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Abstract 

Precision agriculture (PA) is commonly defined as the adoption of new technologies for managing spatial 

and temporal farming variation for improving overall efficiency and economic return. While the literature 

on PA technology continues to evolve, many questions still remain unanswered regarding farm-level 

utilization patterns of PA technologies. The purpose of this study is to conduct a spatio-temporal 

examination of the adoption process of complementary precision agricultural technologies by farmers in 

Kansas. The PA technologies examined include: yield monitor, precision soil sampling, and variable rate 

application of inputs. The empirical adoption model for PA technologies follows a multinomial logistic 

regression framework, given only the observed bundle of PA technologies can be observed for a given 

farmer at any given time. Using Kansas Farm Management Association (KFMA) data, this study shows 

the PA adoption patterns of farmers, given different production, financial, socio-demographic, 

geographic, and soil characteristics. The results indicate that production, financial, and socio-

demographic characteristics play a significant role in the adoption decision, whereas geographic and soil 

characteristics play a negligible role.  

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction 

Farm adoption of precision agriculture (PA) technologies has grown significantly in the past two 

decades. Precision technologies can be distinguished as being assigned into one of two separate 

classes: embodied knowledge and information-intensive technology. An embodied knowledge 

technology (e.g. lightbar, genetically modified seed) refers to a technology in which its value is 

embodied within the technology and requires no additional, specialized knowledge or time-

investment by the user to make full use of. Unlike embodied knowledge technologies, 

information-intensive technologies (e.g. yield monitor, precision soil sampling) require a 

significant outlay of time on the part of the individual farmer to be fully utilized. However, these 

technologies offer farmers valuable, site-specific information that can provide additional insights 

into optimal farm management strategies and prove useful in decision-making. Applying the 

knowledge gained by these information-intensive technologies can be useful to operations by 

increasing production efficiency, either through reallocating and reducing inputs and/or 

increasing crop yields (the degree to which these gains outweigh the costs of the technology, and 

in turn the effects of adoption on overall farm profitability is still disputed however).   

Though the adoption of information-intensive technologies has historically lagged behind 

adoption of embodied knowledge technologies, recent studies have shown a rapid uptick in 

adoption levels over the past several years. Along with increased adoption of individual 

information-intensive technologies there has been growth in the adoption of multiple 

technologies. While recent literature has documented the grouping or bundling of information 

technologies, many question remain unanswered regarding this adoption behavior. The focus of 

the current study is on examining the characteristics of farms that adopt bundles of information-



intensive technologies, and identifying what the specific drivers are in the adoption of different 

technology bundles.  

This study makes use of Kansas Farm Management Association (KFMA) data. Farm 

members belonging to the KFMA were given a questionnaire, beginning in 2015 on prior and 

current use of PA technologies. The survey instrument along with farm-level production and 

financial data, as well as county level soils data were used in the estimation of a multinomial 

logistic model that relates farm characteristics to adoption of one of six bundles of technology 

for the year 2014. The technologies examined included yield monitor (with and without GNSS), 

variable rate fertilizer application, and precision soil sampling. Farms were classified as 

belonging to one of six states of technology bundle adoption categories – these categories 

consisted of individual or combinations of the three technologies (along with a ‘none’ bundle – 

representing no adoption). Following estimation of the model, marginal effects were calculated. 

The results of this analysis indicated that increases in operator age and farm acreage inversely 

related to adoption of technology bundles, while increases in machinery investment, value of 

farm production, and a farm’s crop labor percentage positively impacts adoption.  

 

Literature Review 

Adoption patterns of precision agriculture (PA) technology at the state, national, and 

international level has been discussed in the literature. Griffin and Lowenberg-Deboer (2005) 

report country level adoption rates based on international consortium of colleagues. At the time 

of their report, precision agricultural technologies were not ubiquitous and the United States was 

not the most intensive adopter of yield monitors. At the national level, Schimmelpfennig (2016) 

analyzed USDA-ARMS data on adoption of technology over time and by crop – showing that 

yield monitor and variable rate application grew rapidly over the past ten years especially on 



corn and soybean farms. That study also examined the impacts of technology adoption on farm 

profitability – a subject that has been the focus of several other prominent studies (Bullock et al. 

2002; Olson and Elisabeth 2003; Schimmelpfennig and Ebel 2016). Several state-level adoption 

studies have been reported.  

The results from state-level studies mirror those done at the national level in particular by 

Schimmelpfennig. In Arkansas, Popp et al. (2002) assessed the early adopters of the technology 

in two different years – a similar study was conducted by Castle (2016) in Nebraska. In Kansas, 

Griffin et al. (2016) and Miller et al. (2017) show historic adoption trends and the recent surge in 

growth of information intensive technology, including yield monitor, variable rate application of 

fertilizer and seed, and precision soil sampling.  

There is also a sizeable literature examining characteristics of farms that adopt PA 

technologies. For instance, Daberkow and McBride’s (2003) study used a two-stage logistic 

regression model to show the impacts of computer literacy and farm size on the probability of 

PA adoption. A wider review of the literature is provided by Tey and Brindal (2012). The 

literature on the grouping or ‘bundling’ of technologies is limited. Lambert et al (2015) made use 

of Multiple Indicator Multiple Causation regression analysis to determine the bundling behavior 

of cotton farms in the southeastern U.S. They found that large acreage, irrigated farms that 

practiced crop rotation were more likely than their peers to adopt in bundles rather than 

piecemeal. The current study differs from the study by Lambert et al. both methodologically and 

in scope.  This paper uses a more direct, multinomial logit approach to model the dynamics of 

adoption decision making. Also, the subject of this paper’s analysis, it could be argued, provides 

a more varied perspective of adoption, as the farms under investigation grow a variety of crops 



and are, due to the nature of spatial variation of crop production across Kansas, much more 

representative of wider trends nationally. 

 

Conceptual Model 

A modeling approach based on a multivariate logit or multivariate probit framework is best suited 

to answering the underlying question of farmer decision making, as farms are faced with the 

adoption of multiple PA technology bundles. This study adopted a multinomial logit model. The 

multinomial logit model is a utility model with alternative choices which are assumed to be 

mutually exclusive. This model is used to estimate the probability that a farmer will choose from 

different alternative technology groups or ‘bundles’, assuming that the farmer chooses the 

alternative that maximize his utility from the set of alternatives. The utility function for the farmer 

can be specified as follows: 

V𝑖𝑗 = X𝑖𝑗𝛽 + 𝜀𝑖𝑗                                                                                                                         (1)    

 where V𝑖𝑗 is the utility for farmer  𝑖 choosing technology bundle 𝑗, X𝑖𝑗𝛽 is the observed 

components, 𝜀𝑖𝑗 is the unobserved component of the utility function, and X𝑖𝑗 is the vector of  

covariate variables which are assumed to be linear (McFadden 1974). Farmer 𝑖 will choose 

technology bundle 𝑗 subject to the following constraints: 

V𝑖𝑗 ≥ V𝑖𝑘              𝑓𝑜𝑟 ∀ 𝑗 ≠ 𝑘                                                                                              (2) 

X𝑖𝑗𝛽 + 𝜀𝑖𝑗   ≥   X𝑖𝑘𝛽 + 𝜀𝑖𝑘                                                                                                   (3) 

The probability of farmer 𝑖 choosing technology bundle 𝑗 can be defined as a follows: 

𝑃𝑖𝑗 =
𝑒V𝑖𝑗

∑ 𝑒V𝑖𝑗𝐽
𝑗=1

                                                                                                                        (4) 



The coefficients resulting from the multinomial logistic regression model are difficult to interpret 

directly. Marginal effects are the appropriate measurement to use when capturing the impact of a 

relative change in the probability (or conditional mean) of a particular choice. Following 

Bergtold and Onukwugha (2014), the marginal effects for continuous explanatory variables are 

calculated as a follows: 

𝜕𝑃(𝑉𝑖=𝑗|𝑋𝑖=𝑥𝑖)

𝜕𝑥𝑘
=

∂h𝑗(X𝑖;β)

𝜕𝑥𝑘
= h𝑗(X𝑖; β) =  [

∂Ƞ𝑗(X𝑖;β𝑗)

𝜕𝑥𝑘
− ∑

∂Ƞ𝑠(X𝑖;β𝑠)

𝜕𝑥𝑘
𝑠≠𝑚  h𝑠(X𝑖; β)]                 (5)  

For binary variables, the marginal effect is just relative change in probability when the value of 

the explanatory variable changes from ‘0’ to ‘1’. 

Data  

For the empirical estimation, cross-sectional production, financial, and demographic farm-level 

data on Kansas farms for 2014 was obtained from the Kansas Farm Management Association 

(KFMA) database. Current and prior PA adoption data were appended to the existing KFMA 

databank. As of April 2017, there were 359 farms present in both the existing KFMA database 

and PA technology data for the year 2014.  This study also incorporated SSURGO soils data 

aggregated to the county-level – including soil slope and slope composition variables. 

The choice sets of information-intensive technologies examined included: yield monitor 

(YM) (both with and without GNSS), variable rate application of fertilizer (VRF), and precision 

soil sampling (PSS). These technologies were adopted either individually or jointly as bundles. 

The bundle categories included: ‘None’, ‘YM’, ‘PSS’, ‘YM & PSS’, ‘VRF & PSS’, and YM, 

VRF & PSS’. The other two possible bundles, ‘VRF’ and ‘YM & PSS’, had too few a number of 

observations, and therefore were excluded for the empirical analysis. Observations for these two 



bundles were dropped from the dataset. The number of farms adopting the six remaining 

different technology bundles is shown in Table 1.  

For the empirical estimation of the model, different farm and farmer characteristics are 

used as independent, explanatory variables. Descriptive statistics of the farm variables used in this 

study are shown in Table 2. The selection of explanatory variables was made based on prior 

literature. Variables such as age of farmer, farm size, acreage, and investments, geographic 

location, and soil characteristics have been used in both the literature specific to precision 

agriculture (Daberkow and McBridge 2003; Jenkins et al. 2011; Watcharaanantapong et al. 2013) 

and in the literature on other forms (e.g. conservation tillage) of adoption of farm practices (Gould 

et al. 1989; Lambert et al. 2007). Farms in the KFMA databank are, on average, medium to large 

in size, are operated by farmers advanced in age, and have significant machinery investment costs. 

Variables are defined as follows. Total acres operated represents a measurement of farm 

size. The crop machinery investment variable represents the average of beginning and ending basis 

values for motor vehicles, listed property, machinery and equipment used for crop production. 

Ending debt to asset ratio equals current debt divided by the value of all assets. Value of farm 

production is gross farm income equal to value of farm production plus accrual feed purchased. 

Characteristics that measure slope of the land, percentage of sand, and percentage of silt are also 

included. These soil variables represent average county soil characteristics (note that this data is 

constant across time and varies only across counties, so that farmers from the same county share 

the same soil characteristics). Regional dummies are also used to account for spatial heterogeneity 

in technology adoption across Kansas. These binary variables represent region-specific fixed 

effects and are based on the six KFMA Associations. Five dummies, for the northeast, southeast, 

north central, south central, and western regions of Kansas, were used (KFMA also defines 



northwestern and southwestern regions, but these regions were combined because the data used 

has only limited observations for northwestern Kansas).    

Results 

The multinomial logistic regression model was estimated in STATA. The results of the estimation 

are omitted because of their limited interpretability. The pseudo 𝑅2 is 0.25 indicating that the 

model explains variability in adoption patterns. Following estimation, marginal effects for each 

explanatory variable were calculated following the derivation in equation (5). A summary of the 

marginal effects is reported in Table 3.  In general, the marginal effects analysis results indicated 

that per unit increases in the demographic, production, and financial level variables have a 

significant impact on the probability of adopting PA technology bundles.  

Consider the marginal effect for age. A one-year increase in the age of the operator 

increases by 0.75% the likelihood of adopting no technology, and decreases by 0.27% the 

likelihood of adopting the complete bundle of YM, VRF & PSS. This conforms to results found 

elsewhere (Lambert et al. 2015). Similarly, a per unit increase in the number of farm acres also 

increased the likelihood of adopting no technology (i.e. the ‘none’ bundle). This indicates that as 

farms expand they are less likely to adopt any technology bundle. This result makes sense given 

that farms have two strategies by which they can expand production: either through physical 

expansion (increasing the acreage of the farm) or through intensification (increasing the 

productivity of land already under production). As a significant part of the attraction of information 

intensive PA technologies comes from their intensification property (making cropland more 

productive) it follows then that farmers engaged in physical expansion of acreage are less likely to 

adopt PA technologies. 



Also unsurprising is the marginal effect of machinery investment on the probability of 

adoption of technology bundles. A per unit increase in farm investment in machinery raises the 

probability of adopting bundles with multiple technologies (YM & PSS, VRF & PSS, and YM, 

VRF & PSS). For some time now, farm equipment has often come equipped with PA technology 

capabilities (e.g. YM on new combines). It is therefore likely that investment in machinery and 

investment in precision agriculture technology is highly positively correlated. Farms that invest in 

machinery are often investing directly or indirectly in PA technologies. This explains both the sign 

and the level of significance on the marginal effects of machinery investment on adoption of 

technology bundles. In recent years, when farmers purchase new or even used equipment, PA 

technology may be a standard part of that equipment.   

Similarly, the marginal effects of crop labor percentage and the total value of farm 

production on the probability of adoption of PA technology bundles (that include one or more 

technology) are, with one exception, positive. A one percent increase in the crop labor percentage 

increases the probability of adopting a PA technology bundle (other than the “none” bundle) as 

does a one-unit increase in the value of farm production. The result on the marginal effect of the 

total value of farm production on technology adoption supports previous literature. 

Schimmelpfennig (2016) reported higher rates of adoption of YM, VR, and PSS on farms that had 

relatively higher crop values.   

It is also important to examine the marginal effects that were found to be insignificant. The 

marginal effect on the debt to asset ratio is insignificant, indicating that increases in debts relative 

to assets played at most a marginal role in the likelihood of adopting PA technology. And 

compared to the demographic, production, and financial characteristic marginal effects, the 

majority of the soils and geographic-specific marginal effects were insignificant. For the marginal 



effects of soil this reveals that unit increase in the slope, percentage of sand, and percentage of silt 

has no effect on the probability of technology adoption. For the marginal effects of the region fixed 

effects variables, this indicates that farm location within any particular KFMA region does not 

have any discernable effect on adoption of PA technologies. This outcome was surprising as the 

information intensive technologies being investigated were thought to be more valuable to farms 

that operate in areas where the productivity of land is low – and this level of productivity is 

assumed to fluctuate across geographic space. The estimated marginal effects of soils contradict 

this point of view. 

Conclusion 

The multinomial logit model was used to examine the adoption of six technology bundles 

(including a ‘none’ bundle) by farmers based on a variety of farm-related explanatory variables. 

Production, financial, demographic, and soil characteristics were regressed on the probability of 

adopting each technology bundle. The choice sets of technologies examined included: yield 

monitor (YM), variable rate application of inputs (VR), and precision soil sampling (PSS). KFMA 

farm-level data, along with the KFMA PA technology adoption data, and county-level soils data 

were used in estimating the multinomial logit model.  

Results of this analysis show that demographic, production, and financial variables play a 

key role in farm adoption of technology bundles. Marginal effects for both age and acreage on the 

probability of adopting technology bundles (other than the ‘none’ bundle) were negative indicating 

that larger farms with older operators were less likely to adopt. In contrast, the marginal effects on 

the crop labor percentage, machinery investment, and value of farm production variables were 

positive, indicating that farms with higher crop labor percentages, higher investments in 

machinery, and higher value of farm production are more likely to adopt technology bundles. Soil 



and regional marginal effects indicated that these variables play a negligible role in the adoption 

decision-making process. For future study, we suggest estimating this model for multiple years. 

As adoption of the information intensive technologies has increased sharply (rather than steadily), 

it is expected that the factors influencing adoption have also changed over time. Incorporating new 

variables into the model (e.g. crop-specific and tillage practice variables) also have the potential 

to yield further insight into farms’ adoption decision making process. 
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Table 1: 2014 Farm Adoption of PA Technology Bundles 

Bundle Number of Farms 

None 211 

Yield Monitor (YM) 38 

Precision Soil Sampling (PSS) 27 

YM & PSS 34 

Variable Rate Fertilizer (VRF) & PSS 15 

YM, VRF & PSS 34 

n = 359 

 

 

 

 

 

 

 

 

Table 2: Explanatory Variable Summary Statistics 

Variable N Mean Std. Dev. Min Max 

Operator Age 359 58.97 11.26 23 87 

Total Acres Operated  359 2158.02 1754.08 154 11422.80 

Crop Machinery Investment ($) 359 429084.30 423311.60 0 2912940 

Debt to Asset Ratio 359 0.25 0.24 0 1.59 

Value of Farm Production ($) 359 604458 572137.60 9676.01 4972300 

Slope 359 2.55 0.97 1.21 6.26 

Sand (%) 359 14.74 9.54 5.30 55.21 

Silt (%) 359 50.31 6.88 23.21 66.62 



Table 3: Marginal Effects 

 None YM PSS YM & PSS VRF & PSS YM, PSS  &         

VRF 

Age 0.0075*** 

(0.0021) 

 

-0.0021 

(0.0014) 

 

-0.0017 

(0.0013) 

 

-0.00077 

(0.0013) 

 

-0.00032 

(0.0011) 

 

-0.0027** 

(0.0013) 

 

Acres 6.94E-05** 

(2.85E-05) 

 

1.49E-06 

(1.94E-05) 

 

-1.4E-05 

(0.000016) 

 

-4.9E-05** 

(1.99E-05) 

 

4.29E-06 

(7.96E-06) 

 

-1.2E-05 

(1.27E-05) 

 

Machinery -1.72E-07 

(1.21E-07) 

 

5.24E-08 

(6.62E-08) 

 

-2.14E-07** 

(9.91E-08) 

 

1.06E-07* 

(5.45E-08) 

 

7.43E-08** 

(3.52E-08) 

 

1.54E-07*** 

(4.12E-08) 

 

Crop Labor  -0.40*** 

(0.16) 

 

0.22* 

(0.126478) 

 

0.10 

(0.09053) 

 

0.14 

(0.11) 

 

-0.13** 

(0.056) 

 

0.065 

(0.099) 

 

Debt to 

Asset 

-0.014 

(0.11) 

 

0.061 

(0.062533) 

 

-0.080 

(0.072063) 

 

0.052 

(0.064) 

 

-0.068 

(0.059) 

 

0.049 

(0.061) 

 

Value Farm 

Production 

-3.46E-07*** 

(1.18E-07) 

 

6.44E-10 

(7.59E-08) 

 

1.42E-07** 

(6.20E-08) 

 

1.46E-07*** 

(5.24E-08) 

 

-1.17E-08 

(3.50E-08) 

 

6.84E-08* 

(3.78E-08) 

 

Slope -0.0065 

(0.035) 

 

-0.0277 

(0.025) 

 

0.021 

(0.021) 

 

0.021 

(0.019) 

 

-0.0063 

(0.027) 

 

-0.0016 

(0.018) 

 

Sand 0.0061 

(0.0072) 

 

-0.003 

(0.0051) 

 

-0.0034 

(0.0034) 

 

-0.0044 

(0.0058) 

 

-0.0017 

(0.0036) 

 

0.0064 

(0.0056) 

 

Silt -0.0012 

(0.011) 

 

0.0016 

(0.0068) 

 

-0.00605 

(0.0047) 

 

-0.011 

(0.0091) 

 

-0.00037 

(0.0061) 

 

0.017* 

(0.0093) 

 

Region 1 0.10 

(0.11) 

 

0.027 

(0.063) 

 

0.14*** 

(0.047) 

 

-0.012 

(0.098) 

 

-0.0094 

(0.064) 

 

-0.25 

(0.12) 

 

Region 2 -0.12 

(0.11) 

 

-0.070 

(0.084) 

 

0.088 

(0.067) 

 

0.010 

(0.073) 

 

0.084* 

(0.046) 

 

0.0095 

(0.060) 

 

Region 4 0.37 

(54.44) 

 

-0.015 

(7.88) 

 

0.027 

(6.72) 

 

0.076 

(9.07) 

 

-0.55 

(91.94) 

 

0.096 

(13.83) 

 

Region 5 2.26 

(200.46) 

0.502 

(45.17) 

-0.73 

(230.32) 

-0.70 

(185.26) 

-0.39 

(123.95) 

-0.94 

(135.58) 

Significance: *** = .01, ** = .05, * = 0.1  

 
 

 



Figure 1: Study Area Regions 

 

 

 

 


