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Abstract -- We propose a fractional regression framework for problems where individual level 

fractional outcomes are desired but only aggregate level outcomes are available. Our model is 

based on the quasi-maximum likelihood method, and links aggregated fractional outcomes with 

individual attributes to predict individual level fractions. To assess the finite sample performance 

of our estimation framework, we design two Monte Carlo simulation schemes, one with spatial 

clustering patterns across individuals, and the other without. We test both schemes with a single-

outcome setup and a multi-outcome setup. Our results show that the bias and root mean squared 

error (RMSE) decrease consistently as the sample size grows for all cases, indicating the reliability 

of our proposed estimation strategy under different settings. Our estimation framework is generally 

applicable to cases in which only aggregated level fractional outcomes are available but individual 

level outcomes are wanted.  

 

Keywords -- aggregate level outcome; individual level share; quasi-maximum likelihood; Monte 

Carlo simulation; spatial clustering  
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1. Introduction 

There exists a number of economic research questions where the outcome variable of interest, 𝑦𝑦, 

is in the fractional form (0 ≤ 𝑦𝑦 ≤ 1). Examples include 401(k) pension plan participation rate 

(Papke and Wooldridge, 1996), brand valuation (Dubin, 2007), financial asset portfolio shares 

(Mullahy, 2015), etc. Papke and Wooldridge offer a fractional response regression approach in 

their 1996 paper tailored for this type of questions. Using a Bernoulli log-likelihood function, the 

quasi-maximum likelihood estimator (QMLE) of the parameter estimates 𝛽𝛽  are obtained by 

maximizing the total likelihood:  

                                                       max
𝑏𝑏

∑ 𝑙𝑙𝑖𝑖(𝑏𝑏)𝑁𝑁
𝑖𝑖=1                                                             (1) 

where 𝑙𝑙𝑖𝑖(𝑏𝑏) = 𝑦𝑦𝑖𝑖log [(𝐺𝐺(𝑥𝑥𝑖𝑖𝑏𝑏)] + (1 − 𝑦𝑦𝑖𝑖)log [1 − (𝐺𝐺(𝑥𝑥𝑖𝑖𝑏𝑏))], and the 𝐺𝐺(∙) function denotes the 

univariate conditional mean, i.e. 𝐸𝐸(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) = 𝐺𝐺(𝑥𝑥𝑖𝑖𝑏𝑏).  

One advantage of this approach compared with log-odds type procedures is that the 

dependent variable of interest, the fractional outcomes, can take on extreme values of the bounded 

range -- zero and one (Papke and Wooldridge, 1996). Following Gourieroux et al. (1984), the 

QMLE estimator is consistent as long as the likelihood expression is a member of the linear 

exponential family. The estimation approach is also robust to distributional misspecification 

(Papke and Wooldridge, 1996). 

Mullahy (2015) demonstrates the fractional logit version of the Papke and Wooldridge 

(1996) model. For the univariate case, the conditional mean becomes: 

                                         𝐸𝐸(𝑠𝑠|𝒙𝒙) = 𝐺𝐺(𝒙𝒙;𝝎𝝎) = exp (𝒙𝒙𝝎𝝎)
1+exp (𝒙𝒙𝝎𝝎)

.                                              (2) 

Mullahy also expands the univariate case to a more general form of a multivariate fractional 

regression model. In the multivariate case, the conditional mean can be expressed as: 

                                      𝐸𝐸(𝑠𝑠𝑘𝑘|𝒙𝒙) = 𝐺𝐺𝑘𝑘(𝒙𝒙;𝜷𝜷) = exp (𝒙𝒙𝜷𝜷𝒌𝒌)
∑ exp (𝒙𝒙𝜷𝜷𝑚𝑚)𝑀𝑀
𝑚𝑚=1

           𝑘𝑘 = 1,2, … ,𝑀𝑀.                   (3) 

This multivariate structure is suitable for cases where multiple outcome categories are of interest 

simultaneously. For instance, Mullahy demonstrates in his article models assessing different 

financial asset categories -- each category takes a share of the entire financial asset portfolio and 

all categories add up to one. 

A similar yet different class of questions is not covered by previous literature and has not 

been studied widely. In this type of fractional response cases, outcomes are only observable at a 

more aggregated level (than the individual observational level), while conditioning variables are 
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available at the individual level. In other words, there is a mismatch between the observable 

aggregate level outcomes and the individual level conditioning variables. We are interested in 

finding the slope coefficients, and predicting the individual level fractional outcomes using 

available data on fractional outcomes at the aggregate level and the conditioning variables at the 

individual level. However, the above mentioned estimation approaches cannot be used directly 

due to this mismatch.  

One important empirical example representative of this aggregated fractional response 

problem is the fine-scale land allocation problem. Typically, cropland allocation data are made 

available by national census or survey instruments, and information on total land shares in various 

crops at the state/province level are provided. These data, however, do not indicate the distribution 

of cropland within the states/provinces, especially not for cropland allocation over a wide 

geographic area across states or countries. This lack of finer than state/province level land use data 

brings challenges to applied research. Studies have shown that using aggregate level data may 

mask the heterogeneity across locations that bears critical implications for national and 

international research and policy (Auffhammer et al., 2013; Hendricks et al., 2014). Estimates at a 

finer than state/province level are needed.  

To enable the estimation, we utilize the relationship between the aggregate and the 

individual levels, and bring the individual level attribute data up to match the aggregate fractions, 

so that the univariate/multivariate fractional logit framework can be constructed to estimate the 

coefficients and predict the individual level outcomes. In contrast to the previous studies, an 

additional aggregation step is required -- we aggregate outcomes across individual observations to 

match with the aggregate level outcomes, and then perform the estimation as Papke and 

Wooldridge (1996) and Mullahy (2015).  

This paper serves as the first attempt in dealing with aggregated fractional regression 

estimation. Following the idea of aggregating individual level shares to match fractional outcomes 

at the aggregate level, we develop a quasi-maximum likelihood estimation framework that uses 

individual attribute factors and observed aggregate level fractional outcomes to determine 

individual level outcomes via aggregation. One advantage of this framework is that the sample 

size is reduced drastically via aggregation -- instead of evaluating at the individual level, we are 

now estimating at the aggregate level. 
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In what follows, we first describe our estimation strategy, formalize the theoretical 

fractional regression model with aggregation, and derive the likelihood function, in Section 2. Next, 

in Section 3, we discuss a Monte Carlo simulation framework designed to validate our proposed 

approach and assess its finite sample performance. We also present an alternative simulation 

scheme where spatial clustering is introduced to further test the performance of our approach. We 

present the Monte Carlo results for both simulation setups in Section 4. Section 5 concludes. 

 

2. Theoretical Framework with Aggregation of Outcomes 

Consider the following case: fractional outcomes at the aggregate level are available; 

attributes/conditioning variables at the individual level are available; each individual observation 

contributes to the aggregate level fractional outcome depending on the way it is related to the 

aggregate level. Our goal is to predict the fraction that is allocated to a particular outcome at the 

individual level, given the available individual attribute measurements and the aggregate level 

fractional outcomes. We introduce an aggregation step to accommodate to this mismatch: we add 

up individual level fractional outcomes to the aggregate level, and enable the estimation with a 

fractional response model. Detailed derivations and estimation steps are described in Song et al. 

(2016). Here, we briefly review the key points of our framework.  

Assume there are 𝑗𝑗  aggregate level structures, 𝑗𝑗 = {1,2, … , 𝐽𝐽} ; within each aggregate 

structure, there are 𝑘𝑘 fractional outcomes, 𝑘𝑘 = {1,2, … ,𝐾𝐾}, and the 𝑘𝑘 fractional outcomes add up 

to one. 𝑦𝑦𝑗𝑗𝑘𝑘  stands for the observed aggregate level fraction in aggregate structure 𝑗𝑗  that is in 

outcome 𝑘𝑘 , such that 0 ≤ 𝑦𝑦𝑗𝑗𝑘𝑘 ≤ 1 . 𝑍𝑍𝑖𝑖𝑗𝑗𝑘𝑘  denotes the unobserved individual level fraction of 

individual 𝑖𝑖  in aggregate structure 𝑗𝑗  that is in outcome 𝑘𝑘 . Since the number of individual 

observations in each aggregate structure may vary, we set 𝑖𝑖 = {1,2, … , 𝐼𝐼𝑗𝑗} . Let 𝑿𝑿𝑖𝑖𝑗𝑗  be an 𝑁𝑁 -

dimensional vector of observable individual attributes for individual 𝑖𝑖 in aggregate structure 𝑗𝑗, and 

we are interested in estimating the parameters 𝛽𝛽  in the conditional mean for individual level 

fraction 𝑍𝑍𝑖𝑖𝑗𝑗𝑘𝑘: 

                                                     𝐸𝐸�𝑍𝑍𝑖𝑖𝑗𝑗𝑘𝑘�𝑿𝑿𝑖𝑖𝑗𝑗� = 𝐺𝐺𝑖𝑖𝑗𝑗𝑘𝑘(𝑾𝑾𝑖𝑖𝑗𝑗(𝑿𝑿𝑖𝑖𝑗𝑗),𝛽𝛽𝑘𝑘)                                                           (4) 

where 𝑾𝑾(∙): ℝ𝑁𝑁 → ℝ𝑀𝑀 reflects transformations of the fundamental explanatory variables (such as 

linear, quadratic, or with interaction), 𝐺𝐺(⋅): ℝ𝑀𝑀 → ℝ, 0 < 𝐺𝐺(⋅) < 1 is a function that maintains 

the unit interval restriction on the conditional mean. Following Mullahy (2015), we parameterize 
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𝐺𝐺(⋅) using a logistic functional form, and the predicted fraction of individual 𝑖𝑖 in outcome 𝑘𝑘 in 

aggregate structure 𝑗𝑗 becomes: 

                             𝐺𝐺𝑖𝑖𝑗𝑗𝑘𝑘�𝑾𝑾𝑖𝑖𝑗𝑗(𝑿𝑿𝑖𝑖𝑗𝑗),𝛽𝛽𝑘𝑘� = exp (𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖)𝛽𝛽𝑘𝑘)
∑ exp (𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖)𝛽𝛽𝑘𝑘)𝐾𝐾
𝑖𝑖=1

    where 𝛽𝛽1 = 0.                                       (5) 

The 𝛽𝛽1 = 0 normalization facilitates parameter identification relative to the base case outcome. 

We extend equation (5), which is defined at the individual level, to the aggregate level via an 

aggregation structure – which is, the predicted fraction in outcome 𝑘𝑘 in aggregate structure 𝑗𝑗 is 

equal to the sum over individual level weighted fractions. The predicted fraction of outcome 𝑘𝑘 in 

structure 𝑗𝑗 is:  

                                                    𝐻𝐻𝑗𝑗𝑘𝑘 =
∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘�𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖),𝛽𝛽𝑘𝑘�𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑖𝑖

∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑖𝑖
                                                      (6) 

where 𝐴𝐴𝑖𝑖𝑗𝑗 is the weight parameter of individual 𝑖𝑖 for aggregate structure 𝑗𝑗. In other words, function 

(6) aggregates our predicted individual fractions to the aggregate level, converting individual level 

information to the more aggregated level, so that the individual level attribute data can be used to 

explain the aggregate level outcomes. Given 𝐻𝐻𝑗𝑗𝑘𝑘 , the quasi-log-likelihood function to be 

maximized with respect to the parameters 𝛽𝛽𝑘𝑘 is: 

                                                          ℒ = ∑ ∑ 𝑦𝑦𝑗𝑗𝑘𝑘 ln𝐻𝐻𝑗𝑗𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝐽𝐽
𝑗𝑗=1 .                                                   (7) 

This framework is generally applicable to cases in which only aggregate level data is 

available for the outcome, but individual level estimates are desired. If one specific aggregate level 

outcome is of interest, or if we only have available data for one particular outcome, then instead 

of having multiple aggregate level outcomes, we would go back to the Papke and Wooldridge 

(1996) univariate case. With all the other aggregate level outcomes treated as the base case, the 

𝐺𝐺(⋅) function can be expressed as: 

                                                    𝐺𝐺𝑖𝑖𝑗𝑗�𝑾𝑾𝑖𝑖𝑗𝑗(𝑿𝑿𝑖𝑖𝑗𝑗),𝛽𝛽� = exp (𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖)𝛽𝛽)
1+exp (𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖)𝛽𝛽)

                                                    (8) 

and the predicted fraction at the aggregate level for the interested outcome in aggregate structure 

𝑗𝑗 becomes:  

                                                        𝐻𝐻𝑗𝑗 =
∑ 𝐺𝐺𝑖𝑖𝑖𝑖�𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖),𝛽𝛽�𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑖𝑖

∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑖𝑖
.                                                     (9) 

The quasi-log-likelihood function to be maximized is: 

                                                            ℒ = ∑ 𝑦𝑦𝑗𝑗 ln𝐻𝐻𝑗𝑗
𝐽𝐽
𝑗𝑗=1 .                                                            (10) 
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In the context of the land use example, fraction of one specific crop in a state/province can 

be regarded as one aggregate level observed outcome/covariate. Data on total fractions of different 

crops (such as corn, soybean, wheat, etc.) are available only at the state/province level. The 

individual level refers to the finer than state/province level, and we name it the grid-cell level. 

Each aggregate level is consisted of several grid cells. We do not know the fraction of each crop 

at the grid-cell level, yet we observe the grid-cell level land attributes (such as temperature, 

precipitation, slope, soil pH, and so on). We can use the fact that grid-cell level land area adds up 

to the total state/province area to facilitate the aggregation and estimate land shares in each crop 

for each grid cell. 

  

3. Monte Carlo Designs 

We implement Monte Carlo simulations to assess the finite sample performance of our proposed 

estimation strategy. We consider two designs: one is with spatial clustering, the other is without. 

We call the Monte Carlo design without spatial clustering the original case, ant the one with spatial 

clustering the alternative case -- with the alternative case where individuals within the same 

aggregate structure are spatially clustered, we are able to check whether spatial clustering has an 

impact on our estimation performance. For both cases, we estimate two representative setups: a 

single-outcome one, with two possible outcomes within each aggregate structure, one is our 

outcome of interest, the other is the base case; and a multi-outcome one, where multiple outcomes 

are of interest within each aggregate structure.  

We start with the description of the original Monte Carlo design. For the single-outcome 

case, we assume there are three independent variables including the intercept (denoted as 𝑥𝑥0~𝑥𝑥2). 

In empirical analysis, some variables tend to have relatively large variations within and across 

aggregate structures (such as within and across state/province temperature influencing land shares 

in different crops), while others have relatively small fluctuations across observations (such as 

slope in the land use example). We try to characterize both variable types in our simulation. To 

proceed, we use 𝑥𝑥1 to denote the variable with within and across aggregate structure variations; 

and 𝑥𝑥2 to mimic the variable with relatively small variation. In order to capture the variation in 𝑥𝑥1 

across aggregate structures, we first set a base value for each aggregate structure, which takes 

value between 0 and 30 (mimicking actual temperature in degrees Celsius). We then generate a 

random value between (−2, 2) to represent the variation within each aggregate structure (this can 



8 
 

be interpreted as the difference in temperature within each state/province, and the largest 

difference within a state/province equals 4 degrees Celsius). Both the base variation across 

aggregate structures and the variation within each structure follow a uniform distribution. Lastly, 

we add the two parts up to construct variable 𝑥𝑥1. Variable 𝑥𝑥2 represents the variable with less 

variation. We generate it based on a (0, 1) uniform distribution (mimicking slope). We also add an 

error term following the logistic distribution (location = 0, scale = 0.005) to reflect measurement 

errors. 

We let the number of individual level observations within each aggregate structure vary 

across the sample. Exact number of observations in each aggregate structure is a randomly 

generated integer taking a value between 500 and 3000 (representing number of grid cells in a 

state/province). We assume that the true coefficient values are known: 𝛽𝛽0 = 2,𝛽𝛽1 = −0.15,𝛽𝛽2 =

1. For simplicity, we set the weight of each individual, 𝐴𝐴𝑖𝑖𝑗𝑗, to 100, rather than letting it vary across 

individuals. Based on the true theta values and the independent variables, we formulate the 

aggregate level outcomes, which, in empirical examples, are reported and publicly available. Then, 

we perform the estimation procedure based on equation (10), and repeat the process for a large 

number of times (𝑀𝑀𝑀𝑀 = 1000). To measure the performance of the estimation approach, we 

compare the differences between estimated coefficient values and the pre-set true coefficient 

values. Measures considered for the comparison include average bias and average Root Mean 

Squared Error (RMSE). Average bias is defined as the average difference between the estimated 

coefficient values and the true coefficient values over 1000 replications. Average RMSE is 

calculated by taking the square root of the average of the squared difference between the estimated 

coefficients and the true coefficients over 1000 replications. 

For the multi-outcome case, we assume there are three different outcomes that are of 

interest (plus the base case). For the independent variables, we use the same setup as is used in the 

single-outcome case; and we let the number of individuals within each aggregate structure vary 

across the full sample. Again, the minimum number of individuals in an aggregate structure is set 

at 500, and the maximum is 3000. The pre-set true coefficient values for the first outcome category 

are: 𝛽𝛽0𝑐𝑐𝑐𝑐𝑐𝑐1 = 2,𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐1 = −0.15,𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐1 = 1 ; for the second outcome category: 𝛽𝛽0𝑐𝑐𝑐𝑐𝑐𝑐2 =

1.8,𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐2 = −0.15,𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐2 = 1 ; and for the third: 𝛽𝛽0𝑐𝑐𝑐𝑐𝑐𝑐3 = 1.5,𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐3 = −0.18,𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐3 = 1 . 

Similar to the single-outcome case, the individual level fractions are estimated, and the framework 
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is replicated for 1000 times. As the last step, we calculate the same two measures, average bias 

and average RMSE, over the 1000 replications.  

We also consider an alternative Monte Carlo design. Taking the land use allocation case 

for example, in practice, grid cells with similar properties may be clustered geographically because 

of their similarities in land attributes and the climate. To capture this clustering and assess its 

potential impact on the predictive power of our framework, we modify our original Monte Carlo 

simulation setup described above, incorporate spatial clustering, and re-assess the finite sample 

performance of our framework for both the single-outcome and the multi-outcome cases. 

To include spatial clustering, the central idea is to create a weight matrix, and use it to 

update the independent variables and the associated individual level fractions, so that the clustering 

pattern is captured by the individual level outcomes. R 3.1.0 provides a convenient package named 

spdep to create weight matrices. By multiplying the independent variables with the 

corresponding weight matrix, neighboring individuals get similar values. Therefore, we first create 

the three independent variables in the same way described above for the original setup. We then 

use the spdep package to create a weight matrix for each aggregate structure (with neighbor type: 

queen). For each weight matrix, the number of columns/rows equals the square root of the number 

of observations in that aggregate structure so that we keep the comparability for matrix operations. 

We multiply the previously generated variables by the weight matrix to get new variables that 

contain spatial clustering patterns. To ensure that the square root of the number of observations is 

an integer, we modify its generating step. Instead of picking an integer value between 500 and 

3000 as the number of observations for an aggregate structure, we constrain the number of 

individuals to the squared value of an integer between 20 and 55. This guarantees that the number 

of rows/columns for the weight matrix is still an integer when we take the square root. All the other 

parts of this alternative Monte Carlo design remain the same as the original version demonstrated 

previously. 

For both the original and the alternative Monte Carlo designs, we test number of aggregate 

structures 𝑀𝑀 = 20, 100, 250, 500  for the single-outcome and the multi-outcome cases, 

respectively. As a technical note, for all four cases, we use the BFGS optimization method in the 

optimx package in R 3.1.0 as the estimation algorithm. Since it is well-known that the 

performance of the BFGS method is improved when analytical gradients are supplied (Nash and 

Varadhan, 2011; Nash, 2014), we input the analytical gradient of the likelihood function into the 
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R optimization routines. All reported simulations are conducted on a high-performance Linux 

cluster using dual 8-core Intel Xeon-E5 CPUs. 

 

4. Results 

We present the Monte Carlo simulation results for the original single-outcome setup in Table 1, 

and the results for the original multi-outcome case in Table 2.  

Results show that for both setups, as the sample size increases, both the average bias and 

the average RMSE decrease and approach zero. There is a clear trend that increasing the sample 

size improves estimation results. We also record the completion time for each setup. It serves as 

an illustration of the tradeoff between performance improvement brought by increasing the sample 

size and the increase in computational time caused by larger sample size. Our results indicate that 

as the sample size grows, computational time grows even faster. Computational burden outgrows 

the benefits brought by the increase in the sample size in magnitude. Therefore, a reasonably large 

sample needs to be chosen to satisfy estimation needs without bringing in too heavy computational 

burdens.   

Results for the alternative setup with spatial clustering are shown in Table 3 for the single-

outcome case and Table 4 for the multi-outcome case. Similar to the original setups, there is a clear 

trend that increasing the sample size improves estimation results. As more aggregate structures are 

added to the simulation, both the average bias and the average RMSE decrease. In terms of the 

completion time, the alternative setup takes longer than the original one as the additional weight 

matrix generation process takes time. As the sample size grows, computational time grows even 

faster. It outgrows the benefits brought by increasing the sample size in magnitude.    

 

5. Conclusions 

We propose a novel approach in predicting individual level fractions using aggregate level data 

and individual level attribute variables. We evaluate the finite sample performance of our 

framework using Monte Carlo simulations. Two Monte Carlo designs are provided, one with 

spatial clustering, the other without; and we test both a single-outcome case and a multi-outcome 

case for both setups. Results show that our method performs well and produces reliable estimates 

with both small samples and relatively large samples. As sample size gets larger, the coefficient 

estimates get closer to the true values. However, there is a clear tradeoff between computational 
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time and improvement in estimation performance. The framework can be applied to any case 

where aggregate level fractional outcomes are known but individual level outcomes are desired.  
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Table 1. Monte Carlo results on bias (estimates versus true values) and RMSE for the univariate model 
Number of 
Aggregate 
Structures 

Bias  RMSE Running  
Time  

(hours) 𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 
 

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 
20 -4.7245E-04 -2.9251E-06 1.0447E-03  3.8870E-03 4.7289E-05 9.3131E-03 1.6490E+00 

100 -2.6911E-04 -4.0084E-07 5.5227E-04  1.7074E-03 2.0576E-05 4.0777E-03 5.7855E+00 
250 -8.8727E-05 1.9334E-06 1.1243E-04  8.8227E-04 1.0897E-05 2.1078E-03 9.4445E+00 
500 -7.7593E-05 2.0047E-06 8.8575E-05  6.2981E-04 7.7029E-06 1.4948E-03 2.6813E+01 
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Table 2. Monte Carlo results on bias (estimates versus true values) and RMSE for the multivariate model 

Outcome 
Number of 
Aggregate 
Structures 

Bias 
  
  

RMSE Running 
Time 

(hours) 𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 
One 20 8.8005E-03 1.2389E-04 -2.3205E-02   

  
  
  

1.1698E-02 1.4412E-04 2.9276E-02 1.5402E+01 
100 1.1551E-03 1.8534E-05 -3.1225E-03 3.5265E-03 3.3843E-05 8.1832E-03 7.8068E+01 
250 -2.0746E-04 -2.4331E-06 5.7426E-04 1.5877E-03 1.4783E-05 3.6398E-03 2.2927E+02 
500  6.6883E-05 2.1771E-06 -1.9253E-04 8.7402E-04 8.6725E-06   2.0206E-03 4.4194E+02 

 
Two 20 9.5604 E-03 1.2697E-04 -2.4728E-02   

  
  
  

1.2641E-02 1.4798E-04 3.1215E-02   
100 1.4380E-03 1.9463E-05 -3.6750E-03 3.4967E-03 3.2724E-05 7.9834E-03   
250 -3.0003E-04 -2.9782E-06 7.7557E-04 1.7746E-03 1.4487E-05 3.9161E-03   
500 1.0221E-04  2.1779E-06 -2.5036E-04 9.5757E-04 8.6994E-06  2.1575E-03   

  
Three 20 1.8211 E-02 1.5925E-04 -4.2153E-02   

  
  
  

2.0914E-02 1.8075E-04 4.8207E-02   
100 2.6512E-03 2.4188E-05 -6.1015E-03 4.2962E-03 3.5580E-05 9.5673E-03   
250 -4.5035E-04 -3.4637E-06 1.0949E-03 2.1935E-03 1.7155E-05 4.8875E-03   
500  2.8095E-04  2.8671E-06 -5.8996E-04 1.2679E-03 9.9205E-06 2.7839E-03   
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Table 3. Monte Carlo results on bias (estimates versus true values) and RMSE for the univariate alternative model 
Number of 
Aggregate 
Structures 

Bias  RMSE Running  
Time  

(hours) 𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 
 

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 
20 -2.9089E-04 2.4060E-06 5.0456E-04  4.2752E-03 1.0211E-05 8.7256E-03 5.5901E+00 

100 -6.3032E-04 1.7920E-06 1.1976E-03  2.5023E-03 4.9919E-06 5.0897E-03 2.9435E+01 
250 -5.1147E-05 2.4797E-06 1.9540E-05  1.2273E-03 3.7499E-06 2.5127E-03 6.0566E+01 
500 -4.2633E-05 2.5378E-06 1.1292E-06  1.0961E-03 3.3378E-06 2.2396E-03 1.2840E+02 
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Table 4. Monte Carlo results on bias (estimates versus true values) and RMSE for the multivariate alternative model 

Outcome 
Number of 
Aggregate 
Structures 

Bias 
  
  

RMSE 
Running 

Time (hours) 𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 
One 20 1.5406E-02 2.2167E-05 -3.1762E-02 

 

1.8742E-02 2.8191E-05 3.8518E-02 1.5886E+01 
100 3.6380E-03 6.1631E-06 -7.5017E-03 7.0301E-03 1.0473E-05 1.4431E-02 8.9454E+01 
250 1.0147E-03 2.5254E-06 -2.0952E-03 2.1874E-03 4.0676E-06 4.4767E-03 2.3696E+02 
500  9.5652E-04 2.1459E-06 -1.9593E-03 2.7485E-03 3.9598E-06   5.6159E-03 4.5251E+02 

  
Two 20 1.5769E-02 2.2205E-05 -3.2479E-02 

 

1.8647E-02 2.8290E-05 3.8317E-02   
100 3.8915E-03 6.1912E-06 -7.9929E-03 7.5718E-03 1.0519E-05 1.5499E-02   
250 1.1493E-03 2.4734E-06 -2.3542E-03 2.3680E-03 4.1216E-06 4.4767E-03   
500 8.2835E-04  1.9613E-06 -1.6915E-03 2.1759E-03 3.5880E-06  4.4581E-03   

  
Three 20 2.3351E-02 2.6051E-05 -4.7648E-02 

 

2.6543E-02 3.3501E-05 5.4138E-02   
100 4.5488E-03 6.3592E-06 -9.2880E-03 7.0910E-03 1.0197E-05 1.4499E-02   
250 1.5330E-03 2.5602E-06 -3.0995E-03 2.9107E-03 4.4806E-06 5.9088E-03   
500  4.7571E-04  1.6816E-06 -9.6118E-04 2.9607E-03 3.8693E-06 5.9948E-03   

 

 

 


