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An Analysis of Strategy Shifts Among Kansas Crop Farmers

Nicholas Pates

1 Introduction

The goal of this paper is to find the factors that influence farm productivity changes over time. The UN

estimates that population growth rate has been stable, yet exponential rate at around 1.20% from 1990

to 2010 (Gonzalo and Alfonseca, 2016). To support population growth, agricultural productivity needs to

consistently improve over time. The extent that changes in technology corresponds to observed productiv-

ity growth depends on how responsive farmers are to changes in technology. It is therefore important to

understand the incentives and constraints that farmers face as their production sets change.

Since the 1980s, data envelopment analysis (DEA) has become a popular method of studying farm

productivity. The DEA approach has some appealing features relative to parametric approaches. They relax

assumptions of profit maximization, do not require a specific functional form of the production function, and

are easier to estimate relative to flexible functional form model such as Almost Ideal Models (AIMs). DEAs

are not without downsides however. In addition, researchers need must be careful when analyzing results of

DEAs as they use a somewhat simplistic method of benchmarking farmers against one another. Over time,

DEAs have benefited from new research on the approach. I employ a method from Chen and Ali (2004) who

convert efficiency measures from the study into binary variables to study what they term as “strategy shifts”

over time. This method, adds important context to studying technical change over time using the DEA

approach and focuses on relative factor-use which is more in line with the technological change literature.

Productivity is influenced by both exogenous factors such as weather and endogenous factors such as

production practices on the farm. At the farm-level, technology availability can be considered an exogenous

factor as most do not directly develop the technology that they use. For instance productivity differences
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between oil-seed and non-oil crops, can be explained by innovations in oil-seed crop production (Wang et al.,

2015). However, technology adoption is often considered an endogenous decision.

Some researchers have attributed weather variability as one mechanism that drives diffusion of new

technology. For instance, Sutch (2011) attributed an especially damaging drought in 1938 as the major event

led to the mainstream adoption of hybrid varieties of corn. While there was evidence that hybrid varieties

produced higher average yields, Sutch concluded that it was the drought resistance of hybrid varieties that

led to farmers paying for the considerably more expensive hybrid seed varieties.

To study technical change in farmers I use a balanced panel of farm-level data from the Kansas Farm

Management Association (KFMA) of 450 farmers from 2002 to 2012. The first goal of the analysis is to

measure productivity changes. The second goal is to identify farm-level characteristics that are correlated

with favorable production decisions over time. A nonparametric measure of productivity growth called a

Malmquist Index, a dynamic extension of a DEA is used to benchmark productivity improvements through

time. Following Chen and Ali (2004), the frontier shift term of the Malmquist index is used to detect

“strategy shifts” among farmers in each year. These strategy shifts can be used to assess the favorability

of observed input ratio changes from year to year and provides necessary conditions of technical progress.

These strategy shifts, reveal what influences technical change and whether farmers are truly changing their

production plans. In the second stage of the analysis, I include the results from the productivity analysis in

a multinomial regression model over strategy shifts to show the relationship between technically progressive

input choices, exogenous factors, and farm characteristics.

2 A Summary of DEA Analysis and Productivity Change Over

Time

DEA is based on linear programming to benchmark producers (commonly referred to as decision making

units (DMUs)) relative to other the producers in the sample. DEA obtains these benchmarks by creating

convex hull (referred to as a frontier), that “envelopes” the observed input-output data. This method was

first introduced by Charnes, Cooper, and Rhodes (1978) and became a method of benchmarking producers of
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multiple outputs that use multiple inputs. The input-oriented version with constant returns to scale (CRS)

is called the Charnes, Cooper, and Rhodes (CCR) model. In this model, a farmer (farmer 0) seeks to reduce

its input vector px0q as much as possible while still maintaining its observed level of output py0q. Farmer

0 seeks to find a scalar reduction in its input vector, formally written: θ0 “ minθ rθ | θx0 P F py0qs. Here

F p¨q represents the feasibility set where F pyq “ rx | x can produce ys. When θ0 is equal to one, farmer 0 is

called efficient. In this case, the input vector of farmer 0 px0q cannot be scaled down while still maintaining

production of its observed output py0q. When θ0 is less than one, it indicates that farmer 0 is inefficient

because it could scale down the use of inputs by θ0 ă 1 while maintaining y0 output.

Since any observed input-output decisions are by definition feasible, the feasible set F p¨q is determined

by the actions of farmers in the sample. Equation (1) shows the CCR problem for farmer 0 using M inputs

and producing S outputs benchmarked against N farmers including farmer 0:

min
θ0,λj:j“1,...N

θ0 (1)

s.t.

N
ÿ

j“1

λjxj,i ď θ0x0,i : i “ 1, . . . ,M

y0,k ď
N
ÿ

j“1

λjyj : k “ 1, . . . , S

λj ě 0 : j “ 1, . . . , N

In this problem, farmer 0 adjusts its input vector by a scalar pθq by benchmarking itself against a

composite output and input vector created using observations of the other farmers in the sample. Constant

returns to scale is assumed under the CCR model. This means that conic combinations of the observed

production plans of the farmers in the sample are considered feasible. To ensure that θ0x0 P F py0q, the

scaled input is required to be at least as large as the composite input vector, and the output vector y0

is restricted to be no greater than the composite output vector1. The composite input-output vector is

represented as the product of a N ˆ 1 vector pλq times the respective observed inputs and outputs from the

1This follows from free disposal. If x1 P F pyq and x2 ě x1 then x2 P F pyq. If x P F py1q and y1 ě y2 then x P F py2q.
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farmers in the sample. The λ weights are chosen to make farmer 0 as efficient as possible while remaining

feasible. Provided that x ě 0 for every farmer in the sample, the constraints of the problem will ensure that

0 ă θ0 ď 1. If θ0 is not greater than 0, then the second constraint in program (1) would be violated. The θ0

term also cannot be above 1. If θ0 ą 1, then λ could be selected so that only λ0 “ 1 and λi “ 0 @i ‰ 0 to

reduce the value of θ0 while conforming to the constraints. The key to this restriction in θ0 is that farmer 0

is being benchmarked against its own production plan and that the linear program is minimizing θ0.

The model described above is static in the sense that it compares farmer 0 against other farmers in a single

period of time. Without the use of DEA techniques Caves, Christensen, and Diewert (1982) describe θ as a

productivity “distance” and provide an analytical definition that enabled discrete productivity comparisons

between firms with different technologies and between the same firm over time (Caves, Christensen, and Diew-

ert, 1982). The distance term, Dj px, yq is the proportion of the input vector x that could produce y observed

in a particular year, efficiently with period j’s technology. Formally, Dj px, yq “ minθ
“

θ | θx P F j pyq
‰

. The

feasible set in this problem F j p¨q is dynamically defined so that F j pyq “ rx | x can produce y in period js.

This study will compare the same farm over different periods in time.
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The own-year distance function of farmer 0 is:

Dt
0

`

xt0, y
t
0

˘

“ min
θ0,λj:j“1,...N

θ0 (2)

s.t.

N
ÿ

j“1

λjx
t
j,i ď θ0x

t
0,i : i “ 1, . . . ,M

yt0,k ď
N
ÿ

j“1

λjy
t
j : k “ 1, . . . , S

λj ě 0 : j “ 1, . . . , N
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Cross-year distance functions are defined as:

Dt`1
0

`

xt0, y
t
0

˘

“ min
θ0,λj:j“1,...N

θ0 (3)

s.t.

N
ÿ

j“1

λjx
t`1
j,i ď θ0x

t
0,i : i “ 1, . . . ,M

yt0,k ď
N
ÿ

j“1

λjy
t`1
j : k “ 1, . . . , S

λj ě 0 : j “ 1, . . . , N

and

Dt
0

`

xt`1
0 , yt`1

0

˘

“ min
θ0,λj:j“1,...N

θ0 (4)

s.t.

N
ÿ

j“1

λjx
t
j,i ď θ0x

t`1
0,i : i “ 1, . . . ,M

yt`1
0,k ď

N
ÿ

j“1

λjy
t
j : k “ 1, . . . , S

λj ě 0 : j “ 1, . . . , N

Unlike the own-year distance functions, the composite production plan farmer 0 is not being benchmarked

against does not contain its own observed production plan in the cross-period analysis. Therefore the cross-

period distance functions can be greater than one. The cross-period distance function Dt`1 pxt, ytq is the

proportional change in the input vector xt that would allow the firm to efficiently produce at least yt in

output under period t` 1’s technology. If the technology had regressed in the sense that it would take more

than xt to efficiently produce yt in period t ` 1, then Dt`1 pxt, ytq ą 1. The second cross-period distance

function Dt
`

xt`1, yt`1
˘

can be interpreted as the proportional change in the input vector xt`1 that would
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allow the farm to efficiently produce at least yt`1 in output under period t’s technology. If technology

progressed over from t to t` 1, then Dt
`

xt`1, yt`1
˘

ą 1 because under t’s technology, producing yt`1 would

have required more than xt`1 in inputs.

The calculation of these distances and the subsequent Malmquist index were incorporated into the DEA

framework by Färe et al. (1992). They applied this method by calculating productivity changes of industri-

alized countries over time (Färe et al., 1992). They describe the Malmquist Index as a geometric average of

distance function ratios:

M t “
Dt

0

`

xt`1
0 , yt`1

0

˘

Dt
0 px

t
0, y

t
0q

and (5)

M t`1 “
Dt`1

0

`

xt`1
0 , yt`1

0

˘

Dt`1
0 pxt0, y

t
0q

. (6)

If M t is greater than one, then the production plan
`

xt`1
0 , yt`1

0

˘

is less efficient at time period t than the

firm’s past production plan pxt0, y
t
0q. If M t`1 is greater than one, then the production plan

`

xt`1
0 , yt`1

0

˘

is

relatively more efficient in period t` 1 than pxt0, y
t
0q would have been. The geometric average of M t`1 and

M t gives the Malmquist Index between periods t and t` 1 for farmer 0.

M “

«

Dt
0

`

xt`1
0 , yt`1

0

˘

Dt
0 px

t
0, y

t
0q

Dt`1
0

`

xt`1
0 , yt`1

0

˘

Dt`1
0 pxt0, y

t
0q

ff
1
2

(7)

To aid interpretation, the Malmquist Index is often represented as a product of a technical efficiency

component and a frontier shift component. To obtain this form, equation (7) is multiplied and divided by

Dt`1
0 pxt`1

0 ,yt`1
0 q

Dt
0px

t
0,y

t
0q

1
2

.

M “
Dt`1

0

`

xt`1
0 , yt`1

0

˘

Dt
0 px

t
0, y

t
0q

«

Dt
0

`

xt`1
0 , yt`1

0

˘

Dt`1
0

`

xt`1
0 , yt`1

0

˘

Dt
0 px

t
0, y

t
0q

Dt`1
0 pxt0, y

t
0q

ff
1
2

(8)

This form of the Malmquist Index decomposes the sources of the productivity change. Chen and Ali

(2004) call the first term

ˆ

Dt`1
0 pxt`1

0 ,yt`1
0 q

Dt
0px

t
0,y

t
0q

˙

the technical efficiency change (TEC) from period t to t` 1 and

the second term

„

Dt
0px

t`1
0 ,yt`1

0 q

Dt`1
0 pxt`1

0 ,yt`1
0 q

Dt
0px

t
0,y

t
0q

Dt`1
0 pxt

0,y
t
0q


1
2

the frontier shift (FS) term. When the technical efficiency
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change term is above one, farmer 0 was closer to the own-year efficient frontier in period t ` 1 that it was

in period t. While the technical efficiency change term tells how close farmer 0 is to the own-year frontier,

it does provide enough information to confirm that farmer 0 improved its productivity from one year to the

next as the frontier itself is subject to change over time. The frontier shift term captures the average distance

between the frontiers from two different years evaluated at the output levels for each respective year. When

frontier shift term is above one (below one), technology, has progressed (regressed) from period t to t` 1.

While the technical efficiency change and frontier shift terms are important components, Chen and Ali

(2004) point out that more information can be obtained from the two components within the geometric

average of the frontier shift term. These terms are:

FS1 “
Dt

0 px
t
0, y

t
0q

Dt`1
0 pxt0, y

t
0q

(9)

FS2 “
Dt

0

`

xt`1
0 , yt`1

0

˘

Dt`1
0

`

xt`1
0 , yt`1

0

˘ (10)

These two components represent the ratios of radial distances between the efficient isoquants in t and t`1

´

Radial Distance of t Frontier
Radial Distance of t`1 Frontier

¯

. Technical improvement occurs when isoquant frontier moves closer to the

origin over time. Therefore, when these terms are above one, this means that the period t frontier is further

away from the origin than the period t ` 1 frontier, indicating technical improvement. The components of

the frontier shift term represent these ratios of distances, evaluated from different production plans. The

FS1 term is the distance between the frontiers evaluated at the period t production plan and the FS2 term

is the distance ratio evaluated at the production plan observed in t` 1.

Using the frontier shift terms, input space can be partitioned into areas of technical progress and regress.

Figure (1) shows the four possible ways that productivity of input ratios can change over time. The top left

panel describes a Hicks-Neutral technical progress. Under this change, every input ratio becomes relative

more productive over time. The top right panel shows Hicks-Neutral technical regression where every input

ratio becomes less technically efficient. The bottom two panels show a mixture between the two, where the

isoquants cross. This means that certain input ratios become relatively more efficient and others become

relatively less efficient.
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Figure 1: Hicks-Neutral Technical Regress
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Using the intuition from figure (1) the frontier shift components can describe farmer’s input decisions

using four strategy shift types.

Positive to Positive (PP): rFS1 ą 1 , FS2 ą 1s (11)

Negative to Negative (NN): rFS1 ă 1 , FS2 ă 1s (12)

Negative to Positive (NP): rFS1 ă 1 , FS2 ą 1s (13)

Positive to Negative (PN): rFS1 ą 1 , FS2 ă 1s (14)

When FS1 ą 1, farm 0’s older production plan pxt0, y
t
0q was in an area of technical progression (the green

areas in figure (1)). FS2 ą 1 indicates that the farm’s new production plan
`

xt`1
0 , yt`1

0

˘

is in an area of

technical progress. Since FS is simply a geometric average of FS1 and FS2, when FS1 and FS2 are both

greater than one, then FS will be greater than one, indicating technical progress. Conversely when FS1 and

FS2 are less than one, then FS will be less than one indicating technical regress. However, when FSi ą 1

and FSj ă 1 where i ‰ j, the value of the frontier shift term is ambiguous. Put simply, the value of the

strategy terms will depend on where the frontier distances are evaluated. Chen and Ali (2004) further point

out that the Malmquist Index, looked at on its own, may omit important context that affects the production

growth outlook for firms.

When one thinks of technical progress, one implicitly views the efficiency earlier differently from efficiency

later on. Progress is seen as an advance in technology as time moves forward. If in a previous period, a

farmer experienced a optimal weather conditions Since the Malmquist Index averages the individual frontier

shift components together, one could claim technical progress if the earlier frontier shift term F1 were large

enough. In extreme cases, this result could arise regardless of whether F2 were less than one or not. Because

of this fact, the Malmquist Index may not truly represent progress as it is normally understood. The
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implications that follow from the functional form of the Malmquist Index imply that one has to be careful

about interpreting the Malmquist Index.

Figure (2) graphically illustrates the four strategy shifts. Suppose that between periods t and t` 1, the

industry experienced a factor biased technical change where input x1 became relatively more productive

(x2 became relatively less productive). This type of technical change will produce a point at which the

two isoquants cross. I draw a line from the origin to the isoquant intersection point. On one side of this

line I see technical progression, as producing a given output requires less x1. On the other side of the line,

technology has regressed as it requires more x2 to produce a given level of output. Careful examination

of the components of the frontier shift reveal that I can characterize strategy shifts by the locations of the

farm’s production plans with respect to this line.

In period t suppose the farm has two potential production plans (P 1
t and P 2

t ). It is clear that P 1
t is an

area of technical progress and P 2
t is in an area of technical regress. In period t ` 1, industry experiences

technical change biased towards x1. I again assume that the farm has two potential production plans P 1
t`1

and P 2
t`1. Notice that P 1

t`1 lies to the left of the period t isoquant while P 2
t`2 lies to the right. I can therefore

say that the farm technically progresses if it chooses P 1
t`1, and will regress if it chooses P 2

t`1. From here,

I can define our strategy shifts. A farm with the production plans
`

P 1
t , P

1
t`1

˘

made a positive to positive

strategy shift. A farm with the production plans
`

P 2
t , P

2
t`1

˘

made a negative to negative strategy shift.

However, if the farm’s production plan moves from one side of the ray to the other, the farm will move

from a positive to a negative
`

P 1
t , P

2
t`1

˘

or a negative to positive
`

P 2
t , P

1
t`1

˘

strategy shift. Although a farm

with plans
`

P 2
t , P

1
t`1

˘

has improved technologically, FS ă 1 is still a possibility since it will evaluate the

geometric averages frontier distances. A similar argument can be made in the other direction if a farmer has

production plans
`

P 1
t , P

2
t`1

˘

.
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Figure 2: Strategy Shifts When Shifting Isoquants Cross

In order to understand the analysis in the next sections it is also helpful to know what the values of these

frontier components represent. Consider figure (3) which is identical to figure (2) with only feasible plans

for both periods and rays to these plans from the origin. Suppose that a farmer remains at one of these

two points during both periods. Calculating the frontier shift terms, if the farmer produces at P 1
t in both

periods then,

FS1

`

P 1
t

˘

“
Dt pxtq

Dt`1 pxtq
“

OA
OP 1

t

OB
OP 1

t

“
OA

OB
ą 1 (15)

FS2

`

P 1
t

˘

“
Dt

`

xt`1
˘

Dt`1 pxt`1q
“

OA
OP 1

t

OB
OP 1

t

“
OA

OB
ą 1 (16)
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FS
`

P 1
t

˘

“

„

OA2

OB2



1
2

“
OA

OB
ą 1 (17)

Conversely if the P 2
t`1 is used in both periods, then the frontier components will be:

FS1

`

P 2
t`1

˘

“
Dt pxtq

Dt`1 pxtq
“

OD
OP 2

t`1

OC
OP 2

t`1

“
OD

OC
ă 1 (18)

FS2

`

P 2
t`1

˘

“
Dt

`

xt`1
˘

Dt`1 pxt`1q
“

OD
OP 2

t`1

OC
OP 2

t`1

“
OD

OC
ă 1 (19)

FS
`

P 2
t`1

˘

“

„

OD2

OC2



1
2

“
OD

OC
ă 1 (20)

This illustrates that if a farm uses the same inputs in two consecutive periods, then the farm will have

a PP or NN shift. Only when I observe movements over dashed line will I see NP or PN shifts. It also

illustrates that when I have factor neutral technical progress (regress), there will not be a point where the

isoquants cross and I will only observe PP (NN) shifts.
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Figure 3: Strategy Shifts When Production Plans Do Not Change

3 Data

This study uses farm-level data from the Kansas Farm Management Association (KFMA) database. I

consider farmers in the dataset that were continuously observed from 2002 to 2012. These years were

selected to produce a sufficiently large panel and because county-level weather data were available through

2012. These data include only farmers that designate themselves as primarily crop producers. I do not

include livestock producers in this sample as the analysis of Wang et al. (2015) suggests that the effect that

weather has on productivity of crop producers is different from the effects on livestock producers. The panel

data observes the production choices of 450 crop producers over the course of 11 years. The KFMA data

were also used to provide farm characteristics.
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Since this analysis studies the favorability of decisions, I include the age of the primary operator in the

second stage of the analysis. Age can indicate many things about a farmer. Age could be proxy for farmer

experience. Farmers with more experience may be more aware of potential adjustments from year-to-year

and may positively influence the likelihood of favorable input changes. However, older farmers may be less

educated relative to younger cohorts or may be less adept at picking up the latest technology (Coelli and

Battese, 1996; Mishra et al., 2009).

Soil quality of the farm also a potentially important variable to include. Farms with higher soil quality may

not need to apply as much fertilizer or other chemicals to substitute for inferior soil quality. Unfortunately,

the KFMA dataset only identifies farmers at the county level and within counties, soil quality may be highly

heterogeneous. I control for soil characteristics somewhat by the location of farms. In the state of Kansas,

North-South geography can proxy for soil quality.

Other important farm characteristics include its relative size, crop diversity, and crop intensity. To

measure relative size, I use a size (crop) index which is equal to:

CIit “
Ait

maxi pAitq
(21)

Where Ait is farmer i’s total acreage at time t. To measure the level of crop intensity, I divide the total

crop acreage for each farm by the crops total operated acreage which includes land-used for pasture, forage

and other uses. This gives an idea of how focused the farmer is on crop production as well as an indication for

flexibility in farm-land use for crop production. Crop diversity may also be important, measure of individual

crop intensity. Farms with a higher level of crop diversity may not be able to take full advantage of crop

technology in a particular year and may not be as nimble when conditions change. However, if the farm’s

crop profile is more diverse, it may be more robust to changes in the weather. Additionally, farmers with

a more diverse crop portfolio may also retain higher levels of soil nutrients from year-to-year, leaving the

option to fertilize less during adverse weather events. Following Coble et al. (1996), I compute each farm’s

crop-share Herfindahl index, this index is equal to:
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HIit “
C
ÿ

c“1

˜

Acit
řC
c“1Acit

¸2

(22)

Where Acit is the acreage farmer i dedicates to crop c in year t. If a farm grows a single crop then

Acit “
řC
c“1Acit and its Herfindahl index would equal one. If the farmer grew two crops with equal acreage

shares, then HIit “ p0.5q
2
` p0.5q

2
“ 0.5. The more diverse the crop profile, the lower the Herfindahl index.

Financial stress is included to measure of farm’s leverage with the debt-to-asset ratio. The KFMA dataset

contains information on the total debt and total value of farm assets (Langemeier, 2003). The ratio of these

terms serves as an indicator of the farm’s financial stress. Giannakas, Schoney, and Tzouvelekas found a

positive relationship between a farmer’s debt-to-ratio and technical efficiency. They conclude that farmers

carrying higher debt are doing so to finance expansions and farm improvements (Giannakas, Schoney, and

Tzouvelekas, 2001). In another study, Sotnikov found that short and long-term debt hindered technical

growth (Sotnikov, 1998).

Wang et al. compares the productivity growth between crop and livestock enterprises noting that the total

factor productivity growth for crop producers was significantly higher growth rate but was also more variable

year-to-year. They suggest that the growth of productivity of crop producers is sensitive to weather (Wang

et al., 2015). To account for weather, the second stage model will incorporate county-level annual degree-

growing days with a 10˝C baseline, and estimated soil moisture content. These statistics were estimated

from the PRISM Climate Group (PRI, 2016).

For most datasets, simpler DEA models generally provide better insights than more complex ones due

to curse of dimensionality. For this reason, the DEA is set up with a single output and four inputs. Since

the prices of each of the major crops are correlated over the years in this analysis, the DEA considers

production total value of farm production (TVP) as its output. Farmers use labor (total number of full-

time equivalent laborers including the primary operator), land (total crop acreage), machinery (total crop

machinery investment plus total crop machinery cost), and other inputs (total fertilizer cost, seed expenses,

irrigation energy expenses, crop marketing and storage expenses, herbicide and insecticide expenses, building

repairs, cash farm rent expenses, utility expenses, and crop insurance expenses). These variables are available

through the KFMA database and are described in detail in the database’s documentation (Langemeier, 2003).
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Because much of the data that enter the DEA are in dollar terms and the analysis occurs over time, they

were normalized using national price indices for inputs and outputs provided by the Farm Service Agency

(FSA) via the USDA’s QuickStats. Figure (4) shows the number of farms in the sample by each county in

Kansas. The sample covers most of the major portions of Kansas but there are a particularly high number

of farmers in the central and eastern parts of the states and fewer farmers from the southwestern portion of

the state.

Figure 4: Number of Sampled Farms by County

Table (1) shows the mean values for our output and inputs for each year. Values in dollar figures were

normalized using price indices from QuickStats. Overall the value of total farm production (TVFP) generally

increased at an average rate of 6.73% per year. There was a negative shock to TVFP starting in 2005 lasting

until 2008 which rebounded in 2010. Data from the Risk Management Agency’s Cause of Loss (COL) report

shows that Kansas farmers experience higher non-price related payouts per acre in insurance over this period,

especially in 2011. Total crop acres however grew rather steadily at a rate of about 1.64%. Over our time
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period, labor use decreased slightly but overall did not change very much. Machinery expenses grew at an

average of 1.55% per year but had significant increases after 2007 growing at an average annual rate of 6%.

The most interesting changes came from the “Other” category. These expenses, on average, grew at a higher

rate (4.18%) than machinery expenses.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Total Crop Acres 1384.67 1408.94 1423.38 1459.27 1480.63 1502.2 1543.12 1554.48 1584.75 1613.68 1639.29

Acres Operated Total 1725.32 1754.88 1724.47 1752.49 1810.02 1805.32 1866.47 1859.7 1887.44 1917.68 1938.1
Other Expenditures 1826.6 1922.8 1935.12 2090.1 2016.6 2146.02 2040.24 2210.2 2313.12 2409.81 2659.38

Machine Expenditures 4763.63 4542.49 4472.75 4257.37 4142.15 4098.16 4134.1 5075.57 5308.56 5224.57 5561.34
Total Value of Farm Production 3548.5 3970.84 3872.65 4207.98 4438.01 4959.09 5746.21 6144.1 6094.66 5798.9 6190.02

Labor (Full-Time Workers) 1.37 1.38 1.38 1.36 1.35 1.31 1.35 1.34 1.36 1.33 1.33

Table 1: Sample Summary Statistics

4 Analysis With The Malmquist Index

The purpose of this analysis is to determine the characteristics of farmers that experience technical im-

provements over time. To do this, I use an input-oriented the constant returns to scale version of the

Malmquist Index. I start by calculating the Malmquist index on all farms to obtain their distance functions:

Dt`1pxt`1,yt`1q
Dtpxt,ytq from 2002 to 2011, and the cross-period terms

Dtpxt,ytq
Dt`1pxt,ytq

,
Dtpxt`1,yt`1q
Dt`1pxt`1,yt`1q

from years 2002 to

2011. I first present the sample average Malmquist index which I generate using a geometric average to gain

perspectives on the drivers of productivity in the sample. I also take the geometric average of the sample’s

TEC and FS terms. Figure (5) shows a time series of the Malmquist Index and its components.
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Figure 5: Sample Average Malmquist Index, Frontier Shift, and Technical Efficiency Change

The sample tended to experience progressive TEC movements over two or three years before regressing

for another two to three years. The average TEC and the average FS are negatively correlated over time.

There could be several of reasons for this. The first is that technological change could be occurring where a

small number of farms incorporate more productive practices while the rest of the sample catches up in the

following years. Because the frontier is regressing every couple of years, it is more likely that this pattern

is due to heterogeneous weather shocks affecting the productivity measures. Looking at the TEC and FS

terms separately shows the relative importance of the FS term in the Malmquist Index. Figure (6) shows the

TEC and FS values by the year together. Like figure (5), this also shows that TEC is generally negatively

dependent about one. The figure reveals a strong negative linear relationship between the two components

of the Malmquist Index. When the sample experiences technically improving frontier shifts, many of the

individual farmers are further away from the frontier. When the sample experiences a technically regressing

frontier shift, many farmers are closer to the new frontier. This negative linear relationships suggests that

many farmers in the sample are not actually changing their input-output decisions and could be an indication

19



heterogeneous weather shocks impacting distinct farmers in the sample at different periods in time. Figure

(6) also highlights that the FS term was below or close to one in all but one year that the Malmquist Index

was below one (2003, 2008, 2010, and 2011). This suggests that the FS term is relatively more important.

Figure 6: Average Frontier Shift and Technical Efficiency Change Terms By Year (t+1)

With the relative importance of the frontier shift term in mind, I now examine the components of the

frontier shifts. Recall that there are four types of strategy shifts. A positive-positive (PP) strategy shift

occurs when
Dtpxt,ytq
Dt`1pxt,ytq

ą 1 and
Dtpxt`1,yt`1q
Dt`1pxt`1,yt`1q

ą 1 a negative-negative (NN) shift occurs when
Dtpxt,ytq
Dt`1pxt,ytq

ă

1 and
Dtpxt`1,yt`1q
Dt`1pxt`1,yt`1q

ă 1, a positive-negative (PN) shift occurs when
Dtpxt,ytq
Dt`1pxt,ytq

ą 1 and
Dtpxt`1,yt`1q
Dt`1pxt`1,yt`1q

ă 1,

and a negative-positive (NP) shift occurs when
Dtpxt,ytq
Dt`1pxt,ytq

ă 1 and
Dtpxt`1,yt`1q
Dt`1pxt`1,yt`1q

ą 1. Table (2) shows the

strategy shifts by year. Plotting the shifts by year in figure (7) shows that the PP strategy shifts and the

NN shifts are both cyclical and negatively correlated. Since the PN and NP shifts signify definitive changes

in a farm’s production plan and they occurred less frequently, I compare these two shift types separately.

NP and PN shifts are positively correlated with one another and with NN shifts. This suggests that when

technology is degrading in the sample, groups of farmers make technically progressive movements and more

farmers favorably adjust than do not.

20



Year 2002-2003 2003-2004 2004-2005 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012
PP 440 32 276 274 410 167 220 390 12 92
NP 6 13 62 32 17 70 79 13 19 33
PN 2 17 27 48 14 49 33 18 7 37
NN 2 388 85 96 9 164 118 29 412 288

Table 2: Strategy Shifts of Farmers by Year

Figure 7: Strategy Shifts By Year (t+1) : Solid Lines (NP and PP)

I next examine the propensity for repeat shifts. Do I observe farmers making consistent shifts over time?

Table (4) presents probability that of a farmer would exhibit one shift from period t to another shift in t`1.

These conditional probabilities are estimated using the markovchain package in R. It should come as little

surprise that, due to the cyclical nature of the shifts, a farmer that made a PP shift between t and t ` 1,

would be likely to revert back to a NN shift and vice-versa. Around 80% or more of the experienced PP and

NN shifts in each year and these terms were negatively correlated. What is interesting however, is that farms

with a PP shift were more likely to make progressive changes. This could be a consequence of shocks to the

21



production function in year t` 1 that more savvy farmers are able to cope with. The last two columns show

that given a farmers making NP or PN shifts both more likely to make an NN shift in the next period. This

follows our initial expectations, that farmers making NP shifts would be more likely to exhibit PP shifts in

the future. However, this could be an indication that adjusting input usage may be risky for farmers. It

should be highlighted however, that farmers making a NP shift are more likely to make progressive shifts

(PP,NP) in the future than farmers than regressive (PN,NN) shifts.

Given.PP Given.NP Given.PN Given.NN

PP 38.00% 60.77% 60.47% 54.49%
NP 7.97% 10.29% 8.84% 8.44%
PN 6.39% 5.14% 6.98% 5.91%
NN 47.64% 23.79% 23.72% 31.16%

Table 3: Strategy Shift Transition Matrix

While table (4) says that farmers generally do not make consistent shifts over time, it offers little other

context to these shifts. I therefore run a multinomial logit that controls for temporal variation using year

dummy variables with the shift terms being different “choices” the farmer could make. I include relevant

weather variables to test whether the NN and PP shifts are indeed due to weather shocks. I also include

farm location variables for North (as defined by the KFMA dataset) to account for differences in cropland

quality.
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Strategy Shift:

NP PN PP

(1) (2) (3)

Intercept ´0.306˚ ´0.041 ´0.447
p0.085q p0.412q p0.27q

Age ´0.0019 ˚ ˚ 0.0004 0.001
p0.016q p0.305q p0.356q

DR2 0.002 0.0309˚ ´0.0421
p0.475q p0.093q p0.417q

Crop over Op ´0.0048 0.0005 0.0013
p0.401q p0.49q p0.496q

dday10C 0.0001˚ ´0.0001 0.0001
p0.07q p0.241q p0.418q

soil moisture ´0.0003˚ ´0.0002 ´0.0002
p0.08q p0.16q p0.438q

North 0.0321 ˚ ˚ ´0.0174 ´0.0214
p0.047q p0.143q p0.364q

Acreage Index 0.0351 0.126 ˚ ˚ 0.78 ˚ ˚˚
p0.374q p0.029q p0.004q

Herfindahl Index ´0.0285 0.0201 ´0.908 ˚ ˚˚
p0.316q p0.312q p0.004q

Observations 4,500
Log Likelihood -3,380.92
Akaike Inf. Crit. 6,869.857

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
p-values in ()

Table 4: Year-Dummy Multinomial Logit Model Results
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Table (4) shows the marginal effects from a multinomial logit model accounting for temporal effects

using yearly dummy variables. The four “choices” in the multinomial logit are the shift types with the

negative-negative (NN) shift type being the reference choice. The results show that that younger farmers

are significantly more likely to be an NP shifter. Additionally, weather variables signficantly impact the

propensity to choose more efficient input bundles. The county’s annual 10˝C seasonal degree growing days,

postively impacts the farm’s propensity to be an NP shifter. The county’s soil moisture negatively correlated

with the farmer’s propensity to be an NP shifter. Soil characteristics is also a relevant factor as the North,

variable, the instrument for soil quality was also positively correlated with the farmer’s propensity of choosing

to NP shift.

One of the fundamental features of strategy shifts analysis is the focus on proportional input choices and

not proximatey to the frontier itself. This means that in the NP and PN shift-types I can actually attribute

variables to the changes in input vectors while the PP and NN are more an indication of the general location

of input vectors. Shift types could be basing their calculations off identical input decisions from year-to-year.

It is therefore expected that variables such as weather would not impact the farmer’s likelihood of being

a PP shifter. The marginal effects table shows that this is the case as the total acreage size index has a

positive and significant effect on probability of a farmer being a PP shifter. Additionally, farmers with a less

concentrated crop profile also are more likely to be a PP shifter. This indicates that farms that are larger

and have a higher degree of crop diversity are more resiliant to changing conditions. The lack of statistically

significant weather effects is important considering the high degree of correlation between the FS and TEC

terms (figure 6). Because the Malmquist Index is a function of the TEC term it is likely that weather will be

a more significant component in Malmquist model. If this is the case then it would give a reason for caution

when using and interpreting the Malmquist Index to measure efficiency changes over time. In later versions

of the paper, I will run a linear model using the biennial Malmquist Index as the dependent variable. This

specification will allow for examining a joint frontier between pairs of periods and will relax the assumption

of constant returns to scale technologies (Pastor, Asmild, and Lovell, 2011).
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5 Conclusions

Examining each of the individual components inside the frontier shift term provides important information

on technological progress that is taking place in a sample of DMUs. While the frontier shift is only one

component of measuring productivity change, it is an important one. If a farmer were closer to the frontier

in period t`1 versus t, (TEC ą 1), but the farm exhibited a NN or PN shift, I can tell that the farm did not

escape the isoquant in period t, a potential consequence of new technology. On the other hand if TEC ă 1

but the farmer exhibited a PP or NP shift, it is possible that the farm escaped the isoquant in period t.

What this means is that the frontier shift provides necessary conditions for technological improvement while

the TEC does not.

These terms offer more context to the frontier shift that is obscured through averaging in the Malmquist

index. This added context is important in this analysis since the frontier shift term was relatively more

important and on average around 15% of the sample made a NP or PN strategy change. Noticing using

these strategy shifts, I can determine whether a farm changed its production plan and assess whether these

changes have the potential to exploit technical progress. Since these terms are needed in order to disaggregate

the Malmquist Index into its FS and TEC components, strategy shift analysis is relatively easy to carry out

in general nonparametric analyses on productivity changes. Anlaysis of strategy shifts can be useful in

extension applications. Using secondary analysis on strategy shifts could provide insights on constraints

that keep farmers from operating on progressing sections of the isoquant.

Relatively large farms and farms that are more diverse were more likely to experience PP shifts from year

to year. Larger farms with higher debt to asset ratios also more likely to technically regress. This suggests

that leveraging issues carry over from one year to the next and hinder technical improvement. Weather has

a significant effect on technical improvement over time. Farms with more 10˝ growing days tended to be

ones that relatively improved. This suggests that farmers make technical progress after favorable weather

conditions.

On a more technical note,the robustness of DEA models is a subject of current research. The output

of DEA models rely on benchmarked efficiency between farmers within a sample. Since this output enters

second stage regressions, the model may suffer from measurement error if the sample is not representative
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and can be sensitive to changes in farmers included in the sample. If these models are especially sensitive to

sampling changes, it may lead to biased models or high variance in efficiency estimates. Research is currently

being done by randomly dropping or sampling the full groups of decision makers. I conjecture that a strategy

shift approach is more robust than using a standard Malmquist Index. I believe this is the case because the

strategy shifts are represented as binary variables and not a continous variable and will therefore is not as

likely to change from sampling. Additionally, since the strategy shift approach makes use of only the frontier

shift component, it should be less volatile than the Malmquist approach. In further revisions, I will use a

bootstrapping approach similar to Simar and Wilson (1999) to compare the robustness of the strategy shift

approach and the Malmquist approach (Simar and Wilson, 1999). In addition, further revisions will also

include analysis of input bias in the sample to identify inputs that contribute to the frontier shift component

changes over time.
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