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Risk Preferences and the Pace of Climate Smart Technology Adoption: A Duration Model 

Approach from India 

 

Introduction:  

Technological innovation has always been associated with economic development. More 

particularly, advances in agricultural technologies have been considered as a major factor in improving 

living standards of rural population. Given the much advocated benefits from new agricultural 

technologies, the delay in adoption of proven technologies has always puzzled economists.  An extensive 

literature has attempted to explain why farmers do not adopt or delay adoption of new technology. Much 

of this literature cites low level of education (Foster & Rosenzweig, 1995), lack of information and access 

to credit (Barrett et al., 2004), learning spillover (Munshi, 2004), tenure insecurity, small farm size, and 

unreliable supply of complementary inputs as the main constraints to technology diffusion.  

Apart from the factors mentioned above, there has been a good deal of enquiry on the role of 

uncertainty about the effectiveness of a new technology as a major constraint to adoption (Feder,1980). 

As such, in most developing countries, agriculture is always a risky proposition given its dependence on 

environmental factors that are beyond farmer’s control. Further, any new agricultural technology can 

have a wide distribution of outcomes increasing the associated uncertainty. So, any new agricultural 

technology is inherently perceived as an uncertain proposition. Consequently, farmers’ perceived 

uncertainty regarding effectiveness of the technology allows individual risk preferences to play a major 

role in technology adoption (Holden, 2015). 

Many experimental studies in developing countries have assessed how risk preferences affect 

technology adoption (Binswanger, 1980; Byerlee and Polanco, 1986; Shapiro et al., 1992). Binswanger et 

al. (1980) elicited the risk preferences of a sample of Indian farmers. They used several elicitation 

techniques, including a gambling game with real money. Their method measured level of farmer’s risk 

aversion, which was used as an explanatory factor in regression for adoption. Their results showed mixed 

results and were inconclusive about the role of risk aversion on adoption.  
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Byerlee and Polanco (1986) analyzed farm survey data from Mexico to investigate the reasons for 

stepwise adoption of component of a technology package.  Their results showed that adoption of new 

innovation was explained primarily by its profitability and riskiness. Shapiro et al. (1992) used a Tobit 

model to explain the effect of several variables including risk aversion on adoption of double cropping in 

the USA. They found that adopters on average were more risk averse than non-adopters. However, other 

factors, like risk perception were more important than their risk preferences in explaining adoption.  

Though there has been a series of studies trying to explain the impact of risk on adoption, most 

of them have relied on less comprehensive experimental designs that did not test for alternate theories 

like relative importance of Expected Utility Theory (EUT) and Prospect theory (PT) to explain technology 

adoption.  While using EUT one can only test whether risk aversion plays a role in technology adoption, 

PT allows a comprehensive testing of roles of risk aversion, loss aversion and probability weighted 

measure in technology adoption decision.  

To date, Liu (2013) and Ward & Singh (2015) are the only studies that comprehensively assess the 

relevance of EUT and PT for adoption of new types of seeds. In a study of adoption of BT cotton seeds in 

China, Liu (2013) found that more risk averse and loss averse farmers adopt the BT cotton seed later, while 

farmers who overweighed smaller probabilities adopted the seeds earlier. Ward and Singh (2015), 

conducted a similar study on adoption of drought tolerant paddy in India and found that risk averse and 

loss averse farmers are more likely to switch to new rice seeds which outperform other cultivars under 

moderate and severe drought conditions. Both these studies clearly show how loss aversion and 

probability weighting measure is an important parameter, along with risk aversion in defining technology 

adoption.  

This paper investigates into the role of individual’s risk preferences in adoption behavior of three 

climate smart technologies promoted in India; Zero Tillage, Laser land Leveler, and Direct Seeded Rice. 

These technologies have been termed climate smart as they both help in climate change adaptation by 

reducing risk & increasing productivity and in climate change mitigation by reducing GHG emissions.  This 

would be one of the first papers to examine the role of risk preferences in the adoption of climate smart 

technologies.  

There are several reasons to focus on individual risk preferences while thinking about adoption of 

these three technologies. One is that risk attitudes have long been recognized by the theoretical model 

of technology adoption as an important factor. Omission of risk preferences could bias the coefficients of 
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other significant variables that could be correlated with risk preferences such as wealth and education.  

Second, Individual risk preferences have shown to be defining wealth accumulation and income growth 

(McInish, Ramaswami, & Srivastava, 1993).   However, since risk preferences are not easily assessed 

through standard household surveys I propose to use the experimental method to ascertain the risk 

attitudes and use that measure to explain the adoption of technologies by smallholder farmers.   

 

Background on focused technologies and the study area: 

 

This paper analyzes the adoption of three climate smart technologies in rice-wheat cropping 

systems in India. Rice–wheat (RW) is the most important cropping system for food security in South Asia 

with 13.5 M ha of land devoted to this farming system, and providing food for more than 400 million 

people. In India, the rice-wheat cropping system contributes 26% of total cereal production and 60% of 

total calorie intake (Gupta et al., 2003).  The area under the RW system is static and the productivity and 

sustainability of the system are threatened, because of the inefficiency of current production practices, 

shortage of resources such as water and labor, and socioeconomic changes. Pressure is increasing on the 

limited land, water and increasing variability in the climatic factors are increasingly making it more difficult 

to meet the increasing demand for food of the burgeoning population.   

In order to address the dual need of food security and climate change, the Consultative Group for 

International Agricultural Research (CGIAR) supported research program on Climate Change, Agriculture 

and Food Security (CCAFS), in partnership with Indian agricultural research centers and other agencies 

have introduced an array of technologies and practices under the rubric of climate-smart agriculture (CSA) 

in India. The three technologies considered in the context of this study are; Laser Land Leveler (LLL), Zero 

Tillage (ZT) and Direct Seeded Rice (DSR).  LLL is a - a machine equipped with a laser-operated drag 

bucket that ensures more  flat, even surface in less time compared to the traditional ox-drawn scraper. A 

uniform field improves irrigation efficiency through better control of water distribution and reduces the 

potential for nutrient loss through improved runoff control, leading to greater efficiency of fertilizer use 

and higher yields. It is claimed that LLL will increase productivity, reduce water use and irrigation cost and 

decrease the emission of Green House Gases (GHGs).  ZT is a cultivation practice that not only helps 

preserve soil fertility and conserves scarce water, but also boosts yields and increases farmers’ profits by 

reducing their production costs. Instead of plowing their fields and then planting seeds, farmers who use 

zero tillage deposit seeds into holes drilled into the unplowed fields. In DSR, rice seed is sown and sprouted 

directly into the field, eliminating the laborious process of transplanting seedlings by hand and greatly 
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reducing the crop’s water requirement as compared to the traditional rice cultivation. In traditional rice 

cultivation, rice is first sprouted in a nursery; sprouted seedlings are then transplanted into standing 

water. 

All three technologies are known for reducing variable costs such as labor and water input. 

However there is a capital investment cost (i.e., buying the machinery needed) or additional variable cost 

(i.e., renting the machinery) for implementing these technologies. These technologies promote 

sustainable intensification of agriculture and claim to increase mean productivity, and are generally 

considered risk reducing technologies.  But they perform optimally only under certain conditions, such as 

with precise additions of complementary inputs. Deviations from these conditions may result in reduced 

yield benefits vis-á-vis the traditional technology, and thus have a perceived risk associated with their use.  

These technologies have been promoted by CIMMYT-CCAFS in three districts that define the study area 

for this research—Ludhiana in Punjab, Karnal in Haryana, and Vaishali in Bihar. 

 

 

Theory: 

  The common approach to characterize risk preference is to use Expected Utility (EU) framework 

where the curvature of the utility function is solely defined by risk aversion. In prospect theory (PT) 

however, the shape of the utility function is jointly determined by three factors--risk aversion, loss 

aversion and a non-linear probability weighting measure. Risk aversion determines one’s aversion to 

taking risk when the outcomes are positive. Loss aversion determines one’s sensitivity to losses as 

compared to gains. Non-linear probability weighting measure determines ones tendency to overweight 

small probabilities and underweight large probabilities.  

Though most papers in the past have focused on EUT as a framework to explain the role of risk in 

adoption I believe a more comprehensive analyses provided by PT might fit better in the context of this 

study for a number of reasons. First, most farmers are poor in our study area and they might be more 

sensitive to losses than to gains, so loss aversion could play a significant role. Second, in the proposed 

study area we will have a significant number of farmers who would be economically situated around the 

official poverty line and therefore might overvalue the probabilities around poverty line. Farmers who 

might just have moved out of the poverty trap, might be very cautious about investing in a new uncertain 

technology, because one failure might again throw them back to poverty.  Third, if we take the concept 

of a target income towards which these farmers are trying to reach, they become more sensitive to loss 
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than to gain when they are closer to the target income.  Fourth, there is a possibility of status quo bias, 

also known as endowment effect, which indicates an individual’s aversion to changing from a set behavior 

and is found to be an implication of loss aversion. As status quo bias explains brand loyalty, it could 

possibly also explain farmer’s resistance to change (Liu 2013). 

Ex ante, both PT and EU can act as a potential theory explaining farmer’s decision making in 

regards to these new technologies. However, at this point it is not clear which one describes farmer’s 

behavior better.  I am therefore proposing to use Tanaka, Camerer and Nyugen (2009, hereafter TCN) 

design as it allows to estimate the empirical specifications that nest on both EU and PT. TCN model also 

allows the result from the experiments to determine whether PT or EUT fits the data better. TCN design 

has been tested in Vietnam, China (Liu, 2013) and India (Ward and Singh, 2015) with less educated farmers 

and it seems to be simple enough to follow.  

Following TCN procedure the following utility function form is assumed. 

  

    U(x,p;y,q) = ቐ
(ݕ)ݒ + (ݔ)ݒ ൫(݌)ݓ  − ݔ        ݂݅       ൯(ݕ)ݒ  > ݕ > ݔ ݎ݋ 0 < ݕ < 0

 
(ݔ)ݒ(݌)ݓ + ݔ             ݂݅                 (ݕ)ݒ(ݍ)ݓ < 0 <                        ݕ

            ------------ 1 

 

Where  

(ݔ)ݒ = ൜
ఙݔ ݔ    ݎ݋݂                     > 0

ݔ     ݎ݋݂         (ఙݔ−)ߣ− < 0
                                                                                            --------------2      

 

and   w(p) =  for 0<α ≤ 1                                                                            --------------3       ,[ఈ(݌݈݊−)−] ݌ݔ݁

 

In the utility function, x and y are the outcomes and p and q are the probabilities associated with 

these outcomes. Parameter σ describes the curvature of the value function above zero. For an individual 

who is risk averse σ < 1, for a risk neutral individual σ =1 and for a risk loving individual σ > 1. Risk aversion 

decreases in σ, i.e. as σ increases risk aversion decreases. Parameter λ, is the loss aversion parameter, 

which implies a kink in indifference curve around 0. High λ signifies that an individual is more loss averse. 

The non-linear probability weighting measure α comes from the model by Prelec (1998).  w(p) shows the 
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probability weighting  function. If α <0, w(p)  has an inverted  S shape, which indicates an overweighting 

of low probabilities and underweighting of high probabilities. If the estimated results gives us α=1 and λ 

=1, then the above model reduces to EUT.  However, our empirical holds prospects theory are true as 

suggested by the table 2 below, making a case for use of prospect theory for rest of the paper.  

Prospect Theory Holds True  

Variable Description  Mean Std. Dev. 

α Probability weighting function parameter 0.693*** 0.253 

σ Curvature of the prospect value function(risk aversion) 0.574*** 0.335 

λ Measure of loss aversion 4.194*** 4.089 

  (Null for σ =0, λ =1, α=1)     

Table 2 

 

Conceptual Model 

We have two lotteries; LT, which represents the lottery under traditional farming methods and L L , 
which represents the lottery under laser land leveler.  

The lottery under traditional farming is as following 

 

்ܮ = ൜
1 − ݍ ݂݋ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ܽ ݏℎܽ ݀݊ܽ ݎܽ݁ݕ ݀݋݋݃ ܽ ݏݐ݊݁ݏ݁ݎ݌݁ݎ ݐℎܽݐ  (ܩ)݂

      1 − 1) ݂݋ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ܽ ݏℎܽ ݀݊ܽ ݎܽ݁ݕ ܾ݀ܽ ܽ ݏݐ݊݁ݏ݁ݎ݌݁ݎ ݐℎܽݐ (ܩ)݂ ܽ − (ݍ
 

Where 1= normalized profits per hectare using traditional leveler without the cost of incurred on 
irrigation.  

f(G)  is the cost incurred on irrigation and is a function of ground water level G. 

a is the extra proportion of water pumped out of ground for irrigation in a bad monsoon year.  

 

On the other hand we have the lottery under laser land leveler represented as  

 

 

௅ܮ = ൜
1 − ܥ − ݍ ݂݋ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ܽ ݏℎܽ ݀݊ܽ ݎܽ݁ݕ ݀݋݋݃ ܽ ݏݐ݊݁ݏ݁ݎ݌݁ݎ ݐℎܽݐ  (ܩ)݂ ݊

      1 − ܥ − 1) ݂݋ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ܽ ݏℎܽ ݀݊ܽ ݎܽ݁ݕ ܾ݀ܽ ݏݐ݊݁ݏ݁ݎ݌݁ݎ ℎݐ݅ݓ(ܩ)݂ ܽ ݊ − (ݍ
 

Where the C is the cost of hiring laser land leveler and n is the proportion of water used on irrigation as 
compared to the traditional method. A smaller n means the laser land leveler is more efficient.  
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Now we plug the lotteries in the functional form of the utility function (as shown above) is as follows 

The utility function for traditional lottery is ܷ(ܮ)் 

்(ܮ)ܷ = ൫1ݒ  (ݍ)ݓ − ൯(ܩ)݂ + 1)ݓ − 1)ݒ  (ݍ −  ((ܩ)݂ܽ

 

்(ܮ)ܷ = exp[− (−݈݊ݍ)ఈ] ൫1 − ൯(ܩ)݂
(ଵିఙ)

− exp[− (−ln (1 ߣ − [ఈ((ݍ ൫1 − ൯(ܩ)݂ܽ
(ଵିఙ)

 

 

 

and utility function for the lottery under  laser land leveler ܷ(ܮ)௅ 

௅(ܮ)ܷ = exp[− (−݈݊ݍ)ఈ] ൫1 − ܥ − ൯(ܩ)݂݊
(ଵିఙ)

− exp[− (−ln (1 ߣ − [ఈ((ݍ ൫1 − ܥ − ൯(ܩ)݂ܽ݊
(ଵିఙ)

 

 

We define the probability of adoption as a function of difference in the two utilities  

As Prob (ܮ)௅ =f ( ܷ(ܮ)௅ −  ( ்(ܮ)ܷ

Plugging in the functions for both the us we have  

Pr (ܮ)௅ = f      {exp[− (−݈݊ݍ)ఈ] ൫1 − ܥ − ൯(ܩ)݂݊
(ଵିఙ)

− exp[− (−ln (1 ߣ − [ఈ((ݍ ൫1 − ܥ −

൯(ܩ)݂ܽ݊
(ଵିఙ)

 −   exp[− (−݈݊ݍ)ఈ] ൫1 − ൯(ܩ)݂
(ଵିఙ)

+ exp[− (−ln (1 ߣ − [ఈ((ݍ ൫1 − ൯(ܩ)݂ܽ
(ଵିఙ)

} 

Next we define Pr (ܮ)௅  = F  and take derivate of the function wrt risk aversion coefficient, loos aversion 

coefficient and probability weighting measure to know how does different risk measures affect adoption.   

Plugging the values of C, a, f(G) and q from empirical data  and the average values of risk version coefficient 

 we have (ߙ) and probability weighting measure (ߣ) loss aversion coefficient ,(ߪ)

ௗி

ௗఈ
  = -ve , i.e Farmers who overvalue smaller probabilities adopt more. This makes sense, because these 

technologies are considered to be risk reducing and farmers who overvalue smaller probabilities (of loss 

usually) are the ones who are more willing to adopt these technologies.  

ௗி

ௗఙ
 = -ve   i.e. More risk averse farmers adopt more. This falls in line with the risk-reducing idea associated 

with these climate smart technologies; a lower ߪ  means lower risk aversion which causes less adoption. 

Alternatively higher risk aversion means higher technology adoption. 
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 ௗி

ௗఒ
 = +ve i.e. More loss averse farmers adopt more.  A greater ߣ means the farmer is more loss averse and 

the derivate suggests that with more loss aversion comes more technology adoption. This also, seems to 

be reasonable given the promoters of the technology consider them risk/loss-reducing. 

We tests these theoretical findings with empirical data in the later section to find that they hold true.  

 

Method: Field experiment design and procedure 

To estimate the risk attitude variables (risk aversion coefficient, loss aversion coefficient and 

probability weighting measure), field experiments were conducted in the study area with a sample of 

farmers surveyed to measure the adoption of LLL, DSR and ZT technologies (data collection and sampling 

strategy described below).  Field experiments involved playing lottery games with individual farmers (main 

decision maker of the household) who were selected for the adoption survey. Game participants were 

given three independent series of games that had a total of 35 pairwise choices. The first and second 

series contained 14 choices each and the third series had 7 choices between two lotteries: A and B.  These 

two options (A and B) differ in the expected value of the lottery, which is a function of the probability of 

winning the noted cash value in a scenario of a random draw of a number between 1 to 10. The following 

table 1 shows all the 35 pairwise options and represents entire game’s payoff matrix.   
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Table 1 - Payoff matrix of the game 

Series 1 Option A   Option B   

Q. no Rupees if you get 1,2,3  
Rupees if you get 

4,5,6,7,8,9 10   Rupees if you get 1  
Rupees if you get 
2,3,4,5,6,7,8,9 10 Q No.  

1 40 10   68 5 1 
2 40 10   75 5 2 
3 40 10   83 5 3 
4 40 10   93 5 4 
5 40 10   106 5 5 
6 40 10   125 5 6 
7 40 10   150 5 7 
8 40 10   185 5 8 
9 40 10   220 5 9 

10 40 10   300 5 10 
11 40 10   400 5 11 
12 40 10   600 5 12 
13 40 10   1000 5 13 
14 40 10   1700 5 14 
          

Series 2 
Rupees if you get 
1,2,3,4,5,6,7,8,9  

Rupees if you get  
10 

  
Rupees if you get 

1,2,3,4,5,6,7  
Rupees if you get  

8,9,10 
  

15 40 30   54 5 15 
16 40 30   56 5 16 
17 40 30   58 5 17 
18 40 30   60 5 18 
19 40 30   62 5 19 
20 40 30   65 5 20 
21 40 30   68 5 21 
22 40 30   72 5 22 
23 40 30   77 5 23 
24 40 30   83 5 24 
25 40 30   90 5 25 
26 40 30   100 5 26 
27 40 30   110 5 27 
28 40 30   130 5 28 
            

Series 3  
Rupees if you get 

1,2,3,4,5 
Rupees if you get 

6,7,8,9,10   
Rupees if you get 

1,2,3,4,5 
Rupees if you get 

6,7,8,9,10   

29 25 -4   30 -21 29 
30 4 -4   30 -21 30 
31 1 -4   30 -21 31 
32 1 -4   30 -16 32 
33 1 -8   30 -16 33 
34 1 -8   30 -14 34 
35 1 -8   30 -11 35 
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For each of the 35 games (or rows in Table 1), respondents were presented with these two options and 
asked to select either Option A or Option B. For example, for series 1 (i.e., row 1) the respondents were 
presented with the following options:  

 

 

It shows that lottery A offers a 30% chance of receiving Rs.40 and 70% chance of receiving Rs.10, 

whereas lottery B offers a 10% chance of receiving Rs.68 and 90% chance of receiving Rs.5.  This decision 

to select Option A or Option B was repeated for each of the 35 rows in Table 1.  

In series 1 and series 2, the expected value of lottery A does not change but as we proceed down, 

the expected value of lottery B keeps increasing and eventually exceeds the expected value of lottery A 

(Table 1). The aim of this game is to see at which row the subject shifts from option A to option B for series 

1 (rows 1 to 14), series 2 (rows 15-28), and series 3 (rows 29-35). A more risk averse subject would choose 

lottery A for a greater number of iterations before shifting to B, as compared to a less risk-averse subject.  

Following TCN’s procedure, the subject is assumed to be rational, therefore he is allowed to switch 

from lottery A to lottery B only once in each series. There is a debate about the monotonic switching that 

it might make subjects choose option A for more iterations before he/she switches to option B. However, 

as monotonic switching has worked fine in TCN and Liu’s experiment with subjects of similar educational 

background, it was also used in this study.  The option of never switching is also available for each of the 

series. For example, a subject is free to choose lottery A for all 14 or 7 questions in any/all of the series or 

he can chose lottery B for all the rows for any/all of the series.  

Once they complete their selection, there was a random draw of 35 numbered plastic chips to 

decide which game was played for real money. Once the game number (1 to 35) was selected, the next 

step was to select a random number between 1 to 10.  For this the TCN method was followed by putting 

10 numbered wooden chips (each numbered 1 to 10) in an opaque bag and then asking the farmer to 

draw one chip out of it to complete the randomization. For example, if the subject draws plastic chip 

number 1, and he has choosen lottery B for row 1, and a wooden chip number 7 is randomly drawn, he 

Series 1 Option A   Option B   

Q. no Rupees if you get 1,2,3  Rupees if you get 
4,5,6,7,8,9 10 

  Rupees if you get 1  Rupees if you get 
2,3,4,5,6,7,8,9 10 

Q No.  

1 40 10   68 5 1 
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would earn Rs.5. However, if he chose lottery A for the same row, and number 7 is drawn, then he would 

earn Rs.10. 

Switching points in each of the three series in Table 1 are useful in identifying the underlying 

behavioral parameters. The estimates of risk aversion coefficient (σ - that determines curvature of the 

utility function in the positive domain) and non-linear probability weighting measure (α) are 

simultaneously determined by the switching rounds in series 1 and series 2. These two series are carefully 

designed so that the pair of switching rounds from the two series can be used to identify the range for 

both σ and α, that are consistent with PT.  

Series 3 has both positive and negative payoffs. It has seven choice scenarios, each of which 

comprise of two lotteries like earlier series. In each of the lottery there is a positive and a negative payout. 

The payouts vary across rows and are specified in a way that enables estimation of a range of possible 

loss aversion coefficient for each respondent. 

The loss aversion parameter λ is determined by the switching point in series 3. Notice that λ 

cannot be uniquely determined from switching point in series 3 alone. Payoffs in series 3 are designed to 

make sure that λ takes similar values across different levels of σ.  In calculating the λ, the probability 

weighting measure α drops out as the probability of getting positive or negative payout are equivalent in 

each round (p=0.5, q=0.5) and therefore the payoffs in series 3 must only correspond to different values 

of σ.  

Since it would be unethical and impossible to have participating farmers pay from their own 

pocket, in case they lose money in the lottery, Rs.21 was given to each of the participating farmer at the 

beginning of the game. This was the maximum amount a subject can lose in the game. This also gave the 

farmer an ownership over the Rs. 21 and could better elicit the risk loss aversion behavior as now, it was 

his money that he was betting on.  

 

Estimation of Parameters  

For any participant who switches at row N, we can conclude that he prefers lottery A over B till 

row N-1 and at row N he prefers lottery B over lottery A. So we can get two sets of inequalities from this 

switching point. Using a combination of switching points from series 1 and series 2, yields a range of α and 

σ that satisfy this pair of inequalities.   
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For example suppose someone switches from lottery A to lottery B in row 7th in series 1. Then the following 

inequalities must be satisfied.  

10ఙ + exp[−(−݈݊0.3)ఈ] (40ఙ − 10ఙ)        ˃              5ఙ + exp [−(−݈݊0.1)ఈ](125ఙ − 5ఙ)    (8) 

10ఙ + exp[−(−݈݊0.3)ఈ] (40ఙ − 10ఙ)       ˂              5ఙ + exp[−(−݈݊0.1)ఈ] (150ఙ − 5ఙ)     (9) 

 

The (σ, α) combinations that satisfy the above inequalities are (0.4,0.4), (0.5,0.5), (0.6.0.6), (0.7,0.7), 

(0.8,0.8), (0.9,0.9), (1,1).1 

Similarly if the same person switches from A to B in row 7th in series 2, the following inequality 

holds true 

30ఙ + exp[−(−݈݊0.9)ఈ] (40ఙ − 30ఙ)           ˃            5ఙ + exp [−(−݈݊0.3)ఈ](65ఙ − 5ఙ)          -----(10) 

30ఙ + exp[−(−݈݊0.3)ఈ] (40ఙ − 30ఙ)            ˂             5ఙ + exp [−(−݈݊0.3)ఈ](68ఙ − 5ఙ)          ----(11) 

The (σ, α) combinations that satisfy the above inequalities are (0.8, 0.6), (0.7, 0.7), (0.6, 0.8), (0.5, 0.9) or 

(0.4, 1). By intersecting the parameters ranges from series 1 and series 2, we can obtain the approximate 

values of (σ, α) = (0.7, 0.7). Note that λ cannot be uniquely determined from switching in series 3. Payoffs 

in series 3 were designed to make sure that λ takes similar values across different levels of σ, which means 

for each switching point in series 3, we will have different values of λ based on the earlier found value of 

σ for that individual.  

 

Data Source: 

  The risk experiments were designed by the author and conducted as part of a larger 

representative technology adoption surveys being undertaken by the Strengthening Impact Assessment 

in CGIAR (SIAC) project managed by Michigan State University. These surveys were conducted in three 

districts in India to assess the adoption of LLL, DSR and ZT. These three districts are—Ludhiana in Punjab, 

Karnal in Haryana and Vaishali in Bihar (Figure 1).  The population of these districts range from 1.5 million 

in Karnal to 3.5 million in Ludhiana and Vaishali.  These districts fall under the rice-wheat cropping system 

                                                           
1    σ and α are approximated to the nearest .05 increments. 
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and have been considered to be most developed agriculturally in their respective states. Over time there 

has been a series of interventions by various CGIAR institutions (especially, CIMMYT under the CCAFS 

program) and the state governments to introduce climate smart technologies.   

 

 

Figure 1. Location of three study districts 
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All the three districts included in the study have national or state level agricultural universities. 

While Ludhiana has one of the most prominent state agricultural universities of India, Karnal is home of 

the Indian Institute for Wheat and Barley Research of the Indian Council of Agricultural Research (ICAR), 

and Vaishali has been the testing ground for the Rajendra Agricultural University (also a part of ICAR). In 

summary, these three districts have always had new agricultural technologies available, though 

historically all three have fared differently in terms of technology diffusion and belong to states which are 

at different stages of agricultural and economic development (with Punjab and Haryana at a more 

developed end of the spectrum than Bihar).  

For the broader adoption study, 80 villages each in these three districts were randomly selected 

from a list of all wheat growing villages using the probability proportionate to size (PPS) method (where 

size was measured by net sown area in the village as obtained from the last Census data). In each of these 

villages 10 households were selected randomly by the enumerators and a detailed questionnaire was 

administered to collect data on farmer and household characteristics, technology specific data for LLL, 

DSR and ZT, and adoption of other technologies by the household, and farmers’ perception on constraints 

in wheat and rice farming.  Data collection was done using a Computer Assisted Personal Interview (CAPI) 

method from a total of 2400 households across the three districts. The author participated in enumerator 

training, which took place in August-September 2015, followed by field survey from September to 

November 2015.  The data collected correspond to Rabi 2014-15 and Kharif 2015 season.  

Based on budget availability, risk experiments were conducted in a subset of villages in each 

district-- 28 villages in Vaishali, 14 villages in Karnal and 14 villages in Ludhiana. As there were 10 

households selected randomly in each of the villages, we expect to have a total of 560 observations of risk 

experiments that will be used for this study.   

Prior to conducting the experiment, enumerators explained the set of standardized instructions 

and asked questions to confirm whether the farmers understood the experiment. Next, before the real 

experiment, a round of practice experiment was conducted with candies as the payoff outcomes. This was 

conducted to make sure the farmers understood the rules of the game and how to note down their 

choices.  

  

 

 



16 
 

Econometric framework and preliminary results  

 There are two Econometric approaches this paper uses to find how risk measures impact the adoption of 

climate smart technologies.  The first empirical approach is a simple probit   

௅ܻ = ଵ ܺ௛ߚ  + ଴ߚ
ᇱ ଶ ܴ௛ߚ + 

ᇱ   + μ௛௅                                                             

 

Where ௅ܻ   is a latent variable based on the observable binary discrete choice of whether the farmer 

adopted and implemented the technology or not. ܺ௛
ᇱ    includes access, institutional, plot, demographic 

and household characteristics, social capital etc., while ܴ௛
ᇱ   includes risk attitude variables (risk aversion 

coefficient, loss aversion coefficient and probability weighting measure).  The following table 3 shows the 

results for a probit model and a linear probability model with district fixed effects and both of them 

suggest that higher non-linear probability weighting measure (α) leads to lower adoption as suggested by 

our conceptual model. Farmers who overvalue smaller probabilities tend to adopt more.  As α increases 

probability weighting measure decreases and adoption also decreases. This is likely when farmers who 

overvalue the small probabilities of loss tend to adopt technologies more.  Risk aversion seems to have 

no significant effect on the adoption decision, while higher loss aversion does seem to increase the 

chances of adoption as suggested by our conceptual model. Farmers with higher loss aversion tend to 

adopt more. It is likely that farmers consider these technologies as risk/loss reducing therefore we see 

farmers who are more loss averse and farmers who want to avoid the smaller probabilities of loss tend to 

adopt it more. Plot characteristics, HH characteristics also seem to explain a major part of the tech 

adoption as suggested by literature.  
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VARIABLES  Probit             LPM    

  (at means)  (Dist. f.e)  

Prob. Weighting Measure  -1.070*** -0.900* 

Risk Aversion coefficient   0.392 0.374 

Loss Aversion Coefficient   0.116*** 0.062* 

Age  -0.003 -0.002 

Age*alpha  0.0216** 0.018 

Age*Sigma  -0.00903 -0.01 

Age*lambda  -0.00249*** -0.001* 

HH poverty score  0.00253 0.001 

Did you or anyone in the household access 
credit for ag. production  

 
-0.107* -0.1 

Time it takes on average to travel to nearest 
commercial town  

 
0.000438 0 

Formal Education of Main Respondent  0.0121 0.008 

Soil Quality(good)  0.304* 0.905*** 

Soil Type(Sandy)  -0.338** -0.583*** 

Soil Type(Sandy Loam)  -0.125 -0.273** 

Soil Type(Clay Loam)  -0.122 -0.183** 

Soil Salinity(High)  0.315** 0.347*** 

Soil Salinity(Medium)  0.268*** 0.315*** 

Soil Salinity(low)  0.197** 0.172* 

Rsquared/ Pseudo R-squared  0.328 0.376 

Table -3 

 

 

However as probit is a latent variable model it just tells us whether someone adopted this technology or 

not. It does not differentiate between someone who adopted it 2 years after the release of the technology 

and someone who adopted 10 years after. Intuitively these two guys must be treated differently as one 

only waited 2 years and other 10 years, but probit does not allow us to do so. This inability of probit to 

capture the difference in timing of adoption creates an opportunity to use duration model. Using duration 

analysis we model how long does it takes the farmers to adopt the technology since their exposure to LLL.  

Here we model the time taken to adopt, as a function of different explanatory variables which also include 

risk parameters. Unlike in probit model, duration model does allow us to differentiate between someone 

who adopted LLL after 2 years of exposure and someone who adopted after 10 years of exposure.  

In most studies using duration model, they model the time to adoption right from the time the 

technologies were releases, however this leads to serious endogeneity issues. Suppose a technology is 
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release in the year 2010, and farmer A did not know about the technology till 2015, and after knowing in 

the year 2015 he/she adopted it in the year 2016. Another farmer B got to know about it in the year 2010 

only, but waited for 6 years before he/she decided to adopt in 2016.  So both farmers adopted in 2016, 

and if you do not have data on the time since they knew about the technology, one uses time since the 

technology is in the market as a proxy for “exposure time”. To get rid of this problem we collected 

information on the “exposure time” by asking about their first exposure to the technologies and modelling 

this time from first exposure till adoption by duration analysis.  

 

Prospect of adoption over time can expressed through the hazard rate. 

 

h(t;x) =ℎ଴(ݐ) ݁ఉᇲ௫ 

 

 

Indicating the probability of adoption in any given time period t, conditional on not having 

adopted up through time t - 1. Including the distribution of the hazard rate h(t) allows us to control for 

trends in “household time” t, as we estimate the effect of other household and external factors. The term 

incorporates the multiplicative effects of the vector of covariates on the hazard rate, including for an 

estimated intercept b, which can be multiplied by the hazard distribution ℎ଴(ݐ)  to get the “baseline 

hazard function.” This baseline hazard is interpreted as the likelihood of the event of interest (the decision 

to adopt) occurring in time t if all other covariates were valued at zero.  We do not have confirmed results 

for duration model yet, but preliminary results do show that loss averse farmers tend to adopt the 

technology sooner than others and also the farmers who overvalue smaller probabilities of losses tend to 

adopt the technologies sooner. This again falls in line with the scientific evidence associated with the 

promotion of these technologies.  

 

Conclusion  

Findings from this study suggest that farmers who are more loss averse and overvalue smaller 

probabilities of loss tend to adopt these technologies more. The findings are very informative as it shows 

what perception do farmers have of these technologies. Even though the promoter of this technology - 

CGIAR (Consortium General of International Agricultural Research) did consider these technologies as rick 
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reducing there was no earlier evidence of the farmer’s perception about these technologies. The findings 

of this study confirms the belief of CGIAR regarding these technologies are echoed by farmer’s beliefs 

about them.   
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