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Abstract 
 
While the causes of famine are complex and include institutional failure and conflict, policymakers and 
practitioners often lack the necessary information to identify food insecure populations and, therefore, to 
effectively allocate scarce resources to mitigate hunger. As a result, humanitarian responses tend to trail the 
onset of food security crises. Our paper aims to enhances the early warning for food insecurity crises. The last 
decade has seen a dramatic increase in the available quantity and quality of data related to food security, 
rainfall, and prices. The full potential of these data has not yet been exploited, and they are often evaluated in 
isolation. We connect disparate datasets and use variation over space and time to build an evidence-based 
approach to estimating food security outcomes. We utilize price and precipitation data collected in near real-
time to predict sub-national food insecurity, as assessed by the Integrated Food Security Phase Classification 
(IPC). By overlaying mapped measures by season and analysing changes over time, our model has the 
potential to predict future sub-national food insecurity at relevant spatial and temporal scales. We find that 
contemporaneous price and measures of the prior year’s precipitation consistently predict the IPC in Malawi. 
We then compare the IPC food security evaluations to household measures of food insecurity in Malawi to 
ask whether our simple price and weather model improves the prediction of food security outcomes. We find 
that the IPC is strongly associated with the reduced Coping Strategies Index, a household measure of food 
insecurity, indicating that the IPC method does successfully capture food security. This model is a crucial step 
toward improving governments’ and NGOs’ abilities to target potential food crises at an early stage. 
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Introduction 
 
The world faced one of its worst humanitarian crisis since World War II in the Spring of 2017, with famine or 
near-famine conditions in South Sudan, Somalia, northeast Nigeria and Yemen (Gettleman, 2017). These 
events followed on the heels of Somalia’s 2011 famine, in which an estimated 258,000 people died (Maxwell 
et al. 2016). While the causes of famine are complex and include institutional failure and conflict (Devereux 
2009), policymakers and practitioners often lack the necessary information to identify food insecure 
populations and, therefore, to effectively allocate scarce resources to mitigate hunger (Barrett and Headey 
2014). As a result, humanitarian responses tend to trail the onset of food security crises, hampering the 
efficacy of these initiatives. Our paper aims to enhances the early warning for food insecurity crises. By 
leveraging real-time, readily available spatially and temporally granular data, we develop a first-cut at a 
parsimonious, replicable early warning model for food security crises. Once validated in other countries, such 
a model could assist policymakers in identifying how to best target resources in response to a food security 
crisis. Further, a model that can predict where problems are likely to occur could save resources if early 
intervention lessens the severity of the crisis. Finally, our model could also help prioritize where and when to 
send resources in the case of multiple simultaneous crises. 
 
The last decade has seen a dramatic increase in the available quantity and quality of data related to food 
security, rainfall, and prices. The full potential of these data has not yet been exploited, and they are often 
evaluated in isolation, with few analyses linking disaggregated weather and price data. Thus, while these data 
are available, we are unaware of any food security early warning and monitoring systems that incorporate 
them into a single predictive model.   
 
Further, most food security measures are at either the national or the household level – leaving a critical gap 
for programming and research at the meso sub-national level: regions, districts, or sub-districts.  The sub-
national level is particularly relevant to identifying and understanding food and nutrition insecurity. Food 
insecurity can be a highly localized phenomenon, with some zones within a country experiencing acute – and 
regular – insecurity while others do not (Sen 1980; Lentz and Barrett 2013; see also Brown et al. 2014 for a 
review). Further, a region’s food security status can change multiple times over the course of a year and it is 
not clear that current methods adequately capture these changes. Seasonal hunger appears to be more 
common than annual surveys of food security would suggest (Devereux et al. 2008). In Malawi, for example, 
Gelli et al. (2017) find that while food expenditures increase during the lean season relative to the post-
harvest season, reflecting the higher cost of buying maize, food insecurity and nutritional status worsen, 
including a 26 percent decrease in dietary diversity scores for children and a ten-point increase in the 
proportion of the population consuming less than 1800 kilocalories per day.  Given that the range of available 
food products increases during the lean, rainy season, a decrease in dietary diversity may well underestimate 
the true fall in food insecurity. 
 
Our work takes advantage of two underexploited resources: a wealth of data available for integration, analysis, 
and prediction and a relatively new set of sub-national food security indicators. We connect disparate datasets 
and use variation over space and time to build an evidence-based approach to estimating food security 
outcomes. We first utilize existing data collected in near-real time (e.g., price and precipitation data) to predict 
sub-national food insecurity, as assessed by the Integrated Food Security Phase Classification (IPC). The IPC 
is led by 12 agencies, including the United Nations Food and Agriculture Organization, the United Nations 
World Food Programme, and the US Agency for International Development’s (USAID’s) Famine Early 
Warning System Network (FEWS NET). The IPC is a widely adopted set of tools and protocols to rank food 
insecurity within and across countries in a consistent manner (IPC 2012). By overlaying mapped measures by 
season and analysing changes over time, our model has the potential to predict future sub-national food 
insecurity at relevant spatial and temporal scales. We then compare the IPC food security evaluations to 
household measures of food insecurity to ask whether our simple price and weather model improves the 
prediction of food security outcomes. This model is a crucial step toward improving governments’ and 
NGOs’ abilities to target potential food crises at an early stage. 
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While the IPC has become the standard metric for early warning for food insecurity, its production and use 
are characterized by six important challenges. First, the IPC assessment is generated relatively infrequently for 
each country, only two to four times each year. Alerts can come too late to mobilize resources to avert human 
suffering. Second, because IPC assessments are made at the district and/or livelihood zone level, their scope 
is limited to predicting variation of food security for an entire IPC zone, but not within zones or 
communities. Third, the IPC assessment is expensive and time intensive because it requires a group of 
experts to convene to make assessments. Fourth, the assessments are also prone to accusations of political 
bias by the media and outside watchers (The Economist, 2017). Fifth, the assessments are data intensive in 
places where data can be dangerous or difficult to collect, with famine classifications requiring specific death 
rate thresholds that can be extremely hard to measure. Last, since experts incorporate a series of different 
data sources into their analysis, the analytical process cannot predict food insecurity “out of sample” (i.e., in 
areas without food security outcome data). Yet, the IPC remains the best available data on early warning that 
is reliably collected at high frequency and more spatially disaggregation than national measures. Inasmuch as 
early warning contributes to funding decisions for aid, there is value to understanding whether readily 
available data can approximate the IPC. Identifying the extent to which real-time price and precipitation data 
approximate, and can potentially enhance, the IPC can help ameliorate these challenges.   
 
This paper makes three primary contributions to the analysis and prediction of food insecurity. First, ours is 
among the first analyses to integrate weather and price data together at a sub-national level. We describe 
protocols for doing so in a way that reflects variable population densities; these protocols can be adopted by 
researchers interested in complementary questions. Second, this is the first attempt to analyse subnational 
food insecurity using high-frequency price and weather data. Since we often do not observe yield or local 
production, particularly in time for early warning measures, we use maize prices as a measure of local food 
access and precipitation as a measure of food availability. We find that these weather and price data are 
predictive of sub-national food security and that our model contributes to the explanation of household level 
food insecurity beyond the IPC. Finally, a primary contribution of this work is validation of the IPC. Food 
security early warning systems require high frequency and spatially disaggregated data on food security; the 
IPC is the best high-frequency sub-national indicator of food security currently available. We establish that 
the IPC is well correlated the reduced Coping Strategies Index, a household-level measure of food insecurity, 
for the four quarterly assessments that overlap with Malawian household survey data. Thus, we find that the 
IPC assessments reflect and anticipate household food insecurity. As far as we know, this is the first paper to 
validate the IPC against household level food security data. By assessing the factors associated with IPC 
predictions and validating the IPC against a year of high frequency, household-level food security measures, 
we aim to improve food insecurity prediction and to supplement existing IPC assessments.  
 
In the next section, we review the literature. We then describe our data and the data matching process. In the 
third section, we present our empirical strategy and discuss our findings. We first ask whether our high-
frequency and spatially disaggregated rainfall and price measures are predictive of the IPC. We examine the 
relationship between our rainfall measures and local maize prices, to determine whether the relationship 
between prices and precipitation is sensible, and therefore, is predicting the IPC in a consistent manner. We 
also estimate how well the IPC predicts household food security, measured as the reduced Coping Strategies 
Index (rCSI) for 2010, and, once we control for the IPC, whether our rainfall and prices, measured at the IPC 
level, have any additional predictive power. Finally, we present limitations and robustness checks before 
concluding. 
 
 
Literature and overview of early warning for food security 
 
Beginning with Amartya Sen’s work in 1980, researchers have identified the drivers of acute food insecurity 
crises as not merely lack of food, but also lack of access (or entitlements) and lack of political will (see Sen 
(1980) and Devereux (2009)). At the same time, early warning systems have gained greater attention as a way 
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to identify and track impending food security crises and famines. These early warning systems monitor a 
variety of information, including remote sensing data, prices, and changes to livelihood patterns. The USAID 
established FEWS NET in 1985, after the catastrophic famines in Ethiopia and Sudan in 1984, when 
warnings came too late. For several chronically food-insecure countries, FEWS NET produces maps of 
livelihoods zones and remote sensing data (e.g., greenness maps from normalized difference vegetation 
indices (NDVI) data). FEWS also assembles and graphs prices. Vegetation maps and price graphs are 
produced separately; that is, FEWS does not integrate and process the data together, although FEWS does 
make recommendations that aim to synthesize the body of evidence. FEWS analyses and recommendations 
are currently used to determine responses by the US government, including food aid allocations. Early 
warning data on prices and remote sensing for food security have not yet been combined into a single 
predictive model, meaning FEWS analysts, prior to the IPC, had to assign relative weights to the indicators 
(e.g, when is a decrease in greenness a cause for alarm?).  
 
A consortium of agencies developed the IPC, at least in part, as (1) a response and complement to the ad hoc 
nature of the first order analysis and (2) to address concerns over lack of comparability and consistency in 
food security assessments across countries, time, and crises. Established in 2004, the IPC is a set of tools and 
procedures that produces qualitative scales and maps assessing the severity of food insecurity within and 
across countries over time. The IPC, a sub-national classification of food insecurity, has become the standard 
metric for early warning of food insecurity. Assessments are issued biannually or quarterly depending on the 
country and assessments are made at the geographic scale of “IPC zone” – often below a country’s district 
level. By 2015, twenty countries adopted the IPC, and by 2018, the number is anticipated to increase up to 50 
(IPC 2015). IPC assessments assist governments and humanitarian actors deciding where and when to target 
limited resources, standardizing scales of food security crisis magnitude and severity across time, contexts, 
and situations.1 Within each IPC zone, IPC assessments assign classifications ranging from 1 = none or 
minimal to 5 = humanitarian catastrophe / famine. The assessments also include the number of people 
affected and relevant social characteristics (e.g., pastoralists), causes, and possible responses. See Figure 1 for 
an example in Malawi.  
 

Figure 1 here 
 
 
IPC assessments follow a standard set of protocols to facilitate comparability across countries. The IPC uses 
a convergence of evidence approach (IPC 2012) and the IPC does not collect data, instead relying on meta-
analysis of existing information. The IPC manual (2012) explains “Since the IPC approach is not based on a 
mathematical model, it requires critical thinking on the part of food security analysts. While the IPC is 
designed to structure the analysis process as systematically as possible, it does require the analysts to have a 
strong understanding of the concepts and technical details of conducting food security, nutrition and 
livelihood analysis” (p. 14). The IPC also relies on consensus of the team of trained IPC food security 
analysts, drawn from civil society and government, to help avoid analyst or institutional biases.  
 
Analysts compare specific indicators that are related to food consumption and livelihood changes, nutritional 
status, and mortality against standardized IPC reference tables to identify the appropriate food security 
classification for an IPC zone. The area classification and household group classifications rely on evidence 
with universal thresholds that are comparable across situations (see the 2012 IPC manual Tables 4 & 5 on pp. 
32-33 for specific cut-offs and data requirements). These specific findings need to be buttressed with 
additional evidence. For example, an IPC area classification “3” or “crisis” is consistent with 20 to 40 percent 
of the population within an IPC zone has a body mass index (BMI) of less than 18.5 percent (a measure of 
undernutrition). If at least 40 percent of the population’s BMI is less than the benchmark of 18.5, this range is 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 For more information, see the IPC website: http://www.ipcinfo.org/ipcinfo-about/what-is-the-added-value-of-
ipc/en/ For more information on the Malawi IPC zone designations and Household Economy Approach, see the 
Malawi National Vulnerability Assessment Committee 2005 baseline report. 
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consistent with the IPC area classification of at least “4”, or “emergency.” However, before the IPC zone 
classification is determined, analysts examine additional evidence to ensure these food security measures are 
trustworthy. The analysts reach consensus on an IPC classification for a given IPC zone based on the total 
body of evidence for that zone. The analysts also indicate their confidence in the amount and type of reliable 
data available with a ranking ranging from one to three. 
 
The IPC, by aiming for cross-national and intra-nationally consistent rankings, has added rigor to early 
warning systems. Nonetheless, the IPC is often limited by the lack of high-frequency and spatially 
disaggregated data. For example, 2014 IPC assessments in South Sudan indicate areas without assessments, 
because no data were available (FEWs NET 2014). One proposed solution to the lack of reliable, frequent 
data is to establish sentinel sites (Barrett 2010). Barrett and Headey (2014) argue that strategically locating 
sentinel sites in the worlds’ most vulnerable locations could provide information for targeting, an ability to 
monitor vulnerability and early warning as situations deteriorate. They argue for inclusion of vulnerable 
countries that face natural disasters, high levels of emergency aid, and high levels of child undernutrition. At a 
sub-national level, the authors illustrate a method of selecting select sentinel sites by combining agro-
ecological data with nutritional outcomes, arguing that agro-ecological factors are associated with food 
security (Barrett and Headey 2014). Yet, within food insecure countries, which sub-national factors are 
predictive of food insecurity are still not well understood. 
 
Several areas of research outside of food security early warning systems are relevant both methodologically 
and have the potential to provide additional predictors of food insecurity. For example, considerable ongoing 
research is working to predict crop production in developed and developing countries using available data on 
temperature, rainfall, agro-ecology, and satellite imagery. The Global Agricultural Monitoring initiative 
GeoGLAM tracks crop conditions in countries with poor food security by integrating and analyzing remote 
sensing data, on the ground reports, and information from national and regional experts. Nonetheless, 
availability alone is not a sufficient condition to solve food insecurity nor is it the only predictor (Sen 1980).  
 
Earlier approaches, such as poverty mapping, combine multiple sources of data to predict spatially-
disaggregated outcomes that are related to food insecurity.  Popular in the 1990s and early 2000s, poverty 
mapping uses small area estimation techniques to combine household-level survey data with census data to 
estimate poverty over small areas. The technique involves numerous methodological challenges, including 
considerable data requirements, data non-normality, heteroskedasticity of errors and likely spatial 
autocorrelation (Davis, 2003). The small area estimation approaches to generating poverty maps require that 
the data used for the maps are collected during the same timeframe and that the samples are representative of 
the larger population, which limits the ability of poverty maps to be dynamic and time-responsive (Davis 
2003; Hyman et al. 2005; Bedi et al. 2007).   
 
While most poverty maps present income or expenditure information, expenditure and income data have 
been found to be imprecisely correlated to food security and nutritional outcomes in many parts of the world 
(Kadiyala et al. 2014; Brown et al. 2017) limiting their usefulness for researchers and policymakers interested 
in food and nutrition security.  Regularly updated poverty maps that include non-income or expenditure 
measures of food and nutrition security, such as anthropomorphic measures, are far less common. One 
valuable alternative to small area estimation is to generate maps with community or district level data, which 
have the benefit of not requiring the same degree of disaggregated data (Kristjanson et al. 2005). These maps 
also miss the temporality, unless there is access to high frequency community and district level data. In 
addition, poverty maps are generally descriptive, useful for targeting, but not generally used for analysis or 
prediction of specific events.  
 
Current spatial analyses of food security or agriculture rarely join spatial data that are representative at 
different spatial scales. More broadly, techniques to combine remote sensing data with household surveys and 
price data are in their infancy. Johnson et al. (2013), for example, detail the technical challenges of matching 
satellite data on Malawian forest cover with Demographic Health Survey (DHS) data whose global 
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positioning system (GPS) coordinates are randomly displaced to ensure confidentiality (Johnson et al. 2013). 
A second study, discussing approaches to linking environmental data and household surveys, concludes that 
researchers have not yet converged on how to incorporate food price and risk data (Brown et al. 2014, p. 21).  
Below we discuss our protocols for combining sub-national IPC, price, and rainfall data. 

 
One challenge with mapping food security is that it is not directly observable (Barrett and Lentz 2014). Food 
security is often operationalized as adequate physical availability of food, the economic and physical access to 
food, and the effective utilization of food. These attributes are inherently nested: without availability there can 
be no access, and without access, there can be no utilization. A fourth component, stability, reflects the 
temporal dimension of these three aspects. If stability is included in the assessment, individuals who have 
food at one point in the year but not at a later point, perhaps due to seasonal hunger, ought to be considered 
food insecure (FAO n.d.).   
 
Analysts interested in (rural) food security at a sub-national level often rely on proxy measures: precipitation 
or greenness to capture availability and prices to capture access. Utilization is generally measured within 
households, and therefore rarely explicitly included in early warning systems. Stability, arguably important for 
early warning, poses serious measurement challenges. As a result, stability is both under-studied and under-
theorized. Rapidly available nationally representative surveys capturing seasonal trends in undernutrition are 
rare (Barrett and Headey, 2014). Few surveys collect household-level food security measures that are both 
high frequency and spatially representative at the sub-national level.  Yet, many households and individuals 
experience food insecurity for part of year (see Devereux et al. 2008) – and depending on livelihood strategy, 
incomes, and locations, the duration and timing of household food insecurity will vary. Annual food security 
surveys likely under-report the population who experiences food insecurity in a given year. Thus, due to data 
limitations, few long-term, nationally representative studies have evaluated the temporal variation of sub-
national food security. 
 
Just as flooding and drought can disrupt food security, limited market access and transactions costs can 
contribute to food insecurity (Barrett et al. 2009; Timmer 2014). Market access and transactions costs vary 
not only spatially but temporally, and, as described in the research on famines and severe food insecurity, are 
worse during times of acute food insecurity (see Sen 1980 and Mukherjee 2015).  Given the limited spatial 
market integration in many developing countries (Mallory and Baylis 2012) and high transaction costs in rural 
markets (Montgomery et al. 2017), we expect that rural agrarian households who experience acute food 
security are harmed by a lack of stability in local measures of climate, prices, and other factors.  Analysis of 
spatial and temporal variation within a country can provide insight into the relationship between availability-
based (i.e., precipitation) and access-based measures (i.e., prices and stock-outs) of food insecurity and the 
IPC.  Thus, mapping food security, prices, and availability measures with a focus on prediction has clear 
value.  
 

 
Data sources and descriptive statistics 
 
Malawi’s ongoing history of food insecurity, recent high-profile agricultural interventions targeting small 
farmers (e.g., Targeted Input Program, Farm Input Subsidy Program), and the breadth of data available make 
it an ideal candidate for this study. In 2013, Malawi was ranked the 18th poorest country in the world (UNDP, 
n.d.). In 2010, approximately 70 percent of the population lived below $1.90 per day (World Bank, n.d.). 
About 85 percent of the population resides in rural areas (UNDP, n.d.). Malawi faces both acute and chronic 
food insecurity. In the past fifteen years, Malawi experienced several severe food insecurity crises, including a 
famine in 2002, a food security crisis in 2005, a food security crisis in 2012-2013, and major flooding in 
southern Malawi in 2015 with resulting widespread food insecurity. In 2013, the percent of children under age 
five who are moderately or severely stunted was between 37 and 47.8 percent (UNICEF, n.d.; UN WFP, 
n.d.). The stunting rate, a measure of long-term food insecurity, is the proportion of children below two 
standard deviations from the median height-for-age reference population.  



 7 

 
Malawi’s rainy season starts in October and runs through April. While the lean season varies for each family 
(and across years for families), the FEWs seasonal calendar indicates that the lean season generally runs 
between November and March. The main crops grown by rural Malawians include maize, sorghum, cassava, 
and rice, and, as a cash crop, tobacco. While dated, a 2008 report indicates that 90 percent of Malawian 
agriculture is rainfed (Semu Banda 2008). About 95 percent of farmers in Malawi grow maize and it provides 
the primary source of calories for Malawians (Jones et al. 2014; MVAC 2015). The Malawi Vulnerability 
Assessment Committee (MVAC) (2015) argues that Malawians’ over-reliance on maize contributes to their 
food insecurity because maize yields are more susceptible to both droughts and dry-spells, than other staples, 
such as cassava. In 2005, the Malawi National Vulnerability Assessment Committee (a precursor to MVAC) 
estimated that about one-third of the rural population did not grow enough food to meet their needs (2005). 
These households relied on day labor (ganyu) or other activities to cover shortfalls that ranged between two 
and six months’ worth of food. 
 
Because the majority of rural Malawians rely on maize production for food and maize production is heavily 
dependent on rainfall, estimating food insecurity as a function of maize prices and rainfall can provide us 
insight into how these factors influence food security. The importance of rain to small farmers and the 
dominance of maize in the diet means both of these factors may be useful sentinel indicators to 
understanding temporal and spatial variation in food security at the IPC zone level. Further, food insecure 
households have little influence or control of these factors, allowing us to gauge the influence of external 
factors on sub-national food security.  
 

 
IPC!
In 2005, using a Household Economy Mapping Approach, the Malawi National Vulnerability Assessment 
Committee, which included individuals from the Ministry of Economic Planning and Development, the 
Ministry of Agriculture, Irrigation and Food Security, the Department of Local Government, the National 
Statistics Office, the Ministry of Health and Population, WFP, FEWS NET, Save the Children, and World 
Vision International identified 18 agro-ecological livelihood zones in Malawi. To increase resolution and allow 
for variation within each livelihood zone, livelihood zones were intersected with sub-district administrative 
zones, for a total of 60 IPC zones. National parks, which are not contiguous, are given their own zone and 
not assessed; there are 59 regularly assessed IPC-zones.  We use shape files provided by FEWS NET to 
identify each IPC zone.2  
 
We received IPC levels for Malawi from July of 2009 to April 2016 from FEWS NET. Assessments are 
generally conducted quarterly, although in some quarters, assessments were updated (e.g., if a situation rapidly 
deteriorates). There are 2360 possible assessments (the number of IPC zones times the number of assessment 
periods during this period). In 29 out of a total of 2360 assessments, there was insufficient information to 
complete an assessment. The roughly quarterly IPC assessments in Malawi focus on identifying current acute 
food insecurity, which is often “on top of” chronic food insecurity.3  The IPC assessments in Malawi are 
“IPC compatible”, which means that the Malawi assessments are done with a smaller group of IPC-trained 
technical analysts, primarily housed within the government. The analysts reach “working consensus” rather 
than complete consensus (i.e., sign off by all stakeholders). IPC compatible assessments are often undertaken 
due to time constraints but remain directly comparable for the broader IPC community (IPC 2012). 
 
Nearly 77 percent of Malawi’s IPC assessments between 2009 and 2016 were phase 1, or “minimal.” Slightly 
over one-fifth (21 percent) were assessed at phase 2, “stressed,” and only 3 percent were phase 3, “crisis.”  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 The IPC zones and Household Economy Analyses were updated in 2015, and, from mid-2016 onward, the IPC 
assessments utilize the 2015 zoning. We use the 2005 IPC zones because they were the base for the IPC assessments 
prior to mid-2016. 
3 Other IPC protocols focus on identifying chronic food insecurity and or future projections. See IPC 2012.  
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The periods of greatest phase 3 food insecurity occurred in 2012 (11 percent of assessments for that year), 
and 2015 (6 percent of assessments for that year).  Figure 2 shows IPC and reduced Coping Strategies Index 
(rCSI) values for two periods of 2010. The IPC rankings are indicated by the borders on the IPC zones, with 
thicker borders indicating greater insecurity. First, in April 2010, 4 of 58 IPC zones were assessed as phase 2 - 
severe. The others were phase 1. By July 2010, nine IPC zones were assessed as phase 2 - severe and three 
zones were assessed phase 3 – crisis.  The lean season usually starts in October or November, so the fact that 
people were already experiencing food insecurity suggests a deteriorating situation.   
 

Figure 2 here 
 
 
CHIRPS 
The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data set, collects daily data on 
rainfall at a high spatial resolution (Funk et al. 2015). We utilize the CHIRPS data to compute a series of 
rainfall variables, described above. USAID funded the development of CHIRPS to support FEWS Net’s early 
warning system, with a focus on drought monitoring. CHIRPS uses a “smart interpolation” approach and has 
been validated against independent weather station and Global Precipitation Climatology Centre (GPCC) 
data. CHIRPS data are highly disaggregated, at a resolution of 0.05 degrees, or a little over 5km2. A dataset 
with comparable historical reach, the Climate Prediction Center Merged Analysis of Precipitation (CMAP) 
is collected at a coarser resolution of 2.5 degrees. Boyle et al. (2014) note that the level of spatial 
disaggregation is critical to understanding land use, as highly aggregated spatial data can miss pockets of 
important variation, particularly for rainfall. 
 
We use the CHIRPS data to generate several agronomically-relevant measures of precipitation.  We calculate a 
measure of the total rainfall for the prior year, on the assumption that current food security will be largely 
affected by last year’s harvest.  Second, we develop a measure of the beginning of the rains for the prior 
agricultural season, to capture late-onset monsoons, which have been shown to affect agricultural yield (Guan 
et al, 2015).  Third, we develop a measure for length of dry spells during the past rainy season.  !
 
Prices 
Existing studies on spatial integration find that major markets in Malawi are relatively well-integrated in the 
long run. Nyogo (2014) finds for six markets in Malawi during 2000 and 2008, long run integration is 
relatively good, but short run integration is not.   Myers (2013) examines maize prices for ten markets in 
Malawi, during 2001-2008, finding that markets are relatively well integrated and that in general, when price 
shocks occur, shocks are arbitraged away. However, both of these studies use primary markets where spatial 
integration may be more likely. No analyses have characterized spatial price integration in Malawi for 
secondary or tertiary markets where we expect local production to affect local prices, determining food 
access. 
 
We have high frequency price data for 72 markets distributed across Malawi between 2000 and 2017. Our 
price data include weekly maize prices from a variety of markets, including remote, rural markets and urban 
markets. These data were collected by the Malawi Statistical Division of the Ministry of Agriculture on a 
weekly basis. The Ministry of Agriculture purposively sampled these markets as those that are representative 
of markets across Malawi (Ministry of Agriculture personal communication). See Figure 3 for locations (some 
monitored urban markets are in close proximity and appear on the map to share a location). 
 

Figure 3 here 
 
When data are missing for a certain market-week, we interpolate the average market price. We first use weekly 
prices to generate an average price for each month. When prices for some weeks are missing during a month, 
we generate the monthly average based on the average for the reported weeks in each month. When no data 
are collected in an entire month, we linearly interpolate the average monthly price per market using data for 
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that same market in the nearby months. We replace missing monthly prices in the price series with 
interpolated prices. We have 7416 points of data across 72 markets; 2037 are interpolated values. 
 
Figure 3 plots the coefficient of variation for the retail maize price over two different recent five-year 
periods.4 The maps exhibit considerable spatial and temporal variation confirming the value of attending to 
both spatial and temporal variation in prices. Given the variation in Figure 3 and the limited spatial market 
integration in many developing countries (Mallory and Baylis 2012; Sekhar 2012), we expect that the effect of 
agriculture and other factors may be largest at the local level. 
 
 
rCSI 
We utilize data from the 2010-2011 Malawi Third Integrated Household Survey (IHS3) to benchmark the 
IPC. The IHS collect the reduced Coping Strategies Index (rCSI), a household food security measure, in a 
nationally representative sample during March 2010 through March 2011. The rCSI is a continuous measure 
based on responses to a five-question survey module that asks households about the frequency of various 
coping strategies used. A higher rCSI value indicates greater use of coping strategies, and greater food 
insecurity. While there are numerous ways to measure food insecurity, the rCSI is a relatively “universal” 
indicator and seems to best capture lack of quantity of food within a household (Maxwell et al. 2014). 
However, relative to the Coping Strategies Index, which includes the rCSI questions as well as additional 
question, the rCSI likely captures less severe coping mechanisms (Maxwell et al. 2013). Thus, the rCSI is well-
suited for early warning because it can identify when food security is deteriorating, though it might not 
capture the full extent of food insecurity once a crisis hits.  
 
GPS coordinates were also collected as part of the IHS3 survey. To maintain respondent anonymity GPS 
coordinates are randomly offset between one and five kilometres. We use these offset coordinates to identify 
each household’s IPC zone. While it is possible that a handful of households would be categorized incorrectly 
into a neighboring IPC zone, due to the offset, this should random and, any resulting error should tend 
toward zero in the aggregate. Offset households were kept within the same district; thus for at least those IPC 
zone boundaries that are contiguous with district boundaries, the zone assignment will be correct. Each 
month, the IHS was fielded in several different locations across Malawi. This spatial variation means that, in 
each month, households were interviewed from most IPC zones. The monthly data collection from a variety 
of locations allows us to consider how rCSI varies across households both spatially and temporally.  
 
Figure 3 shows the variation of the IPC in 2010.  Due to random sampling used by IHS, we do not have 
statistically representative rCSI values for rural residents for all IPC zones. For the zones in which we observe 
rCSI values, we see that rCSI values tend to be better for many IPC zones in July, relative to values in April. 
The lower Shire valley, Malawi’s most southern IPC zone, was classified as in crisis in July by the IPC 
assessment but has a worse average rCSI score in April relative to July. This opens an important question as 
to whether the rCSI is, relative to the IPC, a bell-weather or leading indicator of increasingly deteriorating 
conditions. The figure also suggests the value of predicting food insecurity for months when the IPC is not 
available. Conditions worsened rapidly over the spring of 2010, due to the failure of crops resulting from dry 
spells during the rainy season (FEWS NET 2010). Being able to identify these patterns as early as possible 
can help with response efforts. 
 
 
Data matching process 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!Of the 63 markets, 8 markets did not have latitudes and longitudes assigned by the Ministry of Agriculture. We found 
locations for Hewe, Kasiya, Chimbiya, Sharpe Valley, and Embangweni from Geonames, a website that has latitude and 
longitude coordinates for cities across the globe. Chataloma, Bemebeke Turnoff, and Mayaka were too small to be 
included in GeoNames. Therefore, we identified latitude and longitude for these markets based on Facebook links with 
local businesses in each of these markets. 
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To utilize both price and precipitation data, we aggregated market data from point formats and precipitation 
and population data from raster formats to the IPC zones, which are polygon locations and our unit of 
analysis. Combining time-varying spatial data appropriately requires care. We assign market prices to each IPC 
zone using the following approach. First, we assume that people visit the market closest to them by the 
straightest path or Euclidean distance. Thiessen polygon boundaries are drawn based on the midpoint 
between market locations. Everyone within a Thiessen polygon boundary is closest to the market within that 
polygon boundary. This approach creates a marketshed for individuals, based on market proximity. We then 
overlay the IPC zones onto the Thiessen polygons and clip each Thiessen polygon by the IPC zone that they 
fall into. The final market price for each IPC zone is the average of markets prices weighted by populations 
within the intersection of the IPC zone and marketshed. From a spatial perspective, each IPC zone may 
include some, one, or none of our 63 sampled maize markets within it. By our approach, people within that 
IPC zone experience market prices closest to them. An implication of this approach is that residents within 
each IPC zone could go to a market outside of an IPC zone if it is closer than the nearest market within an 
IPC zone.5  Further, using raster-level population statistics from the 2011 Landscan files, we weight 
marketshed prices by the population of each intersection of the Thiessen polygon and IPC zone to ensure 
that the resulting prices within the IPC zone polygons are representative of the prices accessible to the 
population. See Annex 1. 

 
Similar to the market price data, the CHIRPS rainfall data are collected at a finer scale than the IPC zones. 
Therefore, we aggregate the rainfall data to the IPC zone by taking a population weighted average of the 
rainfall values within each IPC zone. We again apply 2011 Landscan population values. 
 
 
Model  
 
Our primary model estimates the IPC classifications as a function of prices and precipitation. Our goal is to 
produce a parsimonious, first-cut or “IPC-light” model that could supplement the IPC at more granular 
spatial and temporal scales. We intentionally present the simplest models possible, to assess the ability of 
readily available high-frequency and spatially disaggregated data to explain the IPC. Our motivation for this 
parsimony is that a simple model might be more broadly applicable: a simple model relying on widely-
available data could be more easily be replicated in other locations facing periodic food insecurity.  
 
Our model utilizes high frequency price data from primary, secondary, and tertiary markets and satellite data 
on precipitation for Malawi going back to 2009 to estimate historical IPC levels for Malawi at the IPC-zone 
level. By overlaying mapped measures by season and assessing changes over time, our model has the potential 
to predict future sub-national food insecurity at relevant spatial and temporal scales. Subsequent models will 
assess whether adding less available data, such as distribution of fertilizer subsidies across Malawi, 
substantially improve the overall fit and prediction of our model. Using spatial panel estimation methods (see 
Baylis et al. 2011), our approach to estimating the IPC is: 
 

IPCjt = Lnpricesjt + TotalRainfalljs-1 + FirstRainjs-1  +  MaxNoRainjs-1 + FloodMaxjt + y + m +  e 
 
where j = the IPC zones; s = rainy season (defined as October to April for Malawi); and t = quarter. The IPC 
can take values between one to five, although in Malawi, IPC assessments varied between one and three. 
Lnprices is the natural log of average maize prices within each quarter, t, for IPC zone, j. TotalRainfall 
captures the total rainfall during last year’s rainy season (between October and April) by IPC zone and year 
(FEWS NET, n.d.). Incorporating a lag of last year’s precipitation allows us to capture the effects of the last 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 An alternative approach would be to assign people to markets based on road networks (e.g., it may be faster to go to a 
market that is 5 km away on a paved road than a market that is 3km away on a dirt path). This would be a valuable 
alternative approach, but Malawi’s road network information does not allow us to make this refinement. 
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growing season on current food security. FirstRain captures the timing of the beginning of the rains for the 
prior year. It measures the number of days following the first of October when the rains began.  The 
beginning of the rains is defined as when it rains for at least three of the past five days for a total 
accumulation of at least 10 millimeters. Dry spells during the rainy season are a particular concern for crop 
production, especially in Malawi (FEWS NET 2010).  MaxNoRain is the number of days without rain during 
last year’s rainy season (October – April), which also captures inconsistency of rain potentially harming 
current food insecurity. FloodMax is the maximum daily precipitation that month in regions that are 
susceptible to floods. While other variables are intended to capture possible adverse effects of droughts, this 
variable picks up too much rain, which can cause flooding, such as in the lower Shire valley in 2015. We also 
estimate a model including year, y, and month, m, fixed effects to capture any additional unobservable effects. 
In some specifications, we include IPC zone fixed effects to capture other time-invariant influnences on food 
insecurity. 
 
Following the estimation of the IPC, we assess the relationship between prices and precipitation in our data.  
If current price is a good prediction of local food access, and if markets have sufficiently high transaction 
costs such that they are affected by local production, then our measures of the past year’s rainfall should help 
predict local price.  We also control for current flooding, since it may increase market transaction costs.  By 
identifying whether the relationship between prices and precipitation is sensible, we gain insight into how 
these factors predict the IPC.  
 
Lnpricesjt = TotalRainfalljs-1 + FirstRainjs-1  +  MaxNoRainjs-1 + FloodMaxjt + y + m +  e  (1) 
 
where j = the IPC zones; s = rainy season (defined as October to April for Malawi); and t = month. The 
precipitation variables are the same as defined above, but the natural log of maize prices are now monthly, 
rather than quarterly, averages. 
 
Both the IPC and our model mean to capture household food security.  As noted above, a constraint of food 
security estimations is that high-frequency food security measures are rare.  To assess whether the IPC 
captures household-reported outcomes of food insecurity, we then estimate a pooled cross-section of 13 
months of a food security measure, the rCSI, as a function of the IPC and other variables. The rCSI is a 
continuous variable. Data on rCSI were collected from households across Malawi between March 2010 and 
March 2011 as part of the 2010-2011 Malawi Third Integrated Household Survey (IHS3). We leverage the 
temporal variation in IHS3 data collection during to understand how food security values vary within each 
IPC zone, by month of data collection. We first estimate the rCSI as a function of our price and weather 
model described above, to determine if our model directly predicts food security.  
 
rCSIjt = Lnpricesjt + TotalRainfalljs-1 + FirstRainjs-1  +  MaxNoRainjs-1 + FloodMaxjt + ejt   (2) 

 
where j = the IPC zones; s = rainy season (defined as October to April for Malawi); and t = month. We do 
not include year fixed effects because we only have thirteen months of data. Instead, we include an indicator 
variable to indicate when the year is 2011. The IPC is a three category ordinal variable. The omitted variable is 
IPC = 1, indicating minimal food insecurity. 
 
Second, we estimate the rCSI as a function of the IPC, to establish the relationship between the IPC – a sub-
national measure of food insecurity – and the rCSI – a household level measure, aggregated to the IPC 
region. In one specification, we include IPC zone fixed effects. Next, we extract the residuals from this 
regression to determine whether our weather and price model used above predicts further variation in the 
regional aggregated measure of rCSI, over and above that predicted by the IPC. Thus, we estimate the 
following two equations: 
 
rCSIjt = IPCjq + mt +  ejt          (3) 
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ejt = Lnpricesjt + TotalRainfalljs-1 + FirstRainjs-1  +  MaxNoRainjs-1 + FloodMaxjt + ujt   (4) 

 
This decomposition allows us to determine whether our precipitation and price variables have value as 
predictors of household food insecurity, beyond what is captured by the IPC. 
 
 
Findings 
 
Table 1 presents descriptive statistics for price and precipitation variables by IPC classification. We find that, 
when moving from IPC = 1 (minimal) to IPC = 2 (stressed), the natural log of maize prices increases and 
rainfall during the last rainy season falls. Thus, moving from an assessment of 1 to 2 (indicating deteriorating 
food insecurity) coincides with rising prices and lower rainfall during the last planting season. The shift from 
an IPC assessment of IPC = 2 (stressed) to IPC = 3 (crisis), does not coincide with higher prices or decreased 
rainy season rainfall. However, the amount of precipitation in flood zones increases, suggesting that IPC = 3 
often captures food insecurity associated with periods of severe flooding.  
 
In Table 2, we present the relationship between the IPC and several household level food security measures 
drawn from the 2010-2011 IHS. As dietary diversity and food consumption score decrease, indicating the 
deterioration of dietary quality (Maxwell et al. 2014), the IPC increases. Similarly, as the rCSI increases, 
indicating the use of more coping strategies, the IPC also increases. A large jump in the number of coping 
strategies used – from roughly 6 to 10 – coincides with an increase in IPC assessment of stressed (=2) to 
crisis (=3).  
 
In Table 3, we assess how well monthly measures of price and precipitation across 58 IPC zones in Malawi 
can predict IPC values. Results from model 1 suggest that last year’s rainy season precipitation and days of 
dry spells and contemporaneous flooding are significantly associated with current IPC rankings in the 
expected ways. The inclusion of contemporaneous log prices in model 2 strongly predicts the IPC; the rainfall 
measures’ coefficients decrease but are still significant and informative, indicating that the effect of 
precipitation on food security is not completely captured by local price, possibly indicating that poor rains 
affect food security both through local incomes as well as local prices. The results also indicate the potential 
value of tracking the number of days of dry spells to identify possible food security crises in the upcoming 
year. Each additional rainless day within the longest dry spell during the rainy season is associated with a 
.0027 to .0034 increase in IPC rankings. This metric is a potentially valuable leading indicator of a region’s 
future food insecurity. The R-square suggests moderate prediction. Our model explains about 17.5 percent of 
the variation in the IPC assessments. 
 
Turning to unpacking our findings from Table 3, we first confirm that last year’s rainfall is strongly predictive 
of maize prices, which are often considered informative of food insecurity. Table 4 shows a highly statistically 
significant relationship between prices and total rainfall during the last year and between prices and last year’s 
duration of dry spells. The coefficients’ signs are as expected. More rainfall is associated with a lower log 
price, while longer dry spells are associated with higher prices. Across models 1 – 5, which incorporate 
alternative specifications of precipitation and/or IPC zone fixed effects, these results remain highly 
statistically significant. Including IPC zone fixed effects in models 2 and 5 results in qualitatively consistent 
estimates, although the magnitudes of the coefficients on rainfall decrease. This effect may result from some 
areas being dryer and higher priced, on average. We cannot distinguish whether our fixed effects are capturing 
a long-term causal relation between precipitation and location, or whether both of these factors are correlated 
with a different time-invariant unobservable such as higher transaction costs. Given the relatively small 
number of seasons that we observe in our data, it is not surprising that some of the explanatory power of 
annual rainfall is captured by the location fixed effect. In contrast, the coefficient on the number of dry days 
is larger with IPC zone fixed effects. We also see that contemporaneously high rainfall in the flood prone 
areas also raise prices. The R-square values are relatively high in these models because of the inclusion of 
annual fixed effects, which soak up the year-on-year variation. 
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Ideally, early warning systems would be based on household or individual-level experiences with food 
insecurity. However, these data are rarely available at a high enough frequency. We utilize the rCSI, collected 
across 13 months in 2010-2011, to uncover how well the IPC does at capturing household level food 
insecurity.  In Table 5, we turn to estimating the value of household reported rCSI as a function of the IPC 
and month fixed effects. The month fixed effects are consistent with the lean and post-harvest seasons. The 
coefficients show that coping strategies tend to increase toward the end of the lean season (i.e., in March and 
April), and then begin to reduce in July and August, after harvest (Gelli et al. 2017).6 We also find that 
increases in the IPC are strongly associated with increasing reports of household food insecurity. When the 
situation is severe (e.g., IPC ranking is 3), its large coefficient indicates that many more rCSI strategies are 
being deployed by households.  Model 2 introduces IPC zone fixed effects, which absorb much of the 
explanatory power of the IPC rankings. This suggests that some zones are regularly or chronically more food.  
 
We are also interested in whether our selected price and precipitation measures can explain variation in the 
IPC.  In Table 6, we re-run the same regressions as in Table 4, but estimate the rCSI instead of log price and 
now include price on the right-hand side. We find similar effects for last season’s total rainfall on household 
food security status as we observed with local price. An increasing amount of rain last year is associated with 
decreasing rCSI (or better food security). As expected, increasing prices increases household rCSI, indicating 
that when maize prices increase, households rely on more coping strategies. Results associated with 
precipitation variables are more mixed. As with Table 1, including IPC zone fixed effects dampens the 
coefficients on total rainfall last year and current prices, as would be expected since we only observe the food 
security outcome of a single production season. The fixed effects are highly significant, suggesting that some 
parts of the country regularly face worse food insecurity, as measured by the rCSI, even when controlling for 
precipitation and prices.  
 
We also explore whether our price and precipitation variations add any explanatory power to the estimation 
of rCSI, once we account for the IPC. We decompose the estimation of the rCSI in two steps. In Table 7, we 
estimate the rCSI as a function of the IPC as model 1. We then compute and store the residuals and estimate 
these as a function of log prices, precipitation and month fixed effects, shown in Table 7, model 2. Both 
current log prices, last year’s rainfall during the rainy season, and the first day of rain of last year’s rainy 
season are all strongly associated with the residuals, that is the portion of the rCSI unexplained by the IPC. 
This decomposition shows that while the IPC does predict the rCSI, incorporating price and precipitation 
data can improve the overall fit and increase the explanatory power.  
 
Robustness checks (forthcoming) 

•! Evaluate whether results are sensitive to weighing Theissen polygons by population  
•! We will examine the relationship between the IPC and the FCS. The food consumption score (FCS) 

measures the lack of adequate quality or dietary diversity of food which captures a different form of 
food insecurity than the rCSI (Maxwell et al. 2014).  

•! We will include additional variables into future estimations, including:  
o! lagged values for IPC  
o! lagged values for prices  
o! measure of market thinness and market stock-outs 
o! fertilizer inputs from two fertilizer subsidy programs: the Targeted Input Program, and the 

Farm Input Subsidy Program.  
•! Estimate ordinal logits for IPC outcomes. 

 
 
Limitations 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 Available upon request. 
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Food security data are often representative at different spatial scales, from country-level assessments using 
FAO production data, to individual-level measures based on child anthropometry Z-scores (Dangour et al. 
2012).  Our analysis and results are at the sub-district zone-level. The zones used in our analysis are intended 
to facilitate emergency response, and are relatively coarse (Chris Hillbruner, personal communication). We 
cannot estimate variations within communities or within households, which remain important drivers of food 
insecurity and undernutrition. Brown et al. (2017), for example, recently found that nearly 75 percent of food 
insecure individuals reside outside of the poorest 20 percent of households. New technologies that can target 
particular households or communities, such as SMS and voice response, offer some possibilities to 
complement and enrich these findings (Bauer et al. 2015). As of this writing, findings from these technologies 
have not been adequately validated against more traditional measures of food insecurity, and this area remains 
an important avenue for future research. Nonetheless, once such tools are better understood and it is 
established that they do effectively capture food insecurity, incorporating a more localized collection of rCSI 
data could be a valuable complement to current early warning systems. Pairing IPC assessments with voice-
response surveys and or other innovative ways of capturing useful supplemental data could improve the 
ability to drill down beyond IPC zones to household level food insecurity.  
 
A further limitation is that the IPC in Malawi does not have a great deal of variation. Malawi is also a fairly 
simple case: there was no conflict, no mass migration, and no famine. Nonetheless, in places where conflicts 
are emergent or ongoing, our approach can provide an important source of information. Our future research 
will evaluate the IPC in other locations. Finally, there are other important sources of variation that we hope to 
incorporate into our future analyses. Measures such as the NDVI and soil moisture could provide valuable 
insights. Similarly, incorporating crops models and household level factors could potentially improve the fit 
of our models. We aim to replicate these models elsewhere to improve the models, as well as incorporate and 
evaluate other forms of data to assess the trade-offs between increasing complexity and parsimony. 
 
 
Discussion and next steps 
 
Our work takes advantage of underexploited resources: a wealth of time-varying spatial data available for 
integration, analysis, and prediction of food crises. We find that contemporaneous price and measures of the 
prior year’s precipitation consistently predict the IPC. These results represent a first step in developing a 
parsimonious early warning model that utilizes real-time data. Incorporating precipitation and market data 
into modelling of the IPC can provide an important first step for policymakers aiming to determine where to 
focus data collection efforts, to monitor changes more frequently than the quarterly or semi-annual IPC 
assessments, and to target assistance efforts. 
 
Our research advances the frontiers of food security early warning and monitoring in three crucial ways. First, 
in the case of Malawi, we use a small set of readily available data to model food security crises at a fine time 
scale, both to allow rapid responses and to identify factors that affect regional resilience to rainfall shocks and 
price increases. Second, our model demonstrates the possibility of making predictions in remote areas of 
countries, where food-security data are often lacking. Because such areas are more difficult, expensive and 
time-intensive to reach, improving predictions in these places has a special importance. Following further 
validation of our model in other contexts, our future work will aim to generate improved predictions out of 
sample. Third, this is the first quantitative validation that we are aware of the IPC against household level 
food security data. We find that the IPC is strongly associated with the rCSI, indicating that the IPC method 
does successfully capture food security, even though the IPC relies on a meta-analysis of available data to 
reach a working group consensus on IPC rankings. However, tracking precipitation and prices can also 
improve predictions (e.g., model 2 in Table 3 versus model 2 in Table 7). 
 
The IPC has become the standard for early warning systems for over twenty countries. The objective of our 
model is to complement the IPC’s current approach by developing a first-cut or “IPC-light” model that could 
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supplement the IPC at more granular spatial and temporal scales for more countries. A predictive model, 
such as the one presented here, is a crucial step toward governments’ and NGOs’ abilities to target potential 
food crises in early stages. In other words, our model does not replace an IPC analysis, but rather is a first cut 
that can help IPC users identify which areas to focus assessments efforts on, or to support analysis and 
reduce uncertainty of IPC findings in areas where the IPC lacks other sources of data. Potentially, after future 
demonstrated proofs of concept, our model could be extended to out of sample predictions, which could be 
particularly important in areas of conflict or areas where situations are rapidly changing. After replicating this 
work elsewhere, we intend to assess whether maching learning learning algorithms can improve prediction. 
We also hope to produce analysis of multiple geospatial time series data to identify possible sentinel sites for 
monitoring food and nutrition security (Barrett 2010). On possible outcome could be the automation of data 
collection and analysis to support decision-makers. 
 
This work is critical for both programming and research. Practitioners and policymakers are often inundated 
with many different streams of data that are poorly integrated with one another, if at all. Thus, an ongoing 
challenge is to identify predictive relationships between readily observable, real-time data, such as weather and 
price data, and food insecurity, particularly at the sub-national level. A next step is producing maps that 
incorporate multiple sources of information in a clear, predictive manner that can aid practitioners and 
policymakers aiming to better target interventions and identify candidate sentinel sites. Mapping and 
analyzing time-series information on these relationships will aid identifying possible mechanisms by which to 
improve the targeting and timeliness of interventions and policies. Ultimately, utilizing readily available 
precipitation and price data to predict these real-time nutritional needs will enable practitioners and 
policymakers to engage in real-time analysis.   
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Figures and Tables 
 
 

  
 
Figure 1: IPC zones for 2012. Source: FEWS NET 
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Figure 2: IPC and rCSI values in April and July 2010. 
!
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!
Figure 3: Coefficient of variation (CV), maize retail price, Malawi, 2001-2005 and 2006-2011 
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Table 1: Mean and standard deviation of price and precipitation data by IPC classification 
  

 
 
  

All values

All values with 
IPC values not 
missing

IPC = 1 
(minimal)

IPC = 2 
(severe)

IPC = 3 
(crisis)

Mean Ln Price 3.93 4.00 3.91 4.36 4.26
SD Ln Price 0.68 0.71 0.72 0.59 0.57
Mean L12 Seasonal Rainfall 962.79 964.45 977.86 911.52 930.59
SD L12 Seasonal Rainfall 198.27 201.00 207.51 162.22 182.11
Mean Max Precipitation * Flood Zone for only flood zones 93.93 93.36 83.15 102.02 107.04
SD Max Precipitation * Flood Zone for only flood zones 109.62 105.01 103.97 107.67 94.87
Mean Max Precipitation * Flood Zone including zeros 4.70 4.77 2.58 12.46 17.26
SD Max Precipitation * Flood Zone including zeros 31.91 31.37 23.25 50.21 54.34
Mean L12 Day of 1st rain 42.04 42.35 42.47 41.87 42.13
SD L12 Day of 1st Rain 19.35 19.26 19.34 18.67 21.05
Mean L12 Max days of dryness 18.66 18.60 18.31 19.84 18.58
SD L12 Max days of dryness 7.82 8.04 8.14 7.79 5.22
n for LN price 5749 4489 3567 828 94
n for precipitation 5760 4933 3900 909 124
n for flood precipitation without zero-values 324 252 121 111 20



Table 2: Household food security measures presented by contemporaneous IPC classification

IPC=1 IPC=2 IPC=3
RCSI 3.11 (6.08) 5.66 (7.71) 9.71 (8.94)
Food consumption score 49.47 (18.34) 46.16 (16.65) 39.76 (12.96)
Household dietary diversity 5.23 (1.27) 4.99 (1.23) 4.42 (1.30)
n 9,778 1,770 144

Table 3: Relationship between ipc and climate variables, price

(1) (2)
VARIABLES ipc ranking ipc ranking

lnprice 0.261***
(0.0435)

total rainfall Oct-Apr L12 -0.000387*** -0.000316***
(5.73e-05) (5.80e-05)

no days after Oct
1w five-day rain > 10 and rained at least 3/5 days L12 0.000180 -0.000732

(0.000617) (0.000649)
longest dry spell during the rainy season (Oct-Mar) L12 0.00340** 0.00265*

(0.00141) (0.00142)
Max daily rain in flood-prone region 0.00142*** 0.00145***

(0.000310) (0.000317)

Year FE Y Y
month FE Y Y
Observations 1,749 1,617
R-squared 0.175 0.177

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

2



Table 4: Relationship between price and climate variables

(1) (2) (3) (4) (5)
VARIABLES maize price (ln) maize price (ln) maize price (ln) maize price (ln) maize price (ln)

total rainfall Oct-Apr L12 -0.000225*** -0.000160*** -0.000192*** -0.000206*** -0.000178***
(1.94e-05) (4.02e-05) (2.28e-05) (2.49e-05) (4.56e-05)

Max daily rain
in flood-prone region 0.000119 0.000202 0.000132 0.000123 0.000199

(0.000118) (0.000147) (0.000118) (0.000118) (0.000146)
num days after Oct 1
w five-day rain > 10
and rained at lst 3/5 dys -0.000336 0.000224 -0.000390* -4.06e-05 0.000378

(0.000208) (0.000222) (0.000209) (0.000287) (0.000319)
longest dry spell
during (Oct-Mar) L12 0.00301*** 0.00536*** 0.00307*** 0.00150** 0.00285***

(0.000483) (0.000601) (0.000483) (0.000648) (0.000781)
positive rain dev 12m lag -8.04e-07***

(2.94e-07)
negative rain dev 12m lag 2.54e-07

(4.38e-07)
dry zone * tot rainfall -4.27e-05* 4.02e-05

(2.28e-05) (7.19e-05)
dry zone * maxdays L12 0.00347*** 0.00587***

(0.000943) (0.00119)
dry zone * first rain L12 -0.000461 -0.000126

(0.000363) (0.000440)

IPC zone FE Y Y
month FE Y Y Y Y Y
year FE Y Y Y Y Y
Observations 5,166 5,166 5,166 5,166 5,166
R-squared 0.858 0.876 0.858 0.859 0.877

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

3



Table 5: Relationship between IPC and household food security (RCSI) from the IHS3, 2010-11

(1) (2)
VARIABLES RCSI RCSI

IPC = 2 2.851*** 0.0401
(0.167) (0.272)

IPC = 3 7.484*** 1.656**
(0.540) (0.695)

Month FE Y Y
IPC zone FE Y
Observations 11,692 11,692
R-squared 0.051 0.093

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

4



Table 6: Relationship between household RCSI and climate variables, price (Similar to Table 3)

(1) (2) (3) (4) (5)
VARIABLES RCSI RCSI RCSI RCSI RCSI

price (log) 2.043*** 0.00143 2.157*** 1.784*** 0.0207
(0.250) (0.326) (0.252) (0.254) (0.327)

total rainfall Oct-Apr L12 -0.00440*** 0.00186 -0.00512*** -0.00398*** -0.00295
(0.000367) (0.00165) (0.000442) (0.000496) (0.00202)

Max daily rain in flood-prone region 0.00667*** -0.00545** 0.00654*** 0.00637*** -0.00531**
(0.00183) (0.00259) (0.00184) (0.00183) (0.00259)

num days after Oct 1
w five-day rain > 10
and rained at lst 3/5 dys 0.0264*** 0.01000 0.0299*** 0.0225*** -0.0239*

(0.00486) (0.00917) (0.00492) (0.00692) (0.0135)
longest dry spell
during (Oct-Mar) L12 0.0185 0.0689** 0.0146 -0.0542*** 0.0713*

(0.0127) (0.0309) (0.0128) (0.0193) (0.0428)
positive rain dev 12m lag 1.04e-05***

(2.66e-06)
neg rain dev 12m lag 2.61e-05

(1.70e-05)
dry zone * tot rainfall -0.00287*** 0.00949***

(0.000412) (0.00221)
dry zone * maxdays L12 0.113*** -0.0337

(0.0241) (0.0624)
dry zone * first rain L12 0.00943 0.0576***

(0.00763) (0.0170)

year FE Y Y Y Y Y
month FE Y Y Y Y Y
IPC zone FE Y Y
Observations 12,271 12,271 12,271 12,271 12,271
R-squared 0.057 0.115 0.058 0.061 0.117

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

5



Table 7: Column (1) regresses the ipc on the RCSI; Column (2) regresses the residuals of this regression
on “our model” as it currently stands: price and rainfall information

(1) (2)
VARIABLES RCSI residuals

IPC = 2 2.552***
(0.165)

IPC = 3 6.602***
(0.537)

price (log) 1.175***
(0.247)

total rainfall Oct-Apr L12 -0.00123***
(0.000373)

flood_maxprecip -2.33e-05
(0.00202)

num days after Oct 1
w five-day rain > 10
and rained at lst 3/5 dys 0.0126***

(0.00476)
longest dry spell
during (Oct-Mar) L12 -0.00312

(0.0131)
year=2011 -5.056***

(0.371)

Month FE Y
Observations 11,692 11,692
R-squared 0.031 0.049

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

6
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Annex 1: Matching marketsheds to IPC zones 
 
 
 

!
Figure A1. Map of IPC zones and districts, with 63 markets. Some markets are close to one another 
(e.g., urban markets in Blantyre or Lilongwe) and therefore do not appear as distinct dots. 
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Figure A2. Weighting the Thiessen polygons that fall within a livelihood zone by population where 
the dot within each polygon is the closest market 
 
Zone A - population of 10 people  
Zone B - population of 5 people  
Zone C - population of 15 people 
Total population for the livelihood zone = Zone A (10) + Zone B (5) + Zone C (15) = 30 people  
To compute the weighted price, take the weighted average for each zone’s price data by population. Note that 
the residents in portion B are most proximate to a market in a different IPC zone. 
 
 


