627) (1.564) (1.561) 

Post-harvest season of corn -2.354 -1.906 -1.777 

 (2.817) (2.709) (2.715) 

Post-harvest season of wheat 4.305 4.695 4.610 

 (2.706) (2.871) (2.945) 

R2 0.215 0.225 0.225 

Notes: City-year-month fixed effects and dummy variables for weekends and national holidays are 

included in all model specifications. Robust standard errors are in parentheses, adjusted for spatial 

correlation, autocorrelation, and heteroscedasticity of the error terms. N=9,713. 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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(a) Winter monsoon       (b) Summer monsoon  

 

Figure 1. City-average PM10 concentrations during the winter (a) and summer (b) monsoon seasons, 2009-2013 
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(a) Winter monsoon  
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 (b) Summer monsoon 

Figure 2. Spatial correlations of PM10 concentrations in Chinese cities during the winter (a) and summer (b) monsoon seasons 
 

Notes: Figure 2 is based on the 2012 data for Beijing and Chengdu. 
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Figure 3. Wind direction during the winter and summer monsoon seasons 
 

Notes: Wind directions are characterized by 16 cardinal directions, with cardinals of 1-5 and 

13-16 denoting northerly winds and cardinals of 6-12 denoting southerly winds. 
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(a) Winter monsoon        (b) Summer monsoon  

 

Figure 4. Sensitivity analysis 

 

Notes: This figure shows the sums of coefficient estimates of the spatially-lagged PM10 and the spatially and temporally-lagged PM10 variables in different 

scenarios and their 95% confidence intervals. 
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(a) Winter monsoon        (b) Summer monsoon  

 

Figure 5. Percentage contributions of PM10 from upwind cities to local PM10 concentrations during the winter (a) and summer (b) monsoon 

seasons 

 

 

 

 


