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Are Price Transmissions between U.S. Energy

and Corn Markets Asymmetric?

1 Introduction

In industrialized economies, particularly in the United States, the link between energy

and agricultural commodity prices has strengthened in recent years. Part of this effect is

attributed to the implementation of the Renewable Fuel Standard (RFS) program under the

Energy Policy Act of 2005 (Mallory, Irwin and Hayes, 2012). Concerns about greenhouse gas

emissions, high crude oil prices, and the growing dependency on foreign oil supplies provided

incentives for the creation of this program to pursue alternative fuel sources such as ethanol

and biodiesel. The RFS imposes strict mandates requiring U.S. fuel production to include a

minimum amount of renewable fuel, with an increasing target each year. Ethanol produced

from corn is the most prominent biofuel in the U.S. Currently, blends of petroleum-based

gasoline with 10% ethanol, commonly referred to as E10, account for more than 95% of the fuel

consumed in motor vehicles with gasoline engines (U.S. Energy Information Administration,

2016).

The creation of the RFS program has had extensive implications for the ethanol

market, and indirectly for the corn market (Baumeister, Ellwanger and Killian, 2016). In

2007, the U.S. Congress passed a legislation that increased by 1.3 billion bushels, over a third

of the U.S. corn crop, the total amount of corn required to be processed annually into ethanol

for motor-fuel use (Carter, Rausser and Smith, 2016). Given the potential impact of corn

price changes on related feed and food markets, it is important to understand how corn prices

are affected by unexpected fluctuations in crude oil and ethanol markets. Following the early
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work of Borenstein, Cameron and Gilbert (1997), a question that emerges is whether the

“rockets and feathers” phenomenon affecting the fuel industry is also extended to the ethanol,

and consequently corn markets. Although still debated, there is an established perception

that oil price increases are followed by immediate increases in fuel prices, while oil price

decreases are transmitted to fuel prices only with a delay (Baumeister and Killian, 2014).

However, only few studies have analyzed whether the pass-through from energy prices to

agricultural prices, and vice versa, is asymmetric.

In the literature, several potential explanations have been offered for asymmetric

price behavior: market power and concentration (Azzam, 1999; Peltzman, 2000; Xia, 2009),

menu costs (Bailey and Brorsen, 1989; Levy et al., 1997); inventory adjustment practices

(Blinder, 1982; Miller and Hayenga, 2001); government intervention (Kinnucan and Forker,

1987; Mohanty, Peterson and Kruse, 1995); and consumption inertia (Xia and Li, 2010).

Because the production of biofuels is not commercially viable as costs are higher relative to

the costs of fossil fuels extraction, government intervention is essential in providing incentives

that ensure adequate biofuel production and consumption (Balcombe and Rapsomanikis,

2009). Therefore, market dynamics in the ethanol industry, mostly influenced by govern-

ment interventions in the form of mandates, bans, subsidies and import tariffs, as well as

production/inventory adjustment costs, and market power are likely to cause nonlinear price

adjustments (Serra et al., 2011).

The objective of this study is to evaluate and quantify asymmetric price transmissions

among U.S. crude oil, ethanol and corn markets. We focus on two possible directions of

asymmetry, from energy to corn and from corn to energy markets, with potentially large

welfare implications if responses to price increases and decreases are not symmetric.

We estimate a nonlinear structural vector error correction (VEC) model that allows for

asymmetric responses of crude oil, ethanol and corn prices to shocks to any of these series in

both long run and short run. The contemporaneous effects in the nonlinear structural VEC

model are properly identified using the approach proposed by Rigobon (2003), which is based
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on the heteroskedasticity of structural shocks. To systematically test for asymmetric price

transmissions and calculate the degree of asymmetry, we use a novel approach proposed by

Kilian and Vigfusson (2011), which is based on the estimation of nonlinear impulse responses

using Monte Carlo simulation methods.

Results from this study reveal that ethanol prices react asymmetrically to unexpected

changes in crude oil prices. This asymmetry is positive, indicating that ethanol prices are

more responsive to crude oil price increases than decreases. Moreover, corn prices also

react asymmetrically to unexpected changes in ethanol prices. In this case, corn prices are

more responsive to ethanol price decreases than increases. These results have important

implications for the U.S. ethanol industry, particularly relevant in the current political climate

where biofuels policy changes are expected. The impact of government interventions targeting

the sustainability of ethanol production and consumption may have unexpected welfare and

income distribution effects on both agricultural crop farmers and consumers because of the

presence of asymmetry in the pass-through between energy and agricultural commodity

prices.

2 Methods

The underlying adjustment dynamics of crude oil, ethanol and corn prices in response to a

one-time positive and negative unexpected change in any of these series are captured using a

nonlinear vector error correction (VEC) model. Let Ot, Et and Ct be the crude oil, ethanol

and corn prices at time t, respectively. The structural form of the nonlinear VEC model can

be written as:
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∆Ot = a10 + Itb
+
11ECTt−1 +

p∑
k=1

c+
12,k∆Ot−k +

p∑
k=0

c+
13,k∆Et−k +

p∑
k=0

c+
14,k∆Ct−k

+ (1 − It)b−11ECTt−1 +
p∑

k=1
c−12,k∆Ot−k +

p∑
k=0

c−13,k∆Et−k +
p∑

k=0
c+

14,k∆Ct−k + eO,t (1)

∆Et = a20 + Itb
+
21ECTt−1 +

p∑
k=0

c+
22,k∆Ot−k +

p∑
k=1

c+
23,k∆Et−k +

p∑
k=0

c+
24,k∆Ct−k

+ (1 − It)b−21ECTt−1 +
p∑

k=0
c−22,k∆Ot−k +

p∑
k=1

c−23,k∆Et−k +
p∑

k=0
c+

24,k∆Ct−k + eE,t (2)

∆Ct = a30 + Itb
+
31ECTt−1 +

p∑
k=0

c+
32,k∆Ot−k +

p∑
k=0

c+
33,k∆Et−k +

p∑
k=1

c+
34,k∆Ct−k+

(1 − It)b−31ECTt−1 +
p∑

k=0
c−32,k∆Ot−k +

p∑
k=0

c−33,k∆Et−k +
p∑

k=1
c+

34,k∆Ct−k + eC,t (3)

where ∆ is the difference operator; ECTt−1 = Ot−1 − γ0 − γ1Et−1 − γ2Ct−1 is the one-period

lagged error correction term; and eO,t, eE,t and eC,t are uncorrelated structural shocks to the

crude oil, ethanol and corn markets, respectively.

This structural nonlinear VEC model distinguishes between long-run and short-run

price adjustments. The short-run adjustment is determined by c+
ij,k and c−ij,k, for equation

i = 1, 2, 3, variable j = 2, 3, 4 and all k = 0, . . . , p, where p is the chosen lag length of the linear

VEC model. c+
ij,k applies when the corresponding variable is larger than a pre-determined

threshold value, while c−ij,k applies when the corresponding variable is less than or equal to

such value. In this model, the threshold value for the short-run adjustment is zero. The

long-run adjustment is determined by b+
i1 and b−i1. Here, the indicator function It, is restricted

as follows:
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It =


1 if ECTt−1 > τ

0 if ECTt−1 ≤ τ

(4)

where τ represents the threshold value, which is selected by minimizing the sum of squared

errors, with a minimum of 15 percent of the observations in each regime.

To test for cointegration when the long-run price adjustment is suspected of being

asymmetric, we employ the Enders and Siklos (2001) test. Here, the cointegration relationship

between the three price series, each assumed to be integrated of order one, takes the form:

Ot = γ0 + γ1Et + γ2Ct + εt, (5)

where εt measures the deviation from the equilibrium relationship between Ot, Et and Ct.

To allow for asymmetric adjustment dynamics, deviations from equilibrium are allowed to

follow a threshold autoregressive process:

∆εt = Iε,tρ1εt−1 + (1 − Iε,t) ρ2εt−1 +
P∑

k=1
δk∆εt−k + µt, (6)

where ρ1 and ρ2 are the speed of adjustment of ∆εt, and the indicator function Iε,t has a

similar specification as equation (4). To determine whether cointegration exists, we use the

tMax and Φ tests. The tMax statistic is the largest t-statistic associated with the estimated

coefficients ρ1 and ρ2, and the Φ test is an F-test of the joint hypothesis ρ1 = ρ2 = 0.

Simulated critical values for both test are found in Enders and Siklos (2001).

2.1 Model Identification

To identify the contemporaneous effects in system (1)-(3), we apply the method proposed by

Rigobon (2003), which is based on the heteroskedasticity of structural shocks. This method
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measures the contemporaneous relationship among price variables by recognizing two regimes,

one of high volatility and other of low volatility.

Under a simple assumption of homoscedasticity, the system that represents the variance-

covariance matrix of the reduced form residuals derived from (1)-(3) contains more unknowns

than equations.

The recognition of two regimes allows us to specify a system that has the same number of

equations and unknowns, which can be estimated by the generalized method of moments

(GMM). Standard errors and confidence intervals can be computed using a fixed-design wild

bootstrap (Goncalves and Kilian, 2004).

There are two assumptions that lead to the identification of system (1) - (3): i) parameters

in structural equations are stable across the heteroskedasticity regimes, and ii) structural

shocks are not correlated (Rigobon, 2003). The first one is the usual assumption imposed on

ARCH or GARCH type models, and the second assumption is standard in the literature.

The key question is how to identify regimes in which the relative variances of the

crude oil and corn market structural shocks changed over time. Recent events affecting energy

and corn markets represent a natural framework for regime identification. This is because

these events are associated with large and, in some cases, persistent increases in volatility.

In this study, regimes are identified by looking at the behavior of historical volatilities. In

this procedure, structural break tests are conducted in each historical volatility series to find

significant breaks.

Thus, allowing us to define the regime windows systematically. Because we are interested in

finding all possible volatility regimes, we use the Bai and Perron (2003) test to find multiple

breaks.
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2.2 Testing for Asymmetry

To test whether price responses to unexpected changes in any of the variables in system

(1)-(3) are asymmetric, we apply an impulse response- based test. Under the null hypothesis

of symmetry, the vector of impulse responses to a positive price shock should be opposite

in sign but of the same magnitude as the vector of impulse responses to a negative price

shock of the same size. Therefore, the null hypothesis implies that all elements in the vector

calculated as the sum of these two sets of impulse responses are zero. Following Kilian and

Vigfusson (2011), impulse response functions are computed using Monte Carlo simulation

techniques. For example, the algorithm used to estimate the response of the corn price to a

one-time crude oil price shock is:

1. Randomly draw a block of p consecutive values of ∆Ot, ∆Et and ∆Ct, where p is the

lag length of the structural nonlinear VEC model. This defines a history Ωi.

2. Define e0 to be the shock to the price that is of interest (in this case the shock to ∆Ot).

3. Define e1,H and e2,H to be vectors holding a draw of H + 1 values of the identified

shocks to ∆E and ∆C, respectively, where H is the longest horizon for which impulse

response functions are calculated.

4. Define e3,H to be a vector holding a draw of H values of the identified shocks to ∆Ot.

5. Predict the values of ∆Ot+h, ∆Et+h and ∆Ct+h for periods h = 0, . . . , H, conditional

on Ωi, e1H , e2H and (e0, e3H)′, where e0 is defined to be either a positive or negative

one standard deviation shock to ∆Ot.

6. Predict the values of ∆Ot+h, ∆Et+h and ∆Ct+h for periods h = 0, . . . , H, conditional

on Ωi, e1H , e2H , and (e0, e3,H)′, where e0 = 0.

7. Calculate the difference in predicted values of the two variables from steps 5 and 6.

This difference is the impulse response of corn price to an oil price shock of size e0,
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conditional on Ωi.

8. Steps 1-7 are repeated 1,000 times. The unconditional impulse response function is the

average of the output from step 7 across the 1,000 simulations.

9. Perform a fixed-design wild bootstrap (Goncalves and Kilian, 2004) with 500 replications

to calculate confidence intervals.1 We use the Rademacher pick distribution as suggested

by Godfrey (2009).

3 Data

The data use in this analysis corresponds to weekly prices covering the period after the

implementation of the Energy Policy Act - May 2006 to December 2016 (558 observations).

Although the Act was not passed until 2005, this period is considered because the U.S. policy

toward ethanol did not change until May 2006 (Baumeister and Kilian, 2014; Avalos, 2014).

Cushing, Oklahoma West Texas Intermediate (WTI) crude oil spot prices FOB (dollars

per barrel) were obtained from the U.S. Energy Information Administration (EIA). Omaha,

Nebraska #2 yellow corn cash prices paid to farmers (dollars per bushel) were obtained from

the Livestock Marketing Information Center. Iowa ethanol cash prices (dollars per gallon)

were obtained from the Commodity Research Bureau (CRB). Moreover, to estimate historical

volatilities that are used to determine high and low volatility regimes, daily cash price data

for WTI crude oil, corn and ethanol were collected from (CRB).

Table 1 presents results from the analysis of univariate time series properties of the

data, as well as standard and threshold cointegration test. To test for the presence of a unit

root in individual price series, we applied the Augmented Dickey-Fuller (ADF) test.

Results of this test indicate that all price series are nonstationary.

Furthermore, we tested for standard cointegration among price variables using both specifi-
1The wild bootstrap accounts for possible conditional heteroskedasticity of the error term.
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cations of the Johansen procedure (i.e., maximum eigenvalue and trace statistic). Results

indicate that variables are cointegrated with one cointegrating relationship. This result

confirms the appropriateness of estimating a structural VEC model.

Table 1 also reports the results from applying the Enders and Siklos’s (2001) tMax

and Φ tests for threshold cointegration to account for possible asymmetric adjustments to

deviations from the long-run equilibrium. This test was performed by estimating equation

(6) using the residuals from equation (5) and the specification in equation (4), where the

value of τ was set equal to zero (TC1) and different from zero (TC2). Following Chan (1993),

the threshold value in TC2 was estimated using the grid search method. Looking at these

results, we reject the null hypothesis of no cointegration at the 0.05 significance level in both

cases. These results indicate that there is a long-run equilibrium relationship characterized

by asymmetric adjustment, which provides justification for estimating a nonlinear structural

VEC model.

4 Results and Discussion

Before proceeding with the estimation of the nonlinear structural VEC model, as specified

in system (1)-(3), it is necessary to identify the contemporaneous effects. These effects are

identified using the heteroskedasticity of structural shocks as proposed by Rigobon (2003).

To identify high and low volatility regimes, the Bai and Perron (2003) structural break test

was applied to weekly average historical price volatilities of crude oil, corn and ethanol.

We allowed up to 5 breaks and used a trimming of at least 0.15, so each segment has a

minimum of 15 percent of the observations in the sample. The best number of breaks was

selected based on the Bayesian Information Criterion (BIC). Results from this test indicate

the presence of one high volatility regime from April 11, 2008 to February 26, 2010, which

coincides with the financial market crisis of 2008. All other observations are defined as the

low volatility regime.
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Table 2 presents the results from the contemporaneous coefficients and structural

variances estimation, along with corresponding p-values. Focusing on the contemporaneous

coefficients, we find that crude oil and corn prices affect each other at time t. Because this

is a bi-directional effect, system (1)-(3) cannot be estimated without further assumptions.

Therefore, we assume that the contemporaneous effects of crude oil and corn prices on

each other are symmetric by imposing the estimated values delivered by GMM, so that

c+
14,0 = c−14,0 = −0.23 and c+

32,0 = c−32,0 = 0.50. As identification requires heteroskedasticity of

the structural shocks, we also report the ratio of the estimated variances from system (1)-(3).

To verify we have achieved identification, at least one of these ratios should be greater than

1. Results indicate that the variance of structural shocks for both crude oil and corn prices

is larger in regime 1 (high volatility) compared to regime 2 (low volatility). Therefore, the

selected high volatility regime is sufficient to achieve identification.

The nonlinear structural VEC model is estimated using the natural logarithms of

weekly crude oil, ethanol and corn prices in first differences. Based on AIC and the evaluation

of autocorrelation patterns, system (1)-(3) was estimated using three lags. The cointegration

vector parameters were estimated using the Engle and Granger (1987) method to maintain

consistency with the Enders and Siklos test. Results from the estimation of this model are not

presented since the main objective of this study is to test for asymmetric price transmissions

among energy and corn markets. Therefore, we proceed with the analysis of results from the

impulse response-based test.

Results from the asymmetry test conducted using computed cumulative nonlinear

impulse response functions are presented in figure 1. Each row corresponds to one of the

three equations in the nonlinear structural VEC model. To facilitate the interpretation of

results, we first focus on the top right plot. In this plot, the solid line “diff-IRF” shows

the net response of the corn price to a one-time positive and negative oil price shock. The

magnitude of the response is measured in percentages (%) and is depicted on the vertical axis,

while the number of weeks after the shock is on the horizontal axis. The size of the shock is
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one standard deviation. The reason we use cumulative impulse responses is to account for the

fact that variables are in log-differences. Accumulating over time makes the interpretation of

price reactions in percentages, which is the same as tracing a shock to the variables in levels.

The 90% confidence intervals are computed using the fixed-design wild bootstrap estimates,

and are represented by the dashed blue lines. The null hypothesis of symmetry is rejected if

confidence intervals of “diff-IRF” do not contain 0. Therefore, our impulse response based

test is based on the statistical significance of the solid black line depicted in each plot.

Focusing on price responses following unexpected changes in oil prices, we reject

the null hypothesis of symmetry at the 0.05 significance level in one case. This case shows a

positive asymmetric response in ethanol prices during the first 3 weeks after a shock to oil

prices (first row, second plot). That is, after a 4% positive and negative shock to crude oil

price, the net result is an increase of 0.9% in ethanol prices, three weeks after the shock. This

finding suggests that prices received by ethanol producers adjust more fully to crude oil price

increases than decreases. Economically, the magnitude of asymmetry is significant compared

to the size of the oil price shock. That is, the net effect of a dollar increase and decrease in

the price of crude oil is a 22.5 cents increase in the price of ethanol. A possible explanation

for this finding is related to the ethanol market structure which is heavily influenced by

government interventions. As producers of gasoline are required to blend certain amount

ethanol to meet RFS, if the price of oil increases, the cost of producing gasoline increases

and ethanol becomes an inexpensive alternative to add octane into gasoline. Therefore, an

increase in the price of oil drives up the demand for ethanol and subsequently, ethanol prices

increase. Conversely, as oil prices decrease, gasoline may become less expensive than ethanol.

However, because of the RFS mandate, ethanol must be still blended into gasoline which

causes the price of ethanol to decrease slower or at a smaller magnitude than gasoline prices.

Looking at price responses following unexpected changes in the price of ethanol,

we reject the null hypothesis of symmetry at the 0.10 significance level in one case. Corn

prices react asymmetrically to ethanol price shocks (second raw, third plot). Following a
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3.4% increase and decrease in the price of ethanol, the net result is a 0.6% decrease in the

price of corn, one week after the shock. This finding suggest that ethanol price decreases

are transmitted more fully to corn producers than ethanol price increases. Economically, the

net effect of a dollar increase and decrease in the price of ethanol translates roughly into an

18 cents decrease in the price of corn. This finding has important welfare implications for

corn producers, suggesting that RFS mandates may potentially provide ethanol producers

with a certain degree of market power. However, a more profound assessment is needed to

determine whether asymmetry in this case is driven by market power. Lastly, when analyzing

price responses to unexpected changes in corn prices, we fail to reject the null hypothesis of

symmetry in all cases. This finding indicates that corn price increases and decreases cause

the same effect (but in opposite sign) in both ethanol and crude oil prices.

5 Conclusions

Following the increased reliance of biofuels production in the U.S., the pass-through between

energy and agricultural commodity prices has been a topic of main concern, particularly

because of its potential implications in the food versus fuel debate.

Of particular interest in this study is to evaluate whether the “rockets and feathers” phe-

nomenon affecting the fuel industry is also extended to the ethanol, and consequently corn

markets. In our empirical analysis, we estimate price transmissions between crude oil, ethanol

and corn markets using a nonlinear structural VEC model, which allows for asymmetric

responses in both the long-run and the short-run. Moreover, model identification is achieved

via heteroskedasticity of structural shocks. An important contribution of this study is the

use of a novel approach to test for asymmetric price transmissions, which is based on the

simulation of nonlinear impulse response functions.

Results from this study reveal that ethanol prices react asymmetrically to unexpected

changes in crude oil prices. This asymmetry is positive, indicating that ethanol prices are
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more responsive to crude oil price increases than decreases. This finding is explained by both

the substitution relationship between gasoline and ethanol and government interventions.

That is, if the price of oil increases, the cost of producing gasoline increases and ethanol

becomes an inexpensive alternative to add octane into gasoline. This drives up the demand

for ethanol and subsequently, ethanol prices increase. Conversely, as oil prices decrease and

gasoline becomes less expensive, the demand for ethanol may not be significantly affected.

This is consistent with a binding blending mandate which creates an inelastic demand for

ethanol (Babcock, 2013).

Corn prices react asymmetrically to unexpected changes in ethanol prices. However,

in this case, corn prices are more responsive to ethanol price decreases than increases.

This finding has direct welfare implications for corn producers, suggesting that RFS mandates

may potentially provide ethanol producers with a certain degree of market power.

However, a more detailed analysis is necessary to test whether market power drives this

result. Therefore, it remains a topic of future research. Overall, our results have important

implications for the U.S. ethanol industry, particularly relevant in the current political climate

where biofuels policy changes are expected. The impact of government interventions targeting

the sustainability of ethanol production and consumption may have unexpected welfare and

income distribution effects on both agricultural crop farmers and consumers because of the

presence of asymmetry in the pass-through between energy and agricultural commodity

prices.
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Figure 1.  Results from the Impulse Response-Based test of Symmetry 
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Table 1. Unit Root and Cointegration Tests Results for Weekly Average Oil, Ethanol and Corn Cash

Prices

Test Test-Statistics

Augmented DF None Constant Trend

Oil -0.28 -2.60 -2.95

Ethanol -1.15 -2.71 -2.94

Corn -0.40 -1.60 -1.68

Johansen Cointegration Max. Eigen. Trace

r = 0 44.21** 54.92**

r ≤ 1 8.13 10.71

r ≤ 2 2.58 2.58

Threshold Cointegration tMax Φ threshold

TC 1 -2.21** 6.92** 0

TC 2 -2.07** 8.04** -21.33

Notes: AIC was used to determine the appropriate lag lengths for the ADF test, with a maximum
of 52 lags allowed. The null hypothesis under the ADF test is nonstationary. The critical values
are -1.95, -2.87 and -3.42 for the 0.05 signi�cance level, corresponding to the speci�cations using no
deterministic terms, a constant (but not trend) and a trend, respectively. The null hypothesis under
the Johansen Cointegration test is the number of cointegration vectors (r). The null hypothesis
under the Threshold Cointegration test is no cointegration. Approximate critical values for the
tMax and Φ tests are tabulated by Enders and Siklos (2001). ** indicates the rejection of the null
hypothesis at the 0.05 signi�cance level.
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Table 2. Contemporaneous Parameter Estimates

Parameter Estimates

Coe�cient p-Valuea

c13,0 (Ethanol � Oil) -0.01 0.77

c14,0 (Corn � Oil) -0.23 0.00

c22,0 (Oil � Ethanol) 0.05 0.06

c24,0 (Corn � Ethanol) -0.04 0.69

c32,0 (Oil � Corn) 0.50 0.00

c33,0 (Ethanol � Corn) 0.14 0.12

var(e1O) 40.08 0.00

var(e1E) 7.85 0.00

var(e1C) 22.27 0.00

var(e2O) 11.90 0.00

var(e2E) 12.29 0.00

var(e2C) 14.59 0.00

p-Valueb

var(e1O)/var(e2O) 3.37 0.00

var(e1E)/var(e2E) 0.64 0.00

var(e1C)/var(e2C) 1.53 0.00

Notes: p-Value (a) corresponds to the test of the null hypothesis: H0 : cij,0 = 0 for equation
i = 1, 2, 3, and variable j = 2, 3, 4. p-Value (b) corresponds to the test of the null hypothesis
H0 : var(e1g)/var(e2g) ≤ 1, for market g = Oil, Ethanol, Corn.
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