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A Spatial Analysis on Corn Production:
Implication for Ethanol Sustainability

Dong Hee Suh

1 Introduction

Over the last few decades, the expansion of ethanol production has been encouraged by

the U.S. government to meet domestic energy needs and reduce greenhouse gas emissions.

While federal tax credits supported the ethanol market at the early stage of ethanol usage

under the Energy Tax Act of 1978, the Renewable Fuel Standard (RFS) program facili-

tated a substantial growth in the ethanol market through the mandatory usage of ethanol

under the Energy Policy Act of 2005 (Schnepf and Yacobucci, 2013). The tax incentives

expired, but the Energy Independence and Security Act of 2007 expanded the mandate to

renewable fuel, advanced biofuel, cellulosic biofuel, and biomass-based diesel. Due to the

governmental support, ethanol production has increased dramatically. According to the

U.S. Bioenergy Statistics (USDA-ERS, 2017), ethanol production increased from about

83 million gallons in 1981 to about 15 billion gallons in 2016, which amounts to over 99%

of domestic ethanol consumption.

While the U.S. produced about 15 billion bushels of corn in 2016, about 34% of total

corn production was used for ethanol production: about 5 billion bushels of corn. Since

corn is a main feedstock for ethanol production, the productivity of corn is considered an

important factor to sustain the supply of ethanol to the energy market. However, corn

production is at risk because climate change in the future is expected to have negative

effects on corn yields. The risk of changing corn yields has been emphasized under future

climate change scenarios, showing that increasing drought under global warming and
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extreme weather events would threaten corn yields (Adams et al., 1990). In particular,

changes in temperature and precipitation are considered to affect negatively corn yields

with variations in regions (Southworth et al., 2000; Priya and Shibasaki, 2001; Schlenker

and Roberts, 2006; Almaraz et al., 2008; Schlenker and Roberts, 2009; Neumann et al.,

2010; Tack and Holt, 2016).

Most previous studies used reduced-form regression or crop simulation models to inves-

tigate the linkage between weather variables and corn yields. They focused on a specific

region or a time-period to found how corn yields responded directly to changes in weather

conditions. However, corn yields and local weather conditions in a region are correlated

with those of other neighboring regions. While changes in local temperature and precipi-

tation affect corn yields directly in a region, corn yields are spatially correlated with those

of neighboring regions because neighboring regions face similar weather conditions. Due

to the importance of spatial correlations in predicting corn yields, some studies empha-

sized the spatial variability in crop productivity (Priya and Shibasaki, 2001; Neumann

et al., 2010), and others considered the spatial correlations in crop yields explicitly to

forecast yield changes in response to weather events (McCullagh and C., 2006; Zhu et al.,

2009; Tack and Holt, 2016).

If climate change negatively affects corn yields, the productivity of corn will be a

critical concern of ethanol producers for the sustainable supply of ethanol to the energy

market. In particular, if there are spatial correlations in corn yields, the spatial estimation

is needed for obtaining correct estimates under weather conditions, which will eventually

determine the productivity of ethanol. Moreover, the U.S. Environmental Protection

Agency (EPA) will need correct estimates about corn yields to determine the mandatory

usage level of ethanol appropriately. Thus, the specific objective of this study is twofold.

First, this study estimates corn yields using a spatial panel analysis. With a focus on the

Mid-western regions that grow mainly corn in the United States, this study performs the

spatial panel analysis to predict corn yields in response to changes in fertilizer, temper-
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ature, and precipitation. Second, this study simulates the amount of ethanol produced

from the expected corn availability. From the estimates of the standard and spatial panel

models, this study offers valuable insights into the prediction of ethanol yields under

climate change.

The rest of this paper is structured as follows. Section 2 introduces the spatial panel

models and discusses its applicability to the analysis of estimating corn yields, and Section

3 provides data descriptions and empirical results. The potential ethanol availability is

also simulated by using the predicted corn yields in this section. Finally, a summary and

discussion are provided in Section 4.

2 Methodology

This section follows Burnett et al. (2013)’s methodology to describe the panel data analysis

with spatial correlations. Consider a regression model with individual i for i = 1, · · · , N

in time period t for t = 1, · · · , T . The standard specification for panel data is

y = Xβ + (ιT ⊗ IN) γ + (IT ⊗ ιN) δ + ε (1)

where y is the NT × 1 vector of a dependent variable, X is the NT × K matrix of

independent variables, ιT is the T × 1 vector of unity, ιN is N × 1 vector of unity, IN

is the N × N identity matrix, IT is the T × T identity matrix, and ε is the error term

that follows the normal distribution. While ⊗ is the Kronecker product, β, γ, and δ

denote the coefficients for explanatory variables, the coefficients for individual effects,

and the coefficients for time effects, respectively. The standard approach to panel data is

based on the fixed-effect and random-effect models. The fixed-effect model reflects that

individual effects are correlated with independent variables, and the random-effect model

assumes that individual effects are uncorrelated with independent variables. In Equation
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(1), the fixed-effect model considers that γ is fixed across individuals over time, but the

random-effect model assumes that γ is not fixed but rather unobserved random variables.

The Hausman specification test determines which model is appropriate for the data; the

test statistic is asymptotically distributed as χ2
K where K is the number of independent

variables (Hausman, 1978).

From the standard panel models, spatial correlations are reflected to address their

potential effects on neighbors. According to Anselin (1988) and Anselin and Bera (1998),

value i is influenced by value j for i 6= j when the characteristics and activities of an

individual have an impact on neighboring individuals. Considering economic distances, a

spatial weighting matrix WN is constructed to introduce the spatial effects to the panel

models. The weighting matrix is expressed by

WNT = IT ⊗WN (2)

which is the N ×N positive matrix where an element in the matrix (wij) represents the

interaction between individuals i and j. When the weighting matrix is applied to the panel

model, there exist three types of spatial panel models: the spatial autoregressive, spatial

error, and spatial Durbin models. The spatial autoregressive model (SAR) is written as

y = θWNTy +Xβ + (ιT ⊗ IN) γ + (IT ⊗ ιN) δ + ε (3)

where θ is the spatial autoregressive coefficient. The spatial error model (SEM) is written

as

y = Xβ + (ιT ⊗ IN) γ + (IT ⊗ ιN) δ + ε

ε = ρWNT ε+ u

(4)
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where ρ is the spatial autocorrelation coefficient for the error term. The final form is the

spatial Durbin model (SDM) which is written as

y = θWNTy +Xβ + φWNTX + (ιT ⊗ IN) γ + (IT ⊗ ιN) δ + ε (5)

where φ is the spatial autocorrelation coefficient. The spatial Durbin model nests the

spatial autoregressive and spatial error models because it reflects the dependence in the

error term and the dependent variable (LeSage and Pace, 2009). The estimated coefficients

in the spatial Durbin model can be used to determine whether the spatial Durbin model is

simplified to the spatial autoregressive or spatial error model. The spatial Durbin model

can be reduced to the spatial autocorrelation model if we reject the null hypothesis of

φ = 0, whereas it can be reduced to the spatial error model if we reject the null hypothesis

of φ + θβ = 0 (LeSage and Pace, 2009). The spatial Durbin model will be used if both

null hypotheses are rejected.

3 Empirical Analysis

3.1 Data and Estimation

Study areas cover major states producing corn in the Midwestern United States; 10 states

such as Illinois, Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska, Ohio, South

Dakota, and Wisconsin. With a focus on corn yields determined by pursuing the in-

tensive margin, the data such as corn yields and fertilizers are obtained from the National

Agricultural Statistics Service of the U.S. Department of Agriculture (USDA-NASS).

Corn yields are measured in bushels per acre, while fertilizers incorporating nitrogen,

phosphorus, and potash are measure in lb. per acre. To consider climatic factors, the

historically observed weather data such as average temperature and precipitation are ob-

tained from the National Centers for Environmental Information of the National Oceanic
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and Atmospheric Administration (NOAA). The annual average temperature is measured

in Fahrenheit scale, while the annual average precipitation is measured in inches. All

variables in the data are used to construct a panel dataset with 10 states for the period

between 1990 and 2014.

Figure 1 shows the average values of corn yields, fertilizers, temperature, and precip-

itation in the study areas. All the variables vary across the states. While the average

value of corn yields of 10 states is 131.65 bushels per acre, Iowa has the greatest corn

yields (143.59), but South Dakota has the least corn yields (102.65). The use of fertilizer

is proportional mainly to corn yields, and the average value is 255.94 lb. per acre. The

amount of fertilizers used for corn production is the most in Illinois (346.88) but the least

in South Dakota (157.47). For climate factors, the average temperature is 49.35◦ F: the

highest in Kansas (54.82) but the lowest in Minnesota (41.49). The average precipitation

is 33.37 inches but varies across states. The highest level of precipitation is in Missouri

(42.48) but the lowest is in South Dakota (20.88).

On the basis of the data, the empirical model is constructed as

yit = β0 + β1Fit + β2Cit + β3Rit +
1

2

[
β4F

2
it + β5C

2
it + β6R

2
it

+ 2β7FitCit + 2β8FitRit + 2β8CitRit ] + γi + δt + εit

(6)

for i = 1, · · · , N and t = 1, · · · , T . In Equation (6), yit is corn yields, Fit is the amount

of fertilizers used for corn, Cit is temperature, and Rit is precipitation, respectively. In

addition, γi denotes state-specific effects, and δt denotes time-period effects. Based on

this specification, non-spatial and spatial panel models are estimated.
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3.2 Estimation Results

The estimation results for the standard panel models are presented in Table 1. The results

of both fixed- and random-effect models represent that fertilizer use, temperature, and

precipitation are associated with corn yields. The Hausman test is conducted to determine

which model best fits for the data. The test statistic is 18.32, indicating the fixed-effect

model is more appropriate for the data used in this study. The results of the fixed-effect

model show that the estimates of the fertilizer and temperature variables are positive

and statistically significant. While there is no statistical significance in the estimate of

the quadratic term of the fertilizer variable, that of the temperature variable is negative

and statistically significant, which is consistent with the inverted U-shaped relationship

between temperature and corn yields. In addition, the estimate of the quadratic term of

the precipitation variable is negative and statistically significant.

Table 2 reveals the estimation results of the spatial panel models. We construct

a distance-based weighting matrix, which is obtained by calculating distances between

centroids of states. Using the weighting matrix, we apply the spatial Durbin panel model

to both random- and fixed-effect models and determine which model fits for the data well

by employing the Hausman test. Regarding the spatial Durbin models with the fixed

and random effects, the Hausman test indicates that the fixed-effect model is preferred

to the random-effect model; the test static is 20.10. Moreover, since the spatial Durbin

model nests the spatial autoregressive and spatial error models, the likelihood-ratio tests

are conducted to determine whether the spatial Durbin model is simplified to the spatial

autoregressive or spatial error model. The test results indicate that the first hypothesis

(φ = 0) is rejected at 1% level; the test statistic is 81.83. This implies that the spatial

Durbin model is preferred to the spatial autoregressive model. The test statistic for the

second hypothesis (φ + θβ = 0) is 82.78, which rejects the null hypothesis at 1% level.

This shows that the spatial error model is not appropriate for the panel dataset. The
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results of the diagnostic tests reveal that the spatial Durbin model with fixed effects is

the best fits for the data.

In Table 2, the estimation results of the SDM model with fixed effects represent that

the estimated spatial autoregressive coefficient is 0.52 and statistically significant at the

1% level. This implies that corn yields in a state have positive effects on those in neighbor-

ing states. The main estimates indicate that only temperature affects corn yields. From

the estimates, Table 3 reveals the direct, indirect, and total effects of the variables in the

spatial Durbin models. Regarding the direct effects of the SDM model with fixed effects,

the estimates are different from the point estimates reported in Table 2. The differences

are due to the presence of spatial correlations between states. In particular, the results

show that the estimates of both fertilizer and temperature variables have the inverted U-

shaped relationships with corn yields, respectively. Moreover, the indirect effects reported

in Table 3 represent the extent to which the explanatory variables influence neighboring

states’ corn yields. The results indicate that there exist spillover effects of fertilizer use,

temperature and precipitation in a state on corn yields in neighboring states. Finally, the

total effects incorporate the indirect effects into the direct effects, which show the robust

estimates reflecting the spatial correlations.

Based on the estimates, we simulate how much ethanol will be produced from the

expected corn availability. The predicted values of corn yields are calculated by using the

estimates of the standard fixed model and the spatial Durbin model with fixed effects.

The potential amount of ethanol produced is projected by assuming that 2.8 gallons of

ethanol are produced by one bushel of corn (de Gorter and Just, 2009a,b). Table 4 reports

the predicted value of ethanol yield measured in gallons per acre. Compared with the

predicted values obtained by the standard fixed-effect model, the estimates obtained by

the spatial Durbin model with fixed effects are closer to the real average values. The

standard fixed-effect model yields the minimum difference of 4.15 and the maximum

difference of 109.68, whereas the spatial model yields the differences ranging only from
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1.49 to 18.53. The root-mean-square error (RMSE) also indicate that the predicted values

of the spatial Durbin model (1.01) have more predictive power than those of the standard

panel model (1.99). The results imply that the spatial correlations have to be reflected

in predicting ethanol yields correctly. Without considering spatial effects, the potential

availability of ethanol may be overestimated or underestimated, which can provide policy

makers with incorrect information about corn availability. As the EPA determines the

mandated level of ethanol, it is important for the EPA to predict ethanol availability

based on the spatial effects of corn yields.

4 Conclusions

Corn is a major input for ethanol production, but most producers are expected to face

uncertainty to manage and control corn production due to unpredictable characteristics

of climate change. Since the sustainability of ethanol is completely dependent on the

availability of corn, the extent to which climate change affects corn production will be a

great concern of ethanol producers. Due to the importance of potential corn availability

for ethanol production, this study estimates corn yields with a focus on fertilizers and

weather variables. In particular, corn yields, fertilizers, and weather variables in a state

are spatially correlated with those of neighboring states. Considering their spatial effects,

this study uses a spatial panel model to obtain robust estimates for corn yields. Based

on the estimates, the potential ethanol availability is projected by using the fact that 2.8

gallons of ethanol are produced by on bushel of corn.

The estimation results reveal that the spatial correlations are an important factor

to forecast corn yields correctly. The findings reveal that a spatial analysis on corn

yields is necessary for the EPA to predict the potential amount of ethanol correctly.

When considering spatial spillover effects of weather conditions on corn yields, ethanol

yields are also dependent on the spatial correlations between states. The consideration
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of spatial relationships will provide policy makers with correct information about future

corn availability, which will guarantee the sustainable supply of ethanol to the energy

market. The findings will be of interest of the EPA setting the blending requirements of

ethanol with gasoline based on the availability of corn for ethanol production.
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Table 1: Estimation Results of Standard Panel Models

Fixed Effect Random Effect
Fertilizer 2.301∗∗∗ 2.261∗∗∗

(0.561) (0.427)
Temperature 35.437∗∗∗ 26.939∗∗∗

(9.189) (6.880)
Precipitation -3.963 2.622

(3.770) (2.871)
Fertilizer2 -0.003 -0.004

(0.003) (0.003)
Temperature2 -1.229∗∗∗ -0.763∗∗

(0.423) (0.311)
Precipitation2 -0.343∗∗∗ -0.294∗∗∗

(0.104) (0.112)
Fertilizer × Temperature -0.039∗∗∗ -0.038∗∗∗

(0.011) (0.011)
Fertilizer × Precipitation 0.013∗ 0.009

(0.007) (0.007)
Temperature × Precipitation 0.131 -0.006

(0.083) (0.071)
Constant -1003.473∗∗∗ -827.739∗∗∗

(228.544) (178.375)
Note: Standard errors are in parentheses.
∗∗∗Denotes statistical significance at the 1% level.
∗∗Denotes statistical significance at the 5% level.
∗Denotes statistical significance at the 10% level.
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Table 2: Estimation Results of Spatial Durbin Models

Fixed Effect Random Effect
Spatial Autoregressive Coefficients (θ) 0.517∗∗∗ 0.506∗∗∗

(0.049) (0.043)
Main Coefficients (β)
Fertilizer -1.584 1.041

(1.073) (0.911)
Temperature 41.709∗∗ 30.427∗∗

(18.178) (15.299)
Precipitation -6.418 0.392

(7.432) (5.925)
Fertilizer2 0.002 -0.011∗

(0.006) (0.006)
Temperature2 -2.535∗∗∗ -1.506∗∗

(0.875) (0.701)
Precipitation2 0.100 -0.225

(0.214) (0.231)
Fertilizer × Temperature 0.035 0.006

(0.022) (0.023)
Fertilizer × Precipitation -0.014 0.004

(0.015) (0.015)
Temperature × Precipitation 0.175 0.065

(0.163) (0.140)
Spatial Autocorrelation Coefficients (φ)
Fertilizer -1.290∗∗∗ -1.556∗∗∗

(0.342) (0.256)
Temperature -20.247∗∗∗ 2.760∗∗

(5.317) (1.144)
Precipitation 0.575 3.790∗

(1.801) (1.793)
Fertilizer2 0.004∗ 0.004∗∗

(0.002) (0.002)
Temperature2 0.721∗∗∗ -0.229∗∗

(0.228) (0.106)
Precipitation2 0.142∗∗ 0.113∗

(0.058) (0.062)
Fertilizer × Temperature 0.017∗∗∗ 0.024∗∗∗

(0.006) (0.006)
Fertilizer × Precipitation -0.006∗ -0.006

(0.004) (0.004)
Temperature × Precipitation -0.030 -0.078∗

(0.039) (0.041)
Log-likelihood -725.900 -751.243
Note: Standard errors are in parentheses.
∗∗∗Denotes statistical significance at the 1% level.
∗∗Denotes statistical significance at the 5% level.
∗Denotes statistical significance at the 10% level.
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Table 3: Direct, Indirect, and Total Effects from Spatial Durbin Models

Direct Effect Indirect Effect Total Effect
SDM with Fixed Effect
Fertilizer 2.533∗∗∗ 2.592∗∗∗ 5.125∗∗∗

(0.608) (0.727) (1.146)
Temperature 39.001∗∗∗ -1.715 37.286∗

(10.149) (14.122) (21.762)
Precipitation -1.052 3.222 2.170

(3.784) (5.557) (8.550)
Fertilizer2 -0.007∗ -0.005 -0.012

(0.004) (0.005) (0.008)
Temperature2 -1.369∗∗∗ 0.726 -0.643

(0.447) (0.656) (0.973)
Precipitation2 -0.271∗∗ -0.229∗ -0.500∗∗∗

(0.107) (0.136) (0.192)
Fertilizer × Temperature -0.034∗∗∗ -0.044∗∗∗ -0.078∗∗∗

(0.011) (0.014) (0.021)
Fertilizer × Precipitation 0.012∗ 0.017∗ 0.029∗∗

(0.007) (0.009) (0.013)
Temperature × Precipitation 0.054 -0.073 -0.019

(0.084) (0.125) (0.193)
SDM with Random Effect
Fertilizer 3.127∗∗∗ 1.337∗∗ 4.464∗∗∗

(0.488) (0.661) (1.006)
Temperature -6.460∗ -23.276∗∗ -29.736∗∗

(3.561) (10.543) (12.715)
Precipitation -7.746∗∗ -5.297 -13.043∗

(3.699) (4.651) (7.641)
Fertilizer2 -0.007∗∗ 0.002 -0.005

(0.004) (0.004) (0.007)
Temperature2 0.508∗∗ 1.269∗∗ 1.777∗∗

(0.257) (0.519) (0.703)
Precipitation2 -0.216∗ 0.009 -0.206

(0.116) (0.148) (0.208)
Fertilizer × Temperature -0.049∗∗∗ -0.035∗∗ -0.084∗∗∗

(0.012) (0.016) (0.024)
Fertilizer × Precipitation 0.011 0.004 0.016

(0.007) (0.010) (0.015)
Temperature × Precipitation 0.157 0.073 0.220

(0.085) (0.108) (0.174)
Note: Standard errors are in parentheses.
∗∗∗Denotes statistical significance at the 1% level.
∗∗Denotes statistical significance at the 5% level.
∗Denotes statistical significance at the 10% level.

16



Table 4: Predicted Values of Ethanol Yields (Gallons Per Acre)

Ethanol Yield Predicted Yield E-EF Predicted Yield E-SDM
(E) (FE) (SDM)

Illinois 400.235 482.419 -82.183 393.994 6.241
(59.310) (30.817) (19.051)

Indiana 385.247 475.818 90.571 366.721 18.526
(60.005) (28.491) (21.121)

Iowa 402.047 406.197 -4.150 392.199 9.848
(65.405) (38.562) (50.498)

Kansas 374.871 336.334 38.536 378.889 -4.018
(33.305) (24.260) (26.096)

Minnesota 384.424 328.508 55.916 382.936 1.487
(71.185) (51.847) (32.062)

Missouri 332.047 385.395 -53.348 322.408 9.639
(64.431) (35.437) (47.962)

Nebraska 386.894 311.963 74.932 373.009 13.885
(51.136) (18.262) (27.254)

Ohio 370.753 477.750 -106.998 388.825 -18.072
(63.389) (21.693) (33.173)

South Dakota 287.412 229.225 58.187 304.002 -16.590
(62.836) (53.399) (50.234)

Wisconsin 362.353 252.674 109.679 360.736 1.617
(51.449) (37.160) (47.385)

Note: All estimates are statistically significant at the 1% level.
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Figure 1: Average Values of Corn Yield, Fertilizer Use, Temperature, and Precipitation
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