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THE CONSTANT ELASTICITY OF SUBSTITUTION PRODUCTION FUNCTION
AND ITS APPLICATION IN RESEARCH

Marlen F. Miller, Norman K. Whittlesey and Terry N. Barr

SUMMARY AND CONCLUSIONS

The major objective of this study was to shed some
light on the controversy over which form of production
function, Cobb-Douglas or Constant Elasticity of Substi-
tution (C-D and CES), should be preferred in applied
research. Toward this end, the theoretical superiority of
the CES function was outlined. It became clear that no
definitive statement about statistical superiority was pos-
sible on the basis of one application. Indeed, the CES
function must meet the same test that the C-D function
has undergone, namely the test of the robustness of the
application to various data and problems. To test the
CES function, the problem of estimation was considered
and a relatively simple estimation technique used.

In the application of the CES function, the elasticity
of substitution was approximately equal to one, implying
a reduction of the CES to the C-D. However, the esti-
mating technique performed relatively well near an in-
determinate region with regard to the CES. Achievement
of convergence from both sets of starting values would
have been very desirable; however, the computer program
would not permit a better approximation near an indeter-
minate form of the CES. The approximately equal margi-
nal value products under two different algebraic specifi-
cations (CES and C-D) were particularly encouraging
with respect to policy questions. If the marginal value
products had differed substantially with g near zero, it

would be hard to support policy recommendations in
future applications where g differed from zero.

The CES specification, while not yielding substantially
different marginal value products, did provide parameter
estimates of greater precision for machinery investment,
family labor, and land investment. Based on the t-test for
the C-D formulation, the coefficients on these inputs were
not significantly different from zero. Under the CES
specification, the coefficients were more precise based on
the support plane confidence intervals. The hypothesis
that the restriction of g = 0 under the C-D form might
affect the significance of some inputs in the production
process is at least suggested.

One conclusion does stand out clearly from the fore-
going analysis. Where there is doubt as to which single-
equation production model to use in applied research,
both the CES and the C-D must be fitted. It is no longer
enough to argue that the CES has additional estimation
difficulties that are not compensated for in terms of addi-
tional useful information. These difficulties are now
relatively easy to surmount and the potential for mis-
specification is clearly suggested by the above application.
With the improved feasibility of estimating the CES pro-
duction function, the dominance of the C-D production
function in applied research will certainly be challenged.

THE PRODUCTION FUNCTION

Introduction

This bulletin discusses the general properties of pro-
duction functions. Its primary focus is on the controversy
surrounding the elasticity of factor substitution to be as-
sumed in production function models. Should the elas-
ticity of substitution be restricted to unity as in.the Cobb-
Douglas function, which might bias the results? -Or is
there something to be gained by using the constant elas-
ticity of substitution (CES) function, which allows the
elasticity of substitution to be other than unity? Finally,
this report investigates estimation procedures for the CES
function and shows the results of estimates obtained from
farm survey data in Washington.

Definitions

Ragnar Frisch was concerned that something essential
could be lost from the theory of production by the in-
creased concentration on mathematical relations rather
than discussions proceeding directly from “‘the fundamen-
tal logic of the laws of production” (32). The early
writers on production and distribution did concentrate on
the logic of production and the fundamental concepts of

product, production fsctors, productivity, etc., which are
derivable from any production formulation (98) There
can be no question that the analysis of production can
never be independent of the logic of production. This
dependence need not, however, deter consideration of al-
ternative mathematical forms. Indeed, the question
whether the Cobb-Douglas or the CES functxon is the su-
perior theoretical form turns on the fundamental concept
of substitutability of factors and must be resolved before
any consideration of statistical supenonty If the theo-
retical form of a production function is such that it can
yleld more useful and correct information on the produc-
tion process, it warrants statistical investigation.

The most familiar production relationships are de-
scribed by amounts of inputs associated with specified
amounts of output. That is, in a single input production
process, a large number of input and output combinations
are possible. To form a production function, each level
of input in combination with the producer’s technology
must be evaluated in terms of the output achieved. The
producer’s technology consists of all the technical infor-
mation about the physical combinations of inputs neces-
sary for the production of the output. The object is to




find the most efficient use of resources for a given output
level or the point of maximum output for a given input
level.

Given the assumption that an efficient point exists
for every fractional input, the set of efficient points can
be approximated by a continuous function. This function
is the production function of traditional theory, i.e., the
theoretical production function. It is defined for a given
state of technical knowledge (96). In this most abstract
sense, there are no restrictions on the production function
except the technical restrictions of transforming inputs
into products. The function becomes a frontier for values
of the technologically efficient process (12,98).

The statistically fitted aggregate production function
is a relationship between a set of outputs and a set of in-
puts of individual factors per unit of time. Since the
function must be single valued to provide an efficient set
of production possibilities, it is assumed to express the
maximum product obtainable from the input combination
at the existing state of technical knowledge. The statis-
tical production function, which “assumes” that the input-
output combinations solve the technical maximization
problem, is something different from the theoretical pro-
duction function, which is “defined” as the solution of
the technical maximization problem.

Experimental production functions

The engineering, or experimental, type of production
function provides a basis for normative answers to ques-
tions about which processes one should select to produce
a particular product under given economic conditions. The
function is derived from a designed experiment, generally
with a specific, well-defined and homogeneous product.
This is clearly a technical problem and is to be contrasted
to the selection of the best input combination for the pro-
duction of a particular output level. This last is an eco-
nomic problem dependent upon input and output prices
(51).

The fact that previous industry production studies had
generally used statistically determined cost curves rather
than statistically determined production functions led to
H. B. Chenery’s pioneering work on engineering produc-
tion functions (13). Previous studies had to base the
cost curves upon input combinations that had proven
feasible for the entrepreneurs. They could not describe
the broader range of productive possibilities that had been
developed experimentally but not used commercially.
Technical feasibility and not commercial feasibility should
be the only restriction on possible techniques in the esti-
mation of production functions.

Chenery’s paper suggests a method by which engineer-
ing data can be used to approximate a production function
in the industrial field, which corresponds more closely to
the production function of economic theory. If the major
input into production is a machine, the engineering pro-
duction function would consider the characteristics of the
machine such as speed, size, ease of operation, etc., and
not its cost. This procedure makes it feasible to examine
the impact of new characteristics of experimental machines
(14, p. 297-325).

The engineering production function studies are not,
however, free of difficulties (48). Kurz and Manne (67)
used data showing the capabilities of 115 different ma-
chine tools to perform 129 alternative metal-working
tasks. Productivity coefficients were established that
showed the number of pieces per day that could be pro-
duced by one worker using a particular type of machine
to do a given job. A censoring rule was then applied to
eliminate the inefficient machines. “If in the performance
of that task, one machine tool had a higher investment
cost and not a higher output than a second machine tool,
the first was said to be ‘inefficient’ and was deleted from
our analysis” (67, p. 665-666). Next they used chat-
acteristics of the tasks, e.g., smaller or larger pieces or
operations with wider or narrower tolerance, and not
the tasks themselves as independent variables in the pro-
duction function.

E. G. Furubotn has observed, however, that the cen-
soring rule seriously undermines the entire study (34).
The production function is not independent of input
prices. Thus it is very unstable, since a new collection
of efficient processes may appear with any price change
in factors. Previously inefficient machine tools suddenly
become efficient if their price falls relative to the other
tools, since the censoring rule will change the composi-
tion of the set of efficient tools. If an eronomic solution
is wanted, both price and technological data have to be
used. But if a production function is to be established,
information on prices is not needed. The efficient tech-
nical alternatives can be separated from the total array
of processes on the basis of objective physical criteria
(34).

It is not entirely clear how the separation between
technical feasibility and commercial feasibility is to be
achieved. Since factor prices partly determine the chat-
acter of the production function by influencing its design,
an array of techniques may show a labor-saving bias
simply because labor has become more expensive than
other factors. J. R. Hicks suggested that when labor be-
comes dearer than capital, the search for labor-saving
techniques is stimulated. This is a corollary of Hicks’
theory of induced inventions (52, p. 121-127). However,
one might argue that the profit maximizer is interested
in reducing costs in total and not particular labor costs
or capital costs. Therefore, he has no bias toward labor-
saving knowledge unless it is easier to get (95, p. 147).
The concept of the engineering production function
properly applied can clearly lead to an improved approxi-
mation of the true production function that is based on
technical feasibility.

Nonexperimental production functions

The second type of production function of major con-
cern to economists is the nonexperimental production
function, often called a statistical production function.
The use of data on inputs and outputs generated in the
real world in a nonexperimental environment is much
cheaper than data derived from precise experimental stud-
ies. However, one must recognize the cost of defining the
nonexperimental production function for more aggregated



products and categories of inputs. The nonexperimental
types of functions are more descriptive than experimental
types but are criticized for vagueness of identification and
meaning (largely due to aggregation). Even so, many at-
tempts have been made to fit the various forms (117).

Since this report is mainly concerned with nonexperi-
mental production functions, it greatly simplifies exposi-
tion to use “statistical” and “nonexperimental” inter-
changeably. The experimental type of production function
provides valuable answers to many of the criticisms of
statistical production functions in general, but has narrow
applicability and will not be considered further in this
report.

Statistical and theoretical production functions

At least two major differences exist between the sta-
tistical and the theoretical functions. First, the statistical
function can only approach the ex ante concept of a pure
theoretical production function, since it is based on ob-
servations of resource combinations that were expected to
be economically efficient at a particular time. The lag
in capital expenditures for more technically efficient proc-
esses makes the statistically-fitted production function
based on historical data only approximately correct. Thus,
to be properly interpreted, production functions apply only
for a particular point in time.

The second major difference between the pure theo-
retical and statistically fitted production function is the
degree of aggregation. The theoretical function evolved
for a single firm, while much of the data used in statisti-
cally fitted productions is of multi-firm or industry-wide
origin (63). Hildebrand and Liu provide an excellent,
critical review of some past research on nonexperimental
production functions and discuss the aggregation problem
(54). They show that the degree of aggregation must be
clearly defined if one is to interpret the results of any
production analysis correctly.

The basic problem in interpretation of a nonexperi-
mental production function study is in the specification
of the economic model used to analyze the data. The lack
of homogeneity of individual resource units must be ex-
plained to derive conclusions from a single production
function that is based on an aggregation of resource units.
Do they face different factor prices, possess different ex-
pectations, or is the assumption of profit maximization
or cost minimization naive? These factors must be ana-
lyzed if one is to rationalize the different positions of

the individual units on the same production function.

There will always be a gap between the “pure” theo-
retical production function and the statistically-fitted pro-
duction function. The economist should strive to close
the gap as much as possible by recognizing the limitations
placed on results by the data and the procedure. Even the
most severe critics of statistical production functions con-
clude that they are useful, even though uncertain (85,
102).

Production function controversies

The state of the art of production economics has been
critically analyzed (76). Two points of substantial con-
troversy arose. The first related to engineering.

The second controversy was over the wide and un-
reconciled disparities in estimates of the elasticity of sub-
stitution from the CES (Constant Elasticity of Substitu-
tion) function using cross-section or time-series data. Marc
Nerlove concluded, in reference to cross-section studies by
Minasian, Solow, and Hildebrand and Liu, that results were
very sensitive to small changes in model specification or
data use (87). For example, all three studies used Survey
of Manufacturers cross-section data for 1956 and 1957
and found the elasticity of substitution in the electrical
machinery industry to be 1.26, 0.37, and 1.0996, respec-
tively. The second elasticity value is based on regional
aggregates; the others are based on state aggregates.

Time series studies reveal the same type of diversity.
Biases and technical difficulties in various studies make
it impossible to completely reconcile the diversity of re-
sults within each type. However, a pattern is established
between cross-section and time series. The estimate of
the elasticity of substitution from cross-section data is con-
sistently larger than the time series estimates, leaving
doubt as to which is better. For arguments in favor of
cross-section studies, see (41). For a discussion favoring
time series, see (5).

More recently, Paul Zarembka added to the con-
troversy by showing that for most empirical purposes, the
elasticity of substitution should be assumed equal to unity
and the Cobb-Douglas function used rather than the CES
(122,40). Maddala and Kadane, however, concluded that
under some circumstances, a restriction of the elasticity
of substitution to one can bias the estimates of returns to
scale substantially (68).

The rest of this paper compares the Cobb-Douglas and
CES functions for empirical research.

THE FORM OF THE PRODUCTION FUNCTION

The two production forms in question are now briefly
examined—the Cobb-Douglas (C-D) and Constant Elas-
ticity of Substitution (CES) production functions.

One algebraic form of the k-input C-D function is

Y=A xlbl x2b2 ...xkbk

where Y is output and the X values are the resource inputs
(15). The parameter represents the efficiency of the tech-

nology, and the b; are factor productivities. All can be
estimated from data on output and inputs. In the original
C-D formulation, the sum of the b, equaled unity, but this
restriction is often relaxed. The parameters and their
economic implications are treated in detail later.

Again letting Y represent output and the X inputs,
the CES function can be written for the k-input case as
(1,115):



Y=vy [b1X1 g + b2X2—g + ... +Db Xk_g:lv/-g
k
k
Ib, =1
i
i=1
the parameters of the function are v, v, g, and the b;.

The parameter y is a scale parameter denoting the ef-
ficiency of the technology. It is a relationship between
all inputs and output and does not affect the relations
among inputs.

The b’s, of course, measure the degree to which the
production process relies on each input.

The parameter v represents the degree of homogeneity
of the function or its degree of returns to scale. Although
in the original formulation by Arrow et al. (1) this pa-
rameter was restricted to one, the above function can
represent any degree of returns to scale of an empirical
situation.

The parameter g determines the elasticity of substitu-
tion, which measures the ease of input substitution. The
elasticity of substitution, o, for the CES function is:

o= 1/14g

The formula for the elasticity of substitution is derived
for the C-D and CES in appendix I.

Therefore, g is considered the substitution parameter
and has an admissible range of values from -1 to infinity.
See appendix II for a demonstration of the generality of
the CES function for alternative values of g.

Elasticity of substitution

The principle of substitution of factors is quantified
by the elasticity of substitution. It is the ratio of the
proportional change in one variable resulting from a pro-
portional change in another, holding all other variables
constant.

If the variables are the ratio of the amount of capital,
K, and labor, L; and the ratio of the price of capital, r,
and the price of labor, w, the elasticity of substitution, as
defined above is:

_bh (x/L) / (R/L)
A (w/r) / (w/r)

Profits are maximized when labor and capital are used
to the point where the marginal productivity of labor
(MP;,) equals the wage rate, and the marginal produc-
tivity of capital (MP,) equals the price of each unit of
capital. Therefore, the following is equivalent to the
previous form.

A (R/L) / (R/L)

G WA

In the two-input production relationship, the relative
shares of labor and capital are wL/PQ and rK/PQ where
r, K, w, and L are as previously defined and PQ is the
total value of output.

The ratio of the relative shares then becomes wL/rK.
This ratio increases and decreases as the prices of the

inputs vary. The extent of substitution of capital or labor
for the other is quantified by the elasticity of substitution.

¢ > 1 implies capital will be substituted for labor in
greater proportion than the wage rate has risen
relative to capital’s return, so labor’s relative
share will fall.

o = 1 implies the relative shares will remain constant
as capital is substituted for labor in the same
proportion as the wage increase.

o < 1 implies the relative share of labor will rise be-
cause capital cannot be substituted for labor in
the same proportion as the wage rate has risen
relative to the price of capital.

Profit is maximized when the price-marginal produc-
tivity ratios of all inputs are equal to each other and to
the output’s unit price.

The demand curve of a firm for a productive resource
under the assumption of profit maximization must there-
fore depend upon these variables:

1. The price of other productive resources (w, r)

2. the price of the output

3. the technology as embodied in the production
function.

For one of the earlier treatments of derived demand,
see (78), and for a more recent one, see (31).

Elasticity of substitution: C-D and
CES production functions compared

The C-D function restricts the elasticity of substitution
to be unity irrespective of the data used (see appendix I).
This property guarantees that the relative income shares
of inputs are constant for any changes in the relative
supplies of inputs. Thus it provides a rationale for the
observed relative constancy of factor shares in developed
countries (66,107). However, it is doubtful that such a
rationale is generally supportable.

Murray Brown has -commented on the property of as-
sumed unitary elasticity of substitution, *. . . the use of
a production function which assumes the elasticity of sub-
stitution is always on the knife edge of unity encourages
the rejection of the results for anything but a very crude
approximation to production function estimation” (8, p.
37-50). However, the burden of proof of other than uni-
tary elasticity lies with the estimation of alternative
production forms. Jora D. Minasian has suggested that
more caution should be exercised in making specific as-
sumptions about the value of the elasticity of substitution
(76).

The variability of the substitution parameter is largely
responsible for the generality of the CES function (see
appendix II). If g — 0, the elasticity of substitution is
unity as in the C-D function. Indeed, if g = 0, the CES
function reduces to the C-D form. If g = -1, the CES
function reduces to a linear production function. The
important realization is that the empirical data can dictate
a value for the elasticity of substitution through the CES
production function. Mathematical proofs are in ap-
pendix II.

The most desirable feature of the CES function—the
elasticity of substitution is constant but not restricted a



priori to any value—is not free of criticism. When the
elasticity of substitution is specified as constant, it only
is assumed that changes in relative factor inputs and prices
do not alter the elasticity. Hence the constancy refers to
the invariance with respect to changes in relative factor
supplies and not to changes in technology. Since there is
no way to be sure that all the change in the elasticity is
solely due to technological change, there exists a potential
specification error.

Nagesh S. Revankar (92) has sought to overcome the
problem of the constancy of the elasticity of substitution
by advancing the Variable Elasticity of Substitution
(VES) production function.

Though both the CES and VES cover the special cases
of the C-D and Leontief forms, the VES is more general
in one important sense. The CES requires that the elas-
ticity of substitution be the same at all possible input com-
binations whereas the VES allows the value to vary along
any isoquant. The VES can be written

Y=y g (1-6p) [L+ (p—1)1<:|°“Sp

with the elasticity of substitution being

o=1+ (p-1) . K/L .
1-8p
A significant amount of variation in the K/L ratio must
occur for effective discrimination between the CES and
VES. However, the generalization to more than two in-
puts does present difficulties in structure and estimation.

Given the criticism regarding constancy of the elas-
ticity of substitution, which applies to both the C-D and
the CES, the generality of this constancy must also be
examined. Irrespective of the number of inputs, the pat-
tial elasticities of substitution are independent of factor
prices and are identical for all pairs of production factors
(115). This property for all generalized CES functions
has given rise to an alternative CES form. For other
attempts to generalize the CES function to k inputs, see
(71,79).

R. Sato has developed a two-level CES production func-
tion, closely related to the generalized CES, that takes spe-
cial recognition of the fact that elasticities of substitution
between pairs of inputs may not all be the same (83,97).
In the two-level CES, the resources are divided into mu-
tually exclusive groups; the direct partial elasticity of sub-
stitution is constant between resources within a group
but not between resources in different groups. Each
group is defined as a single CES form with constant elas-

tici
city as K

z=(¢ etxt'gr)l/"gr A T 6 =1.
t=1 t=1 t
The two-level CES is then defined for the group r = 1,
., M as
m m
Y=a.[ ¢ aZ_g]_I/g, Ta =1,
0 rr T
r=1 r=1

Note that an intra-class elasticity, g,, exists within
the r*" group and an inter-class elasticity, g, exists among
input groups. The form presents difficulties in that a
priori grouping of the factors is necsssary and direct esti-
mation by the Taylor series expansion must be used. Sato
used indirect estimation techniques, making the equality
of the ratio of marginal products to the price ratio as a
side condition.

There is no question that the CES is not theoretically
superior to all other production function forms. The
other functions, although superior theoretically with re-
gard to particular parameters, present additional difficul-
ties for estimation that are not in the realm of this study.
The question to be answered here is whether the CES is
superior in applied research where the C-D form has been
dominant for so many years. A theoretical specification
such as the CES, which permits the empirical environment
to determine the degree of substitutability between inputs,
would justifiably be considered superior to more restric-
tive specifications.

Technology and the Production Function

One determinant of the demand for factors depends
heavily upon the technology of production. The relations
between outputs and inputs and between the inputs them-
selves are determined by the ruling technology.

Murray Brown has identified four characteristics of a
production function, that taken together form an abstract
technology (8). These characteristics are the efficiency
of technology, the degree of economies of scale, the de-
gree of input intensity of a technology, and the ease of
input substitution.

Efficiency of technology

The efficiency characteristic can be thought of as a
scale transformation of inputs into output. The more
efficient the technology, the larger the output for any
given level of inputs. Thus if input levels of K; and L,
produced an output of Y; at one technology and a
greater output of Y, at another technology, the latter tech-
nology is more efficient.

Since an increase in the efficiency of a technology
augments output but does not alter input relations, it is
represented in the C-D form by the parameter A.

Increases or decreases in the value of A directly in-
crease or decrease the output for the same input levels.
The value of the parameter, A, is determined by the
empirical data.

The CES production function is interpreted in the
same manner with the scale parameter y denoting the
efficiency of the technology. Again, increases or decreases
in the value of y directly increase or decrease the output
for the same input levels, with the value of y determined
by the empirical data.

Degree of economies of scale

A firm enjoys increasing, constant or decreasing re-
turns to scale if for a given percentage increase in all
inputs, output is increased at all. Any economies of scale
measured in an aggregated manner, say for an industry,



are a combination of internal and external economies
(116). Internal economies depend on the resources with-
in an individual firm. External economies are those
arising from the general development and growth of an
industry.

In the C-D production function, the sum of the input
coefficients indicates the degree of returns to scale. The
marginal products of the two-input case where the C-D
function is used are:

by-1 _

- b2
3Y = A blx2 X1 = b1 ;{(_
3X1 1
8Y _ bl b2—1 _
5’x_2‘Ab2X1 X2 —bz%((_.

The factor intensities can then be written:

b

Q

Y b

X

=% ay
2 ¥ 3x

1 §£
1 2

Q

From these equations it is inferred that b; is a measure
of the percentage change in output attributable to a per-
centage change in input N;. The sum of b; i=1, ...,
n then measures the total percentage change in output
for a given percentage change in all inputs, i.e., the re-
turns to scale. Since each b; is determined empirically,
if not otherwise restricted, the degree of returns to scale
depends upon the data. Remember, however, that Mad-
dala and Kadane found a substantial bias in estimates of
returns to scale when the elasticity of substitution was con-
strained to unity as in the C-D form (68).

For the CES function, the scale parameter, v, deter-
mines the degree of return to scale. Given

Y= Y[bX g+b2X g]v/—g where b +b2=1

2 1

The marginal products can be written

oY

Q

-g
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The input elasticities could then be written as above
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The sum of the input elasticities would again measure
the total percentage change in output for a given per-
centage change in inputs.
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The parameter v is determined by the empirical data.
(R. K. Diwan seeks evidence of economies of scale while
examining alternative forms of the C-D and CES func-
tions (21).)

Input intensity of a technology

The concern here is with the technological require-
ments of the production process but not the current
changes in output or relative factor supplies. The struc-
ture requirements of the technology determine the inten-
sity of one input relative to some other input. The rela-
tive intensity of the inputs will be reflected in the data
on inputs and outputs and not established a priori in the
production function form. This intensity is measured by
the relative values of the b, coefficients in both the C-D
and CES functions.

The ease of input substitution

The technology of the production function, and thus
factor demand, depends on the form ‘of the production
function, at least with regard to input substitution.
Neither the C-D nor the CES form specifies the first three
characteristics, efficiency, return to scale, and intensity,
independent of the data. With regard to factor sub-
situation, however, the C-D function provides less infor-
mation on factor demand.

Functional Form and Technological Change
Definitions of technological change

Technological change here means any change in the
production process that permits the same level of output
to be produced with less input or enables the former
levels of inputs to increase output. For production func-
tion analysis, the phenomenon is often regarded as going
on at some externally given rate and increasing, over
time, the output possible by any combination of factors.



It is appealing to define technological change in terms
of changes in the “abstract technology” of the production
function developed in the last section. The input-input
and input-output relations will be determined by the tech-
nology that exists at a given time. Changes in the under-
lying technology of a production function will be reflected
in changes in the characteristics that form the abstract
technology.

Technological change is classified by its impact on the
marginal products of the inputs on each other. A “neu-
tral” technological change improves the productivity of
inputs for each input combination but leaves unchanged
the relative marginal products of the inputs. If relative
marginal products are unchanged, there is no change in
relative factor demand as the result of technological
change, although absolute demand may change (52).
Neutral technological change will thus affect input-output
relationships but not the input-input relationship.

An excellent comparison of the Hicksian definition
of technological change used here and other formulations
is in Salter (95); see also Hahn and Matthews (45).

A reexamination of the characteristics of the abstract
technology shows that changes in two of the character-
istics can be considered neutral technological changes.
These characteristics are changes in the efficiency of tech-
nology and changes in the economies of scale.

Nonneutral technological change includes changes in
input intensity or the degree of input substitution that
alters input-input or input-output relationships. Non-
neutral technological change is classified according to its
impact on the relative marginal products. For instance,
if the marginal product of capital rises relative to the
marginal products of other inputs, we have a capital-using
nonneutral technological change. A rise in the marginal
product of labor relative to the marginal products of the
other inputs, is a labor-using nonneutral technological
change.

The necessary distinction between neutral and non-
neutral technological change becomes apparent when con-
sidering the impact of technological progress on factor
shares, factor-demand, or output (29). Isolation of the
types of technological change that promote growth and
the conditions necessary for such growth are the goals of
many production studies (46,84). One of the most im-
portant results of any aggregate production function will
be the linking of factor supplies and output, in the ag-
gregate, over time, and thus a clearer understanding of
the engines of economic growth.

Technological changes and production function form

The C-D production function can show changes in
in three of the four characteristics of the underlying tech-
nology. Neutral technological changes will be reflected
by changes in the parameter A or in the sum of the ex-
ponents of the inputs. Changes in these parameter values
can be determined empirically and reflect changes in the
efficiency of the technology and the degree of returns to
scale.

The C-D function cannot reflect changes in the degree
of input substitution. Therefore, nonneutral technologi-
cal change can be reflected only by changes in the relative
factor intensities. These changes in factor intensities will
be reflected in changes in the ratios of the inputs to each
other. Clearly, changes in intensities due to a nonneutral
technological change could lead to changes in the sum
of these intensities, indicative of a neutral technological
change. It becomes very hard to isolate neutral techno-
logical change in the summation of the parameters from
nonneutral technological change reflected in the change
in relative intensities.

The CES function that allows measurement of changes
in all four of the characteristics of the abstract technology
is not without criticism. Neutral technological change is
reflected by changes in the efficiency parameter y and in
the scale parameter, v. However, two forces affect the
parameter v and it would be difficult to determine their
relative influence. Economies of scale can result from
an expansion of the scale of operations with a given tech-
nology, or given the scale, a technological change could
occur. The same limitation applies to the sum of the
exponents in the C-D function.

The CES function does separate neutral and non-
neutral technological change by permitting changes in
factor intensities and changes in the degree of input sub-
stitution to be reflected in parameters other than y or v.
Relative factor intensities are determined by the relative
values of the coefficients b; and bs, while the substitution
parameter will reflect changes in input substitution.

Summary of the Evidence

The impact of the functional form on the results has
been examined in three major areas: input substitution,
factor demand and returns to scale, and technological
change. A brief review of the conclusion in each area
should suggest the theoretical superiority of the CES
production function.

Input substitution. The CES function assumes that
the elasticity of substitution is constant but not restricted
to an a priori value. The C-D function compels the elas-
ticity of substitution to be constant at a value of unity.

Factor demand. The impact of the production func-
tion upon factor demand is largely by way of the under-
lying technology. The CES function was found superior
in allowing the data to dictate the technology, particularly
with regard to factor substitution.

Technological change. The CES function can repre-
sent technological change better than the C-D.

In the areas where the CES function was found su-
perior, it was not without criticism. But the generality
of the CES function is the key to its theoretical superiority
over the C-D production function. This generality is, of
course, not without costs. The problem of statistically
ficting the CES function is the challenge when using it for
applied research.



STATISTICAL ESTIMATION PROBLEMS

Estimation Techniques
C-D production function
The two-input C-D function can be written as

b, b
Y=AX 1y
1 72
Deviations between theory and observation create prob-
lems when estimating production parameters. The statis-
tical specification of the production function must accept
the fact that most of the disturbance or discrepancies be-
tween the model and observation are due to factors ex-
cluded from the equation and not entirely rationalized
by economic theory. Such things as errors in measure-
ment, the randomness of human behavior, etc., are not
always quantifiable with specific variables. The simplest
approach is to assume the disturbances enter into the
equation multiplicatively as a random variable u.
b1 b2 v
u=e .

Y = Axl x2 u

Under a logarithmic transformation, this stochastic C-D
function becomes linear in the parameters

InY=1nA + bl 1n x1 + b2 In x2 + Inu
or

InY=1lnA+b, Inx, +b, In x, + v

1 1 2 2 ¥
Assuming the proper distribution of the disturbance term
v, straightforward application of least squares will provide
estimates of the parameters of the equation. The ease
with which this function can be fitted with empirical data
virtually explains its popularity.

The production function equation may be only one
equation of a system of equations describing the produc-
tion relations causing concern about single equation esti-
mation of the C-D function. Single equation estimates
of the C-D production function are biased when the in-
dependent variables, in this case inputs, are correlated
with the disturbance term. Under such conditions, the
independent variables are functions of the disturbance in
the given equation. The result is a violation of the under-
lying assumptions of single equation regression regarding
truly independent variables. If the disturbance in the
production equation affects only the output and not the
independent variables, then there is no simultaneous equa-
tion (57).

Others have said that the disturbance term in a given
behavioral equation for an input is composed additively
of two terms:

1. the disturbance in the production function equation,

2. a disturbance specific to the behavioral equation,
and uncorrelated with the disturbance term in the pro-
duction function (82, 123).

Indeed, one would expect an input to respond in some
manner to fluctuations in output, particularly if the re-
source is used solely in one industry, and has restricted

mobility. Thus the production function generally speci-
fied for inputs x; as

Y = F(xi, u)

is considered directly in the factor demand (behavioral)
equation for input x; as

X, = f(zj, Y, v)

where v is the disturbance term for the behavioral equa-
tion of the first input and z; represents other input market
factors. Thus

x,= f[zj, £(x;, w), v)

And the total disturbance term for the behavioral equa-
tion is composed of u and v; the result is potential simul-
taneous equation bias (93).

The traditional, or classical, approach to specification
of the C-D production function assumes that firms operate
on a nonstochastic production function and maximize
profits. The specification is nonstochastic in the sense
that an exact functional relationship between variables is
postulated. The smallest amount of contact with eco-
nomic data, however, will demonstrate that not all data
points lie exactly on the lines representing the func-
tions. The econometrician makes the equation stochastic,
or random, with the introduction of the random distur-
bance term (87).

An alternative technique is the nontransmission ap-
proach. The technique requires that each input be un-
correlated with the disturbance term in the production
function to eliminate simultaneous equation bias. This re-
quirement can be met by assuming that the production
function is stochastic, or random, and that the firm max-
imizes the mathematical expectation of profit (93, p. 1-16;
123).

This assumption is particularly applicable to agricul-
tural firms where practically all inputs are determined
before full information on actual output has been re-
ceived. Under such conditions, the use of inputs is at
least more independent of actual output and correspond-
ingly less correlated with the disturbance term in the pro-
duction function. Of course, it would be absurd to argue
that inputs could always be wholly independent of output
decisions. But by assuming a stochastic production func-
tion, entrepreneneurs are seen as aware of the stochastic
nature of production. As Zellner, Kmenta and Dreze
observed, *. . . one-period maximization of expected re-
turns is just a step in the direction of a proper treatment
of stochastic elements in a firm’s sequential decision-
making process under uncertainty” (123, p. 794).

The proper strategy for the error term in the estima-
tion of the C-D function deserves comment. Clark Ed-
wards hypothesized that the multiplicative error is as-
sumed for the stochastic C-D function not because of eco-
nomic theory, but because it permits the logarithmic trans-
formation. He therefore fit several alternative C-D func-
tions with a multiplicative error and with an additive er-
ror (25) such as
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and

Y=A xlbl xzb2 + v,

Although the results were substantially different, indica-
tive of error misspecification, it is hard to see how much
of the difference was due to the alternative estimation
techniques used. The first equation can be estimated by
normal least squares after a logarithmic transformation.
But the second equation remains nonlinear and requires
a nonlinear estimating technique.

The argument may be academic. The error term in a
production function is designed to measure the effects of
missing variables. It could be argued that under the C-D
formulation, the misspecification would have a multipli-
cative effect upon output as do the specified inputs. The
multiplicative error term in the function may thus satisfy
the least squares assumption by appealing to the multi-
plicative central limit theorem (35).

However, when a multiplicative error term is trans-
formed logarithmically into a multiplicative lognormal
disturbance for linear regression, attention is shifted from
the conditional mean to the conditional median. Since
the conditional mean is the prime target of most studies,
Goldberger has advised that researchers report the value
of the adjusted residual variance when linear logarithmic
regressions are run so that results can be adjusted to avoid
potential bias (36). Goldberger did concede that in
practice, the minimum variance unbiased estimators after
adjustment may not differ substantially from those
achieved by normal least squares with no adjustment.

The possibility of simultaneous multiplicative and ad-
ditive errors has also been examined, but no statistical
grounds have been presented for a choice between the
alternative specifications (37).

CES production function

For the CES function, a logarithmic transformation
will not resolve the nonlinear property. The two-input
CES can be written

- -8 _ -gq -v/g
Y Y[blxl + (1 bl) x, ] u

with u being a multiplicative random disturbance. A
logarithmic transformation results in

_ _ -8
InY=1ny - v/g In [blxl

-8
+ (l—bl)x2 ]+ 1Inu,

The function remains nonlinear, as no monotonic transfor-
mation can separate the parts of the second term:
-8 -8
In [b x + (1-b.) x .
[ 1 ( 1° "2 ]

The diversities in methods of estimation and in empiri-
cal results are a direct result of the need to find estimates
of y, by, g, and v in an equation that is strongly nonlinear.
Initial attempts at estimating the CES function were de-
signed to estimate the nonlinear equation

- -g _ -g
z [blxl + (1 bl) X, ] .

To accomplish this task, estimates of g and b; must be
derived from the data. One approach was suggested by
Arrow et al. in their article that introduced the CES func-
tion (1,88). If the CES function is restricted to the case
of constant returns to scale, i.e.,, v = 1, one can estimate
the elasticity of substitution from the marginal produc-
tivity condition under cost minimization by regressing
the value of output per worker on the wage rate. If, how-
ever, the CES function is generalized to allow empirical
determination of the return to scale, this method is no
longer feasible.

Assuming cost minimization and using marginal pro-
ductivity conditions, one could also equate the input price
ratio to the ratio of the marginal products

Y_=MPX1
T Msz ¢

Including a2 multiplicative error term and transforming by
use of logarithms we obtain

w MPx
x - + .
In - In Msz Inu
In Appendix I, it is shown that
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Fitting this equation with data on input prices and, quan-
tities will result in estimates of b; and g, denoted b; and
A

Substituting these estimates into the nonlinear term,
Z, results in
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This form is now linear in the remaining unknown pa-
rameters and can be estimated by simple least squares.

Although alternative side conditions can be used, one
must be careful of single equation bias and serial correla-
tions with respect to specification errors, as well as the
questionable validity of the initial assumption of cost
minimization. The feasibility of side conditions under non-
constant returns to scale remains tenuous (21).

Estimation of the CES function directly has the ad-
vantage of requiring only the specification of the pro-
duction function form and not side conditions based on
the assumption of cost minimization and marginal produc-
tivity conditions.

The Taylor Series Approximation uses initial values
possibly derived from one of the previous indirect estima-
tion techniques, to a first-order Taylor Series expansion.!
Kmenta has suggested that the technique be applied to
the logarithmic form of the CES, i.e.

-8

InY=1ny - v/g In [blx1
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+ (1 bl) x, ] + 1n u.

This form can be written more concisely as
InY=1ny ~ v/g f(g) + 1n u,

The term f (g) can now be expanded around the value
g = 0 in a Taylor Series to approximate its value (64,72).
Then, disregarding the terms of third and higher orders,
the expansion becomes?

£(g) = £(0) + £'(0)" (g=0) + 2L f"(O) (g-0)2
=0+ [- by in xy + (1—b1) in x2] (g)
+ 1/2 [b(1-b)[1n x, - 1n x2]2](g2)

ITaylor's Theorem: Let f be a function that is continuous to-
gether with its first n-1 derivatives on an interval containing a and
x. Then the value of the function at x is given by

f(x) = £(a) + £'(a)e(x-a) + flz;fa—)-(x-—a)2
n
R fTfél(x-a)nﬂ?.ﬂ(x,a)
where
X n
Rn(x,a) =J (x;_:) nt+l () dt
a

See George B. Thomas, Jr. (112, p. 790-791).

2J. Kmenta found that provided the second order term is in-
cluded, the error from neglect of the higher order terms is not
serious unless both the capital-labor ratio and the elasticity of sub-
stitution are either very high or very low (65, p. 186).
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f(g) = -g [bl In x
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The logarithmic form of the CES function may then be
approximated by

In Y =1lny - v/g [—g[bl In x

1
+ (l—bl) In x2]

+ 1/2 g2 [bl(l—bl)(ln X = 1n x2)2]] + 7

= 1lnvy + vb1 ln x, + v(l—bl) ln x

1 2

2
- 1/2 gvbl (l-bl) (1n Xy = 1n x2) + ¥

where z = [u — (v/g) — neglected higher order terms
of the expansion of f (g)}. This form is linear in the
unknown parameters and allows direct estimation of the
parameters.

The approach must be used with some reservations.
First, the undue amount of multicollinearity that could be
introduced by expansion around g — 0 might only be
prevented if one had some a priori estimate of the distri-
bution parameter, b; (1). Second, some doubt is created
by this method, since the expansion occurs around such a
crucial variable as g. If g = 0, the CES becomes equiva-
lent to the C-D and one has assumed away the crucial
question of which form is proper and introduces a bias
in favor of the latter. Third, and most important, when
more than two variable inputs are used, the equation ob-
tained from the above expansion is highly overidentified
and consistent estimates are not possible (50).

The traditional method for estimating the coefficients
of a linear function such as

= A+ b.x + b

11 7 2

+u t=1,n
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is to minimize the expression
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If one approaches the CES function in a similar manner,
the expression becomes

. , ~8) ~v/e)2

—g _
L Y[blxlt + (1 bl) X,

t

One technique for minimizing this expression was used
by Clark Edwards in estimating C-D production functions
with additive errors. Using a Taylor series expansion of
the CES function, initial guesses, labeled y°, b°;, g°, and v°,
were used to form the following expression,
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where the first derivatives are evaluated at the initial
values designated by subscript zeros (25). Note that this
is a first-order Taylor series expansion of the untrans-
formed CES function as opposed to Kmenta’s approach
of expanding only one term of the logarithm of the CES
function.
The next step is to find values for y, by, g, and v,
which minimize
v 2
s, =1 (0 -¥)°.
t=1 ¢t ¢

These values are then labeled ¢!, bs?, g!, and v! and
used to form the above expression at new values.

At the second stage, then,

1 1 1,1 oY
1_ .1 1l -g - -g ,-v/g t 1
Yo =v [b1 x. t (1 bl) Xyp ] + S 1(Y"Y )

Y Y aY
t 1 t 1 t 1
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1
and the expression to be minimized is
n
82= b (Yt-Yi") 2
t=1

which gives new values for y, by, g, and v. This procedure
continues until the parameter values converge to a par-
ticular set of values. The number of iterations necessary
depends on the quality of initial guesses and, the pro-
cedure may only succeed in finding a local minimum.

A simultaneous equation approach to estimation of the
CES production function used by Bodkin and Klein is a
modification of a technique developed by Eisenpress and
Greenstadt (4,26). Beginning with a similar expression
to be minimized as above with the addition of the term
10Xt to allow for disembodied neutral technological
change at the rate of 10A-1, the expression to be mini-
mized would be written

n At
s= (Y -vyl0""[b
t=1

-g,-v/g\2
+ (1-b,) X,c] )

-g
1%1¢t

a system of equations necessary for minimization is
formed. The system becomes
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Each of these equations can then be expanded about as-
sumed initial values of the parameters possibly derived
from the Taylor Series approach. The system of equations
after expansion is illustrated by

2 2
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and so forth.

These equations form a system of live linear equations
in the five unknown parameters. The procedure then be-
comes iterative as the system is solved for parameter
values, AL, 1, by}, g!, and v!, which minimize S, and new
equations are formed. The procedure followed by Eisen-
press and Greenstadt was modified to approach the mini-
mum S more efficiently.

A more recent estimation technique developed by
Tsurumi uses a procedure based on Marquardt’s maximum
neighborhood algorithm (114). Employing initial pa-
rameter estimates based on the approach of Arrow et al,
the following first-order Taylor Series expansion.

Y = Yex [blxl-g + (1—bl)x2_g]""/g - l’%}] G-y
i 'Jo

h4 o aY 0 oY [¢)
+ [fb—} (bl-bl) + [E] (g-g ) + [5_\7] (v-v)
1l|o [o] o

+ [%]o 0-2°%) + r

was fitted to obtain estimates of ), y, by, g, and v. r is
a remainder term for the expansion. As in the previous
procedures, this iterative scheme can be carried on until
it satisfies some convergence criterion established for the
model. Tsurumi then computes the five partials,
Y oY oY Y oY

= — = — f = = = —— f = —
£ » £ I T fp=5v 55 m >
at the parameter values obtained at convergence. The
second step is to regress the dependent variable

A -8 ~8y-v/g
Y - ye [blxl + (1—-bl)x2 ]
on these estimated partials. An alternative dependent

variable actually used by Tsurumi is obtained by dividing
the original expansion by one of the partials such that
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Tsurumi concluded that the choice of the exogenous
variable and data may dictate the validity of Eisenpress
and Greenstadt’s conclusion that the two-stage algorithm

applied to a nonlinear system tended to yield poor results
(114).

Comparing Estimating Problems of
the C-D and CES Functions

The estimation of the C-D production function has its
difficulties. But in comparison to the difficulties of esti-
mating the CES production function, its statistical simplicity
is obvious. However, simplicity is not enough for statistical
superiority. For applied research, statistical superiority real-
ly turns on the question of robustness of the estimating tech-
nique with respect to different types of data and the re-
liability of the results. Any alternative to the C-D func-
tion that is to be considered superior must match its sta-

tistical robustness and provide more useful and correct in-
formation. A brief re-examination of the shortcomings
of the current techniques for estimating the CES may pro-
vide an insight as to the areas that future work on its
estimation should focus.

The principal disadvantage of the indirect estimation
techniques is that they require an assumption of equi-
librium. A side relation, which is derived from marginal
productivity theory under cost minimization, and a pro-
duction function, derived from theory, must be posited.
The direct estimation techniques require acceptance of
only the latter theory.

The major criticisms of all the direct estimation tech-
niques lie in the heavy reliance upon Taylor Series ap-
proximations; these require increasingly better starting
values to obtain convergence as the number of inputs is
expanded. Inasmuch as the C-D is easily generalized to
more than two inputs, the above shortcomings are very
serious. The development of a consistent technique for
obtaining starting values for a k-input CES function would
greatly reduce estimation difficulties if the Taylor Series
approach must be used. The techniques for achieving
convergence could likewise be improved along the lines
of Tsurumi’s approach by using the Marquardt algorithm,
which will be discussed later. Despite the above criti-
cisms, the direct estimation approaches seem most promis-
ing. The following chapter will develop quite carefully
a technique for obtaining starting values for the Mar-
quardt algorithm.

AN ALTERNATIVE APPROACH TO DIRECT ESTIMATION
OF THE CES PRODUCTION FUNCTION

Next, a method of estimating the CES function by
maximum likelihood functions and the Marquardt algo-
rithm will be discussed. Since the Marquardt algorithm
is the method used in the example of this study and since
it is based on both the Taylor Series method and the
method of steepest descent, we shall outline these concepts
first.

Least Squares Estimation

Before examining the techniques individually, a review
of the solution of a linear model would be informative
for comparison. Assume a linear model defined by

where Y=X8 + ¢
xll' P th Bl €
X = 8 = M E =
xln tn et En

The sum of squares for this model is defined as

) Poxp?  [Lo]
Ss(8) = Y, - 8. X .) 1.0
PR TS ti
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or in matrix form

[2.0]

The linear model is solved by minimizing the sum of
squares. It is accomplished when all the partial deriva-
tives with respect to the §, are equal to zero.

%Séel - —2X'Y + 2X'X6 = 0

SS(8) = Y'Y - 208'X'Y + 6'X'X®6

==X'Y + X'X6 = 0 .,
The solution set § thus becomes

[3.0]

8 = (X'%)IX'Y [4.0]
Note that in this linear model the solution for ¢ is de-
pendent only upon X and Y and no § appears on the
right side of [4.0]. The normal equations derived directly
from [1.0] are of the form

k
3ss(g) K k Biiletxti)
= I(Y,- T 8.X.) =0 [4.1]
t  t=1 T t=1 20,
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k
since 50, X is linear in the #;s, the partial derivative
t=1

is independent of §,.

Substituting § into equation [2.0] yields the sum of
squares of the solution set

SS(6) = Y'Y - 26'X'Y + 8'X'X®0
= Y'Y - 6'X'Y - 8'X'Y + 9'X'X6
= Y'Y - 0'X'Y - 8'(X'Y - X'X8)
since § satisfies [3.0] by minimizing SS(6) this reduces to

S§s(8) = Y'Y - 8'X'Y.
This constitutes the residual sum of squares. It represents
the smallest amount of error that cannot be explained by

the regression. The amount of explained variation at-
tributable to the regression must therefore be

SS(8) - Ss(8)
Y'Y - 20'X'Y + 8'X'X0 - Y'Y + 8'X'X6

8'X'X6 - 20'X'Y + 6'X'X®6

(6 - 5)'x'x(e - 3) .

Thus, all values of § that satisfy SS(§) = constant value
K are given by

K = SS(8) + (8 = 0)'X'X(8 - 6) .

This equation can be identified as the equation for a
closed ellipsoidal contour with center at 4. As K in-
creases, the unpllcatlon is that the parameter sets of § that
satisfy the equation are further away from § and define
a sum of squares contour of larger circumference. A
100(1-a)%, confidence region for the true value of § that
yields a particular value K is given by

K = §5(8) = SS(B) {1 + == F(z,n-t, 1-a)}

where n — sample size and t — number of parameters.

The ellipsoidal contour concept can be seen more clear-
ly in figure 1. A simple two-parameter linear model is
depicted in terms of the sum of squares contours. In this
two-dimensional space of §; and f;, the contours are con-
centric ellipses about the point where SS(4) is minimized,
denoted (f;, f2). Figure 2 shows the third dimension
of the contours.

When the model becomes nonlinear, the absence of
an X matrix in the linear sense changes the problem
drastically. To illustrate the complications assume a gen-
eral nonlinear model of the form

Y = £(X,6) + ¢

13

SST(G) =

1. Sum of squares contours.

61

alternatively

Yy

SS(8)

= f(Xi,e) + €

(91 962) —_—> e
2. Three-dimensional sum of squares contours.



The sum of squares in this case becomes

n
2
ss(e) = J {v, - £(x.,0}" .  [5.0]
i=1
Again minimizing the sum of squares by setting all first
partials equal to zero, the normal equations take the form

n af(X
izl{ (Yi—f(Xi,B))

)

i’ } =0 [6.0]

a6

3ss(e) _
o6

where Bf(Xi,e) is not independent of §. This form
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should be compared to that in [4.2}. Clearly, the normal
equations cannot be linear in the parameter set § as in
the linear example.

When the model is nonlinear, the sum of squares con-
tours are not of any regular shape as in the linear ex-
ample. They are sometimes banana-shaped and may not
even close, but rather stretch to infinity.

A possible well-behaved nonlinear function is depicted
in terms of constant value sum of squares contours in
figure 3. In comparison, the broken line represents an
elliptical contour that would exist for some approximating
linear model. The figure also shows that at the minimum
point ((51, ég) the nonlinear contour becomes nearly el-
liptical.

6y /SS(6)=K

—_— T~

[

/

/

/
e
e
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3. Nonlinear sum of squares contours.

Taylor series approximation

This technique, sometimes referred to as the Gauss or
Gauss-Newton method, uses the results of linear least
squares in a succession of stages. The model is expanded
as a Taylor series with corrections to the several parame-
ters calculated at each iteration on the assumption of local
linearity., Assuming a nonlinear model of the form

Yi = f(xi’e) i=l’ LU n

14

the linear approximation of f(X;, §) at some given value
of g, denoted @, is

o
Y, = £(X,0) = £(X;, 8)
k 13f(X.,6)
i o
+ ——————— et e -
tzl 38 5 (B & £y
6=6
where the partial derivatives are evaluated at § = g°.
Then
o S )
Y= £(x;,00) + ) B A, 1=l, «.iym [7.0]
t=1
where
o o | AEx,,0)
B, =(6_~0) and A_ =| ——=— t=1...k
t t t ti aet E’___eo.

The expression (7.0) is linear in the B, and least squares
estimates of B; can be obtained such that

Xijur o o

e =8_+196

t t t
since §,° are the known starting values. The new values
of 6, denoted §,!, replace the original starting values,
6.° and the procedure is repeated until some convergence

(3+1) 3
0, - oy
b
et

criterion is satisfied, e.g., < C,where C

is a predetermined small number, e.3., 10¢ and the pa-
rameter set has converged to some set of values. Addi-
tionally, at each iteration the sum of squares is calculated
to see if a reduction in its value is achieved. If a reduc-
tion in value is not achieved at each successive iteration,
the estimation procedure is diverging and a closer starting
point must be picked.

n n
2
ss.(8) = ] {Y, - £(x.,6°) - ] B A7)
T o1 1 1 emp ttl

as compared to the actual sum of squares contour
n

ss(0) = § (Y, - £(x,,0)}° .
i=1 i i

Clearly as §°—f, the contours become identical and the
solution sets likewise become identical. The assumption,
of local linearity implies that §° is very close to . In
figure 4, the local linearity assumption is valid and will
lead to a correct solution since the parameter set (§;, f2)
is approximately the same for both the actual nonlinear
sum of squares contour and the Taylor series approxima-
tion. In figure 5, however, the local linearity assumption
breaks down and the solution is on a higher sum of
squares contour than the solution contour and likely to
diverge, rather than converge. The general direction of
the Taylor series iterations is toward the center of the



contour but the step size can be incremented to detect
divergence properties (47). The path to convergence is

not always smooth nor successful.

4. A successful Taylor series approximation.

5. An unsuccessful Taylor series approximation.

Method of steepest descent (gradient method)

The steepest descent method focuses on the sum of
squares defined by

n
ss(e) = | 1y, - £(x,,0} .
i=1
to search for the minimum. The technique is analogous
to noting the altitude of a number of points on the side

15

of a mountain, fitting a plane to these points, and noting
the direction of steepest descent in that plane. More spe-
cifically, the step is taken in the direction of the negative
gradient of S§(9), i.e.,

355(8) , 355(8) ,...,355(8) | T,

61 862 aek

Starting in a particular region of 4, make several runs
by selecting alternatives values for 6;, . . . , 6y and eval-
uate SS(4) ac these alternative combinations. Determine
levels of SS(#). Then determine the relative magnitudes
and signs of the slopes between contours and find a di-
rection to give the maximum reduction in S$5(9).

In figure 6, the procedure begins at point P with a
search in this local area. The direction, which is at right
angles to the contours, leads to point Q. There, repeat
the procedure until convergence to (6, 02) is achieved.
The procedure eventually defeats itself, for as one ap-
proaches the minimum, the slopes become more and grad-
ual and thus it becomes harder to estimate the proper
plane with further sets of trials (16). Thus after some
rapid initial progress, convergence may be achieved quite
slowly if at all. As with the Taylor series, the method of
steepest descent has a number of modifications that are
used to control the step size once the direction is found.
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8,

6. The method of steepest descent.

The combination of these techniques would have ob-
vious advantages. The method of steepest descent makes
very rapid progress until an area of approximate local
linearity is reached; that is the best area for the applica-
tion of the Taylor series expansion. The Marquardt algo-
rithm is composed of precisely this combination.




Transformation and Concentration

Transformation of the function

Hood and Koopmans suggested an approach for pro-
duction function analysis that is a feasible alternative to
the Taylor Series and simultaneous equation techniques
(58). The technique for determining starting values for
a nonlinear algorithm will be described for a k-input
CES production function. The k-input CES function can
be written

- -8 -8 -gq,-v/e

Y y[blxli + b2x21 + ... + bkxki]

k
i=1,...,n th=l.

t=1

In a more concise form it becomes

5 -g.,-v/g
Yi = Y[tzl btxti] where i = 1,...,n

Traditionally in the application of least squares regres-
sion, it is assumed that the observations Y,, . . . , Y, are
independently, normally distributed with constant variance
and expectations specified by a model linear in the set of
parameters. The k-input CES clearly is not linear in the
parameters.

Box and Cox (6) have suggested that after a suitable
transformation has been applied to the Y;, a normal,
homoscedastic, linear model might be appropriate. Of
particular- interest among the parametric family of trans-
formations from Y to Y™® examined by Box and Cox is
the transformation defined by

A
X-A—l (A#0)

TR

In Y (A=0)
where the parameter ) defines a particular transforma-
tion (6). In general, for each A, YT™® is a monotonic
function of Y over the admissible range. It is assumed
that for some unknown ), the transformed observations,
YTR(i=1, . .., n) are independently normally distri-
buted with constant variance ¢% and with expectation
specified by

TR

E(Y ) = X8
where YR is the column vector of transformed observa-
tions, X is a known matrix, and 4 a vector of unknown
parameters associated with the transformed observations.
Rewriting the k-input CES function under considera-

tion

-g1-v/8
Y, =[] 6.x7]

t ti
i t=1

and using the above transformation in addition to an

error term, p the optimal value of A for estimation, can
be found:

= —g/v
where et Y bt
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Al If o x 817V/E |y
-1 thed
i~ _t=1 +u, (A£0)
A A .
YR -
L k
= -gq-g/v
In¥Y, =1 ([ ] 0% 1751 +u (40)
t=1
If A = -g/v the above transformation appears as
A ko
Y. -1 I8 -1
1 toed
T y oy (1£0)
YR
1 k
- -g,-v/g
In Y, = In {[z6,x /] }+”i (x=0) .

Since A — 0 implies g — O the problem of dealing with
an indeterminate form, —v/g, is avoided. For if g = 0,
the CES function reduces to the C-D form and can be
estimated with only a logarithmic transformation. At
this point, estimation technique will be applied to the
region defined by A-£0. At a later point, the region
for examination of values of \ will be narrowed substan-
tially.

The purpose of this transformation was to allow esti-
mation of the parameter vector §. To achieve this esti-
mation, the likelihood function associated with the trans-
formed function must be examined. Appendix III demon-
strates that the probability density for the untransformed
observations, and hence the likelihood in relation to these
original observations, is obtained by multiplying the nor-
mal density by the Jacobian of the transformation.

The likelihood in relation to the original observations
Y is

TR TR
1 O -xe)'( - Xxe) .
L = ———= exp - J(A;Y)
(21:::12)“/2 202
where the Jacobian of the transformation is
n dY'iR
J(AY) = I o .
i=1 i

Large sample maximum likelihood theory can be applied
to maximize the likelihood function for the parameters
to be estimated. This requires as a first-order condition
that all the first partials be set equal to zero. The solu-
tion to the four-equation system yields estimates of the
parameters. However, these equations are nonlinear in
the parameters and it seems we have circled back to our
original problem of nonlinearity.

The logarithm of the likelihood function, although
its first partials are also nonlinear, provides a solution.

n n 2
L=1n9.=-21n21r—21nc
- 3=75 {(YTR-xe)'(YTR-xe)} + 1n J(A3Y).
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The function, L, is composed of two parameter sets, A and
. This makes it possible to assign temporarily fixed val-



ues to the parameters of one set in order to carry out a
provisional maximization for those of the other set (58,
p- 157). Given ), the function L is, except for a con-
stant factor, the likelihood for a standard least squares
problem. The specification of A implies that g must also
be specified. Hence the maximum-likelihood estimates of
gs are the least squares estimates for the dependent
variable YT® and the estimate of o2, denoted ¢° ()), is
the residual sum of squares RSS()) divided by the degrees
of freedom, i.e., & (A) = RSS(A)/n-k-l

Since an analysis of variance is unchanged by a linear
transformation, the initial transformation is equivalent to

A
hd (x#£0)
*
YR
InY (A:O) .
Thus least squares estimates of the §s and 03 ()\) obtained
from k
A ) etx';? e
YTR 4 ¥i=18 ie=1
A A
are equivalent to those obtained from
k
TR* A _ v~ B
S SR 1
t=1
when g and v are fixed at specific
A
values. The likelihood function for Y is not, however,

the same as the likelihood function for YT®. This can be

easily seen if one compares the alternative Jacobians. The
A

Jacobin for Y is

n dY i n A—1
I T - n IAY 1 I
i=1 i i=1
X
T =
whereas the Jacobian of Y R. Y—A-—]—' is
n dYTR n
i -1
i=1 i i=1
The likelihood function that is being maximized is that
A
of YT® not Y . However, the fixing of A allows the use

A
of the least squares results employing Y™ or Y as
equivalent transformations to maximize L.

Concentration of the likelihood function

The logarithm of the likelihood function of the trans-
formed CES is a function of two parameter sets and the
inputs, i.e.,

17

L=ln£=-%ln 211-%1n02
n
- -1—2 (@™ - xe)' (r™® - x0)} + (A-1) ] In Y,
20 i=1
where X is a matrix of inputs of the form
P -g
X112 %1 - K
x’lZ .
X = . .
) ]
xln . L] L] L] xkn L]

Thus L= £(0,\; x)

If values are assigned to g and v, thus determining the
value of ), then least squares estimates of the trans-
formed model can be used to find the maximum value
for L, given each A. Under these conditions, the pa-
rameter set § used to evaluate L becomes a function of
the parameter set A and x, ie.,

This can be illustrated graphically (figure 7). If we con-
sider § and A as scalars, the likelihood function forms
contours related to different combinations of parameter
values. Any point on a given contour represents the same
value for the likelihood function.

L = £(8,A;x) = constant value

7. The parameter set as a function of A.



The functlon §(A;x) is a line on the graph connectin
the values of § that maximize L for a given A. Thus £
is the set of values of the parameters that maximizes L
for A==)°. The task of finding the maximizing values
of § for each X is solved and the next step is to find the
maximizing values of )\, denoted A(x).

This step is made easier by recognizing the concept
of a concentrated likelihood function (58). The above
procedure has concentrated the likelihood function

L = £(0, A; x)
on ) by making the maximizing value for ¢, denoted §,
a function of ), i.e.,

6 = 6(1; x) .
Thus
L* = f(é(x; xX), s x) =gy x) .

This concentrated likelihood function, g(A; x), contains
only one parameter set and can be maximized. This is
graphically demonstrated in figure 8 treating A as a scalar.

g(x;x)

l
!
I
I
|
|
I

A () A

8. Maximization of the concentrated likelihood function.

The value denoted A(x) would be the value of A
that maximizes the concentrated likelihood function,
g(A;x). Corresponding to the value of A(x) (the maxi-
mizing values of g and v) is a parameter set.

0= G(A(x)' X) = O(x)
that was found earlier by the use of least squares. View-
ing the _two-step procedure graphically in flgure 9, the
maximizing value of A, denoted A(x), has a unique pa-
rameter set, §(x), associated with it.

The mathematics of the likelihood function concentra-
tion is relatively simple.
(X; x) by simple least squares, the log likelihood function

L=-%1n 2n——15{(YTR-xo)'(YTR
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-3 1n o2+ 1n J0; 1)

with a fixed A reduces to a concentrated likelihood func-
tion which, except for a constant, is

Given that we can find § — §

- x0)}

L* = 3‘2- 1n ’320) +1InJ(O; ¥) = gl x) .
Evaluating the Jacobian for fixed A
B gyt Ly Sy
InJQO; ¥Y) = 1nl il =1n 1 IYi ]
in

n
(>-1) ]} InY
1=1

Substituting, the concentrated likelihood function, except
for a constant, becomes

L% = - 52‘- 1n 8200 + (A-1)

i

n
z log Y

i=1

i

= g(d; x)

The estimation procedure is complete once one finds the
value of ), denoted A(x), that maximizes L* and con-
currently the value of § based on this A value.

In summary, a four-step procedure is used:

1. Perform the transformation upon the CES function
and apply least squares to the dependent variable

A
y for given A, to get estimates of 6,.
2. Use the residual sum of squares from the above to
estimate ¢2, denoted &2 (A), for each value of .

3. Evaluate L* and graph to select the value A(x)
that maximizes L¥.

8 L = £(8,A;x) = constant value

8(x)

g(x;x)

|
A0 A

9. The two-step maximization procedure.




4. Given the value A(x), return to the regressions
performed in step (1) to find the maximizing
value for the §;s corresponding to A(x) and. these
become §(x).

The obvious difficulty, of course, is that \ is composed
of two unknown parameters, v and g. The maximizing
value of A, A(x), can be formed with any number of
combinations of v and g. Obviously, if we select values
for g, we are biasing our results on a crucial parameter.
Therefore, it would seem better to try to find some a
priori evidence regarding the returns to scale parameter
(v). Roy Black concluded that the relative bias was 5%,
or less if v was constrained to the C-D value (3). Mad-
dala and Kadane, however, found that using the C-D
function to estimate v in a CES function biased the value
downward when the elasticity of substitution was greater
than upity and biased it upward when the elasticity was
less than unity (68).

The degree of bias was not evaluated. It would ap-
pear best to conduct the search over both parameters.
Initially it seems best to set v at the C-D value and search
over values of g to form A. Once A(x) has been found,
the amount of change in A(x) resulting from changes in
v can be analyzed to get an approximate value for A(x).
Some flexibility exists, since the technique is used solely
to obtain starting guesses for the Marquardt algorithm.

The Marquardt Algorithm

Most algorithms for the least squares estimation of
nonlinear parameters have used either of two approaches.
Either the model is expanded as a Taylor series with cor-
rections to the several parameters calculated at each itera-
tion on the assumption of local linearity, or various modi-
fications of the method of steepest descent have been used.
Each of these approaches has a serious shortcoming. The
Taylor series often diverges on successive iterations instead
of converging. The steepest-descent (or gradient) meth-
ods are agonizingly slow to converge after the first few
iterations (G9).

The Marquardt algorithm is based on the maximum
neighborhood method which, in effect, performs an op-
timum interpolation between the Taylor series method
and the gradient method (69). The algorithm combines
the desirable property of the gradient method of converg-
ing from an initial guess that may be outside the region
of convergence of other methods, with the desirable prop-
erty of the Taylor series of rapid convergence once the
vicinity of the converged values has been reached. The
best features of these algorithms are combined while
avoiding their most serious limitations. An examination
of these alternative techniques will provide a better grasp
of the problems that are overcome and the reliability of
any solution.

Marquardt initially examined the behavior of the two
techniques from a common point on some SS(#) contour.
Monitoring the angle y between the alternative directions
that the techniques dictated, he found that y usually falls
between 80° and 90°. Any improvement in these meth-
ods must in some sense interpolate between the alternative
solution vectors (69).

19

Figure 10 illustrates the behavior of the Marquardt
algorithm. The vector computed by the Marquardt algo-
rithm will be somewhere inside the angle y, depending on
the selection of some constant. The algorithm can be con-
strained to either technique or allowed to interpolate be-
tween them as shown by the vector M. The vector G
represents the gradient vector and the vector T the Taylor
series solution. The angle y is formed by these two
vectors. In this example, the Taylor series goes to a
higher sum of squares contour rather than a lower con-
tour; thus it is diverging. The gradient vector is going
across the elongated base of the nonlinear contour.
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10. The Marquardt algorithm.

impact of the TCA approach

Generally, a problem can be constructed to defeat any
solution procedure. Also, most pure methods can be im-
proved through modification. Thus no method can be
called “best” for all nonlinear problems, but the TCA
(Transformation-Concentration-Algorithm) approach cer-
tainly insures a greater versatility with regard to modifi-
cations of the algorithm or of the production function
form. The CES, like the C-D, can now be estimated with
only data on inputs and outputs, without regard to factor
prices, expansion paths, etc.

The question of model superiority cannot be resolved
by merely advancing a new technique that simplifies esti-
mation. The C-D function has remained popular in ap-
plied research because of its roubustness with all types of
data. The CES function and TCA approach must also
stand this test before a final judgment can be made.

———
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APPLICATION OF THE NONLINEAR ESTIMATION TECHNIQUE

Preliminary Evidence

The Data

The cross-section data used for applying the estima-
tion technique were obtained from a study of the current
financial structure of farms in the Columbia Basin Project
of central Washington (119). Financial and farm man-
agement data for 1966 were obrained by personal inter-
views on 92 randomly selected farms of average or above
size. Farms of this size, averaging 370 acres, reduced the
probability of operators having full-time nonfarm employ-
ment. Major inputs were delineated for the cropland
production process.

Machinery

Each farm surveyed provided a complete inventory
of all machinery in use on the farm. Estimated current
replacement costs were placed on each item to arrive
at average investment in machinery. Average machinery
investment for all farms was about $20,000. Machinery
was the largest single fixed capital asset, other than land
and improvements, used in cropland farming.

Labor

Farmers estimated the number of 10-hr days worked
by themselves as operators, their families and hired labor,
both part-time and full-time. Individual family members
who worked more than 200 days were considered as op-
erators. On the average, operators worked 283 10-hr
days, family labor worked 30 10-hr days, and hired labor
worked 150 10-hr days.

Operator and hired labor were grouped together to
represent male, skilled labor. Family labor was desig-
nated as unskilled. The limited amount of information
on the characteristics of the labor input dictated this clas-
sification. Only labor directly connected with cropland
production was included.

Cash expenditures

Cash production expenditures include cash farm busi-
ness expenses, such as custom labor and machinery for
very specialized jobs, fertilizer, seed, taxes, and interest
paid on mortgages and debts. Depreciation expenses on
machinery and improvements are not included. Since
many farms also raise livestock, it was necessary to ex-
clude expenses not directly attributable to cropland pro-
duction.

Land

All land used in cropland production was classified
by type and expressed in terms of current value. The
farms surveyed ranged from 75 to 1,150 acres of cropland
and averaged 370 acres. Average investment in land was
$165,000. The estimated value of land provided by the
farmer was corrected for land that was fallowed, in the
soil bank, or used for other than crop production.

The above data provide crude information on two
types of land input, two types of fixed capital, and one
type of variable capital. The corresponding measure of
output was that part of gross farm income directly at-
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tributable to actual cropland operations.

Using these definitions, 69 of the original 92 farm
surveys were considered as the sample set. Those elimi-
nated lacked some information.

Fitting the Cobb-Douglas function

Initially, the C-D function was fitted to obtain an esti-
mate of the returns to scale. Remember that the C-D esti-
mate of returns to scale is relatively good if the actual
elasticity of substitution approaches unity. The C-D form,
fitted after a logarithmic transformation, was

by by b2 b, b
- 1,°2,°23,.°4,°5
Y Axl x2 x3 x4 x5 u

where Y — cropland revenues
x; — machinery evaluated at replacement costs
x2 = operator labor and hired labor expressed in
10-hr days
x3 = family labor expressed in 10-hr days
x4 = cash expenditures
x5 = land expressed in dollars of current value.

The results of the regression using the logarithmic
form of the C-D function are summarized in the correla-
tion matrix in table 1.

TABLE 1. Correlation matrix for C-D function.

X1 X2 X3 Xy X5 Y
x; 1.0000 .6393 - .0295 .6528 .6511 .6917
X2 1.0000 - .3562 L7217 .6427 .7347
X3 1.0000 -.1888 -.0737 -.1370
Xy 1.0000 .6340 .8813
Xs 1.0000 .6346

The following relationships among inputs are suggested
by the correlation matrix:

1. Family labor is inversely related to all other inputs.
Therefore, as the farm becomes larger and output
increases, the reliance on family labor declines. The
smaller farms generally use family labor to a larger
extent to reduce labor costs,

2. The high correlation between cash expenditures
and farm income indicates the importance of vari-
able capital in this area.

3. The validity of farmers’ estimates of land value may
explain part of the low correlation between land
and gross farm income, but two characteristics of
the sample may also provide some insights. First,
the largest farms were almost completely devoted
to forage and small grain crops while the higher
valued land composing the smaller farms was
more intensively cropped (119). Since the land
input is expressed in dollar values, size in acres is
lost. Thus, smaller acreages of high value are con-
sidered identical in land input to larger farms of
less per acre value. The gross farm income from
these supposedly identical land inputs depends



heavily upon the relative prices for the respective
crops. Second, the composition of payments for
rented land is important. If the rent is paid on a
crop share basis, that portion for rent does not ap-
pear in gross farm income. If the rent is paid in
cash, it is included in gross farm income, but also
added as a cash farm expense. Thus, the investment
for cash-rented land is probably overestimated,
while the return to crop-share rented land is under-
estimated.

4. The correlation between machinery investment and
farm income reflects the diversity of machinery re-
quirements on farms that are intensively cropped
and farms that are largely forage and small grain.
Equal yields in terms of gross farm income may
have very different machinery requirements, de-
pending on type of operation.

5. The major labor input is apparently operator labor
and hired labor. It is inversely related to family
labor, as expected, and the results imply that family
labor is a relatively insignificant input.

The dominant characteristic of the data at this point
is the key role played by the variable factors, cash farm
expenditures and nonfamily labor. The regression results
in table 2 support this conclusion.

TABLE 2. Regression results for the Cobb-Douglas production
function.
Parameters Estimated coefficients t-values®
A .1460° -1.6113
Machinery 8 .2107 1.6446
Op. and hired 8,
1abor .3766 1.9173
Family labor B3 .0208 .9439
Cash expend By .7510 7.7209
Land 85 .0234 1635

Sun of 8, = 1.383

2

Corrected R® = .8129

F = 54.7334

3The t-value is the ratio of the estimated coefficient to
the estimated standard error of the coefficient.

bTh1‘s is the anti-logarithm of the estimate of log A.

Two statistics in particular will be used to examine
the results of the C-D function. The F-value is used to
test the overall relation, that is, whether x;, X3, . . . , X3
influence Y. The value for the F-test with probability of
.01 of rejecting a true hypothesis and degrees of freedom

(t + 1)-1and n - (t 4 1) is
Fs563 — 3.32

The F-value based on the regression is 54.7334 and the
hypothesis that the x, do not influence Y is therefore re-
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jected. The correct R2, or corrected coefficient of deter-
mination, implies that about 819, of the variance of the
dependent variable can be explained by the independent
variables.

The t-values test whether each coefficient, B, is equal
to zero. The critical t-value for testing the hypothesis
of B, =0 at different levels of significance with n—(t-1)
degrees of freedom are, for this study,

tgs, .01 = 2.66
tes, .05 = 2.00
tea, .10 = 1.67
tes, .50 — .678.

The cash expenditure input is significantly different from
zero at the .01 level. The coefficient for operator and
hired labor is significant at the .10 level, while the coef-
ficient for machinery is significant at some level greater
than .10. Although family labor is significant at the .50
level the probability of rejecting the hypothesis that 83 —
0 when it is true, namely .50, is so large that it cannot
be considered much better than the coefficient for land.
The level of significance is clearly higher for f; than for
BBs, but neither appears to explain much of the movements
of gross farm income. The efficiency parameter A is
significant at some level slightly more than .10.
A complete reliance upon the t-test for judging the
relative significance of the coefficients must be avoided.
Draper and Smith have observed,
The effect of an x-variable (x, say) in determining a
response may be large when the regression equation in-
cludes only x,. However, when the same variable is
entered into the equation after other variables, it may
affect the response very little, due to the fact that x, is
highly correlated with variables already in the regres-
sion equation (23).

The t-test of the coefficient for machinery may be an ex-

ample of such a case.

Using an F test for a subset of coefficients based on
the sum of squares attributable to the subset, it may be
possible to explain the relatively low significance level of
the coefficient for machinery. The results of the regres-
sion imply that at least two variables, cash farm expenses
and operator and hired labor, have some explanatory
powers. Further, the high correlation between machinery
and each of these variables may be masking some of the
influence of the machinery input. But of greater concern
is whether less significant variables are affecting the de-
gree of certairty one should have in including machinery
as a significant input. The tests would certainly be more
important if one were trying to select variables to include
in the model, but the test does provide useful insights,
even though the intention is to retain all inputs and
ascertain relative productivities.

Beginning with a regression containing cash farm ex-
penditures and operator and hired labor, the remaining
variables can be added to determine the addition to the
explained sum of squares from each set relative to the
residual sum of squares for the regression with all the
variables included. The F test for the relative subsets can
then be constructed. The hypotheses and the respective
conclusions based on the F test at a .01 level of signifi-
cance are listed below:



Machinery Hy:8. =0 Reject
Family labor Hy:8: =0 Accept
Land Ho:8 =0 Accept
Machinery and land Hp : 81=85=0 Accept
Machinery and

family labor Hj : B1=R:=0 Accept
Family labor

and land H, : 83=5=0 Accept
Machinery, family,

labor and land Hp : B1=f3=B5=0  Accept

The test of the first hypothesis indicates that the ma-
chinery input is significant at the .01 level when included
in a regession with only cash expenditures and operator
and hired labor. The tests of the other hypotheses imply
that the inclusion of family labor or land investment, or
both, is masking the total influence that the machinery
input may exert upon gross farm income.

The returns to scale under the three-input function,
namely cash expenditures, operator and hired labor, and
machinery investment, was 1.3166 as compared to returns
to scale of 1.383 under the original formulation. This is
particularly important, since the objective of this prelimi-
nary investigation of the C-D function is to arrive at an
approximate starting value for the return to scale pa-
rameter in the CES function.

Concentrated Likelihood Function

With an estimated value of v — 1.383, the 4-step
procedure outlined above can be applied to the CES func-
tion of the form

-8 -g -g -8
= + +
Y Y[blxl b2x2 b3:~:3 + b4x4
5
I b=l
t=1
where Y and the x, are defined as in the C-D case.
Step 1. Perform the transformation upon the CES
function and apply least squares to the dependent variable
A
Y for a given ), to get estimates of b,. The constant A
equals —g/v. Inasmuch as v has been set at v — 1.383
it is only necessary to search over values for g.
The CES form under examination can be written
more concisely after transformation as

-g.-v/g
+ b5x5 ]

2 -g
IoX -1

Y1 =1 B

A5k A
where

5 5 /v

Ie= Iy g b,

t=1 t=1

The range of acceptable values for gis — 1 < g < o0,
assuming the proper curvature for isoquants (1). The
choice as to the effective range of g over which to ex-
amine the likelihood must be tempered with some judg-
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ment as to possible values for the elasticity of substitution.
For this demonstration, values of g ranged from -.9 to
4.9, which implies an elasticity of substitution ranging
from 10 to .53.

For an analysis of variance, the equivalent form

5
Y = L 9
t=1

x "8
tt

can be used. Since v is constrained to the C-D estimate,
specifying values for g will determine the values of A and
the above equation becomes linear in the parameters with
estimates of §,s, denoted fs, derivable from the equation

A

Y = 8 ro.x. B+ x "8

-g
e.x + 6, 3%3 %4

1'1 272
+0.x. 8+ ¢,
55
Step 2. Use the residua] sum of squares from the re-
gression above to estimate 2 ()\) for each A. The interest
at this point centers on the estimate of the residual sum
of squares. This statistic divided by the degrees of free-
dom yields 42 (\), the adjusted residual variance. The
estimated adjusted residual variance for each value of A
is in table 3.
Step 3. Evaluate and graph L* to find the value of
A, denoted A(x), that maximizes the concentrated likeli-
hood function. As demonstrated before, the concentrated
likelihood function is, except for a constant, C,

0 2 69
- =In8°"()+ (A-1) I 1nY

2 i

i=1

Table 3 shows an evaluation L* over the range of —.9=
g=.9. The graph of the likelihood function in fig. 11
indicates that its maximum value falls in the range —.1<
g<.l. The elasticity of substitution must therefore lie
in the range 1.11 < ¢ < .91. Since the maximization
value for g would appear to lie close to zero, remember
that if g = 0, the CES production function reduces to the
C-D form.

Since the nonlinear algorithm will perform most effi-
ciently when the starting guesses are reasonably close to
the true values, it is desirable to examine the range — .1 <
g < .1 more closely. Table 4 and fig. 12 show the re-
sults of this examination.

Figure 12 implies that the data are consistent with a
set of starting values which could reduce the CES function
to the C-D form. Some crucial questions must be asked
at this point. By constraining v to the C-D estimate has
a bias been introduced toward the C-D form, ie., g = 0?
Is it necessary to search the concentrated likelihood func-
tion over both parameters g and v? The answers to these
questions, at least for this example, are in table 5 and fig.
12. The maximizing value of g appears to be invariant
with respect to the value of the returns to scale parameter,
at least over the range 1.00 = v = 1.766. These results
will be discussed in more detail later.

The concentrated likelihood function appears to yield
two equally good starting values for g. These values are

L*



implied when the maxmmlng values A(x) are found amined and from table 4 the following information can

with v = 1.38. The maximizing values are A(x) = be obtained:
-+.006 and A(x) = -.006. A(x) = 4.006 -.006
Step 4. Given the value ,\(x), it is possible to return g = -.008 --.008
to the regressions performed in step 1 to find the 6, cor- 01(x) = .1549 .1612
respondmg to the value of A(x) and denote these as 02(x) = .2858 .2791
8.(x) In this case, two values of A(x) are being ex- f3(x) = .0161 .0150
TABLE 3. Maximization of the concentrated 1ikelihood function -.9 =g 5.9
~1 “ - - - “
g A=-g/v o (1) L* - 0, 0, 0, 05
+.9000 -.6508 .0000001 -686.370 1.5066 .0885 .0001 4.0090 6.5989
. 8000 -.5785 .0000004 -654.380 1.2110 101 .0003 3.1982 3.9529
.7000 -.5061 .0000014 -644.277 .9625 .1154 .0004 2.5595 2.3559
.6000 -.4338 .0000043 -629.737 .7558 L1312 .0008 2.0515 1.3873
.5000 -.3615 .0000127 -613.849 .5873 .1488 .0013 1.6474 . 8025
.4000 -.2890 .0000352 -600.031 L4529 . 1685 .0022 1.3261 .4523
. 3000 -.2170 .0000853 -574.977 .3458 .1897 .0036 1.0637 .2427
.2000 -.1446 .0001664 -543.593 .2634 .2138 .0059 .8539 L1217
.1000 -.0723 .0001846 -492.313 .2002 .2410 .0095 .6827 .0535
-.1000 .0723 .0037 -490.479 .1163 .3088 .0231 .4290 -.0012
-.2000 . 1446 .0686 -529.010 .0895 .3520 .0351 .3364 -.0088
-.3000 .2170 777 -565.281 .0694 .4042 .0517 .2622 -.0110
-.4000 .2890 5.9364 -585.148 .0541 L4641 .0738 .2015 -.0104
-.5000 .3615 44,4052 -601.153 .0428 .5382 .1026 .1549 -.0089
-. 6000 .4338 309.0442 -614.828 .0341 .6241 L1374 1179 -.0071
-.7000 .5061 2067.9533 -627.198 .0275 .7239 L1767 .0892 -.0054
-.8000 .5785 13566.5852 -638.815 .0224 .8394 .2177 .0672 -.0041
-.9000 .6508 87812.5081 -649.,906 .0184 .9694 .2541 .0504 -.0030
TABLE 4. Maximization of the concentrated 1ikelihood function -.1 <g < .1
1 - “ - - -
g =-g/v a (1) L*e 6 8z 03 6y 05
.100 -.0723 .00018 -492.313 .2002 .2410 .0095 .6827 .0535
.075 -.0542 .00015 -472.692 . 1869 .2483 .0107 .6449 .0420
.050 -.0361 .000097 -444 428 .1744 .2558 .0120 .6088 .0322
.025 -.0181 .000035 -396.012 .1625 L2631 .0134 .5734 .0238
.020 -.0145 . 000025 -381.079 L1612 .2663 L0137 .5700 .0225
.018 -.0130 .000020 -373.150 .1598 .2660 .0138 .5655 .0218
.016 -.0116 .000017 -365.580 .1595 .2676 .0140 .5648 .0213
.014 -.0101 .000013 -356.099 .1579 .2671 0141 .5598 .0206
.012 -.0087 .000010 -345,682 .1578 .2689 .0143 .5596 .0202
.010 -.0070 . 0000067 -330.683 .1518 .2609 .0139 .5394 .0190
.008 -.0060 .0000050 -319.988 .1612 .2791 .0150 .5724 .0196
-.008 . 0060 . 0000064 -319.800 .1549 .2858 .0161 .5542 .0155
-.010 .0070 .0000090 -330.400 .1432 .2663 .0152 .5123 .0139
-.012 .0087 .000014 -345.275 .1479 .2772 .0159 .5296 .0140
-.014 .0101 .000020 -355.819 .1463 .2764 L0159 .5243 .0135
-.016 .0116 . 000027 -365.067 .1463 .2786 .0162 .5247 L0131
-.018 .0130 .000035 -372.988 .1449 .2781 .0162 .5200 .0126
-.020 .0145 .000045 -380.478 .1447 .2800 .0164 .5199 .0122
-.025 .0181 .000075 -395.376 L1416 .2795 .0167 .5097 L0110
-.050 .0361 .00044 -443.073 .1328 .2892 .0187 .4821 . 0061
-.075 .0542 .0014 -470.882 .1248 .2989 .0208 .4550 . 0021
-.100 .0723 .0037 -490.479 .1164 .3088 .0232 .4290 -.0012
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fa(x) = .5542 5724
fs(x) = .0155 .0196.
From each of these parameter sets, a set of 8% can be
obtained by using the constraints t

- _ 8lv - 8lv 2
X et(x) Y and et(x) =y Bt .

The starting values for g, v, and the B, are in table G.
The impact of changing the scale parameter can also be
clearly seen in table 6. Not only is the maximizing value
of g invariant with respect to changes in the value of v,
but the factor intensities 8, also appear invariant. This
preliminary evidence suggests that if the elasticity of sub-

stitution exceeds unity, higher returns to scale dictate a
lower efficiency parameter. But if the elasticity of sub-
stitution is less than unity, higher returns to scale dictate
a higher efficiency parameter.

Marquardt Algorithm in Estimation
Estimates at Convergence
Initially, the starting values corresponding to v —

1.383 and g — —.008 were used to estimate the CES form
- -g -8 -g -8
Y Y[blxl + b2x2 + b3x3 + b4x4
~g,~v/g
+
bsXs "]

TABLE 5. Maximization of concentrated 1ikelihood function over two variables.
~2 - - - -~ ~
g =-g/v a (a) L* 0, 0, 03 0y 5
v = 1.000
.016 -.016 .000029 -387.742 L2115 .3537 .0187 L7419 .0269
.014 -.014 .000023 -378.540 .2114 . 3565 .0190 .7430 .0265
.012 -.012 .000018 -367.881 L2113 .3593 .0192 L7441 .0260
.010 -.010 .000013 -355.226 2112 .3621 .0195 .7452 .0256
.008 -.008 .0000086 -339.832 211 .3650 .0197 . 7464 .0251
-.008 .008 .000012 -339.742 2102 . 3885 .0218 . 7556 .0216
-.010 .010 .000020 -355.019 2101 .3916 .0221 .7568 .0212
-.012 .012 .000029 -367.593 .2100 .3946 .0224 .7579 .0208
-.014 .014 .000042 -378.178 .2099 .3977 .0227 L7591 .0203
-.016 .016 .000057 -388.052 .2098 .4008 .0230 .7603 .0199
v = 1.766

.016 -.009 .000011 -347.983 1266 .2129 .00 L4511 .0174
.014 -.008 .0000086 -339.953 1274 .2159 .0113 .4539 .0170
.012 -.007 .0000067 -330.683 1289 .2200 .0116 .4589 ;0168
.010 -.006 .0000050 -320.056 L1313 .2258 .0120 .4675 .0166
.008 -.005 .0000036 -307.394 1355 .2348 .0126 .4823 .0167
-.008 .005 . 0000044 -307.181 1279 .2359 .0134 L4567 .0127
-.010 . 006 .0000064 -319.743 1217 . 2261 .0129 .4342 0117
-.012 .007 .0000090 -330.360 1172 .2194 .0126 .4181 .0109
-.014 .008 .000012 -339.453 1137 .2145 .0124 . 4056 .0102
-.016 .009 .000015 -347.612 1109 .2108 .0123 . 3955 .0096

TABLE 6. Starting values for Marquardt algorithm over two parameters.

g=-.008 g=+.008

v 1.000 1.383 1.766 1.000 1.383 1.766

10 1.3977 1.0265 . 8466 1.3673 1.0473 .8819

Y 1.8ax10'®  138.00 9.68x10° " 8.13x107"° .0003 6560000

é’; .1504 .1509 L1511 .1544 .1539 .1536

gy 2779 2784 2786 2669 2665 2662

;3: .0156 .0157 .0158 .0144 .0143 .0143

é: .5406 .5399 .5395 .5459 .5465 .5469

By .0154 L0151 .0150 .0184 .0187 .0189
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g — i 1 I 1 1 1 g
-490 | -490
-530 | 1-530
-570 | -570
'610} -610 11. The concentrated likelihood over
the interval -7 < g < .7
L*
-.07 -.06 -.05-.04 -.03 -.02 -.01 T .01 .02 .03 .04 .05 .06 .07
g - i 1 1 A i A k oy L 1 1 1 1 1 N g
'
-300 - .} -300
-340 -340
-380 -380
-420 -420
-460 -460
12. The concentrated likelihood func-
~500 | 1 2500 tion over the interval —075 < g
< .075 with v variable.
directly using the Marquardt algorithm. After 17 itera- TABLE 7. Convergence values for nonlinear algorithm.
tions, the algorithm converged to the values given in
table 7. Parameters Starting values Values at convergence
However, when the algorithm was started at the values ~
. . v 1.383 1.4532
corresponding to v — 1.383 and g — 4.008, a serious X
shortcoming in the procedure appeared. If the true value g -.008 -.0083
of g at convergence is —.0083 (as was discovered in the - 138.000 26723
first solution), the program must iterate very closely at ! ’ )
g = 0. An examination of the CES form shows the 81 .1509 L1519
le. A i = - .
trouble. At the point g = 0, the CES reduces to the C-D s gy %206

form, but in the algorithm, the term —v/g becomes in-

determinate, since division by zero is being attempted. The 83 .0157 .0151

initial output from the algorithm with the second set of -
i . . By .5399 .5280

values showed that the iterations were converging toward

g = 0 before the program was ended by division by zero. Bs .0151 .0148
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Confidence Intervals

The usual tests appropriate in the linear model are
generally not appropriate when the model is nonlinear
(23). When the error ¢ of the nonlinear model is as-
sumed to be normally distributed, § is no longer normally
distributed, > = RSS(§)/(N-(t+1) is no longer an
unbiased estimate of ¢2 and there is no variance-covari-
ance matrix of the linear form. Thus the examination of
the results from the Marquardt algorithm cannot be car-
ried out using the usual regression tests. Marquardt con-
cluded that the support-plane confidence intervals for each
parameter individually were the most realistic portrayal
of the precision of the parameter estimates separately.
Figure 13 shows the rationale for the use of this type of
confidence interval for a two-parameter model. The ac-
tual joint 959, confidence region for the true parameter,
B1 and B, will be an ellipse that encloses the parameter
set that the data regarded as jointly reasonable for the
parameters $; and f..

———- rectangular confidence intervals

B2

13. Rectangular confidence intervals over an ellipsoid.

The conventional 1-parameter 959, confidence inter-
vals give a minimum length interval for each parameter,
on the assumption that the remaining simultaneous pa-
rameter estimates are the same as their corresponding
population values. These intervals are represented as the
distance between the dashed lines perpendicular to the 8,
axis in question. If one tries to interpret these intervals
simultaneously, i.e., regard the rectangle that is defined
by the individual confidence intervals as a joint confidence
region, then coordinates of points like E would be con-
sidered reasonable values. Of greater concern is the fact
that the coordinates of points in the shaded region of
the ellipse will be rejected as reasonable values. The
rectangular confidence intervals clearly underestimate the
true interval within which a parameter set may lie and
still remain in the actual confidence ellipsoid. Thus 959,
rectangular confidence intervals (a probability of .05 of

26

rejecting a true hypothesis) when used as a joint con-
fidence interval underestimate the true probability of re-
jecting a true hypothesis (type I error) and increase the
probability of type II error, accepting a false hypothesis.
The problem derives from the results of a joint con-
fidence interval which state that the probability is at least

1-¢ that 4ll of the following statements hold simultaneous-
ly:
a, <B, <P

1l 1

b

a 2

™
[ 3N
IA

2 2

where a and b are constants defining the intervals and «
defines the probability of type I error.

Ideally, one would like to find the end points of the
major axes of the region. In other words, construct axes
that bisect each other within the ellipse and locate the
end points of these axes. The points A, B, C, and D
are located in fig. 13. This, however, involves the ro-
tation of the original axes and raises problems of defini-
tion.

Marquardt has suggested that the maximum symmetric
interval within which a parameter B, lies with probability
(1-), no matter what the true values of the other pa-
rameters, is given by the interval between the two planes
of support (tangent planes) of the ellipsoid, which are
normal to the B-axis. Since the slope of the ellipsoid
depends on the degree of correlation between the pa-
rameters, fig. 14 and 15 are cases where the parameters
seem to have no dependence upon one another. In fig.
14, the parameter B, is determined in a narrow interval
but 8, is not. Figure 15 shows the opposite case. The
joint confidence interval defined by these support plane
intervals adequately identifies the probability of a type I
error but only at the cost of increasing the chances of a
type II error. So the 959, support plane confidence inter-
vals denote a probability of .05 of rejecting a parameter
set that lies within the actual ellipse; but the probability
of accepting a false hypothesis, such as point E in fig. 13,
is increased. In figs. 14 and 15, the rectangular con-
fidence intervals may be good approximations but as

B2

B1

14. A support plane confidence interval, 3,, well determined.



B2

B1

15. A support plane confidence interval, 8,, well determined.

the correlation between parameters increases, they be-
come less applicable.

With regard to the CES function, the convenience
of portraying the parameter space in two dimensions is
lost. But insofar as the model can be represented ade-
quately in the vicinity of the least squares estimates by a
linearized Taylor series expansion, the foregoing con-
fidence interval can be applied directly. To ascertain the
extent of the deviations from linearity, one can assume
that the nonlinear model is correct and that the deviations
of the §, from their true values are due to random errors.

(6-0)/n-t-3 ,
¢/n-t-3 . l-a(t+3,n—t-3) .
After selecting a confidence probability (1-a), one
can use the above to determine the critical value of &,
denoted &. Then the parameters are varied one at a

time by trial and error to determine the upper and lower
limits where & assumes the critical value &. If the

TABLE 8.

Parameter Value
One-parameter

¥ = 2.6723 -8.2628  13.6074
v= 1.4532 1.1152 1.7912
g= - .0083 - .0080 - .0086
By = .1519 .1475 .1562
Bp = .2706 .2597 .2816
g3= .015 .0153 .0157
B, = .5280 .5109 .5451
Bs= .0148 .0145 L0152
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deviations from linearity are negligible within the con-
fidence region, then the conventional one-parameter limits
will about equal the nonlinear confidence limits based on
critical values of the residual sum of squares for alterna-
tive parameter sets. As is clear in table 8, the existence
of parameter values near zero greatly complicates the com-
putation of the nonlinear confidence limits. The devia-
tions from linearity appear most severe with regard to y
and v. For the remaining parameters for which nonlinear
limits were found, the assumption of linearity is sup-
ported. The previously discussed support plane confi-
dence intervals are also in table 8.

The substitution parameter g and the factor intensities,
B* appear to be contained in relatively small intervals.

t

The efficiency parameter y¥ and the scale parameter v do

not appear to be estimated very precisely. This might be

expected, given the invariance of g and the g* with
t

changes in Vv and 3*. The only evidence on the overall
fit is that convergence was actually achieved at a parameter
set.

CES and C-D estimates and their implications

With the CES form yielding a value for g of —.0083,
the elasticity of substitution becomes 1.008. Since the
CES reduces to the C-D form when g = 0, the policy
implications under each model should be very similar if
the CES is properly estimated. The alternative marginal
value products for each input are given in table 9.

TABLE 9. Marginal value products of inputs under
alternative production function forms.

Input Cobb-Douglas CES
Machinery .4133 .4470
Op and Hired Labor 32.3495 33.2826
Farm Labor 60.6966 61.7596
Cash Expenditures L9610 .9322
Land .0068 .0061

Support plane confidence intervals and deviations from Tinearity.

Confidence 1imits

Nonlinear Support plane

1.8137  3.5331 -28.2568 33.6014
1.3669 1.4818 .4973 2.4092
None found - ,0075 - .0090
L1497 .1534 .1397 .1640
.2676 .2722 .2397 .3016
tone found .0135 .0167
.5239 .5293 .4796 .5764

None found .0139 .0158



Apparently, the data are dictating a production func-
tion of the C-D form. The technique has fitted the CES
function at a value of g that corresponds closely to the
C-D value. The results support the work of Maddala and
Kadane (68) and Zarembka (122). Maddala and Ka-
dane’s analytical findings that the C-D estimator of re-
turns to scale is biased downward when the elasticity of
substitution is greater than unity is supported by these re-
sults, although the confidence interval on v is very wide
in the CES function. Zarembka’s conclusion that the C-D
form was adequate was also supported, but only after both
forms were fitted. Both forms must be used to verify
such findings.

The marginal value products represent the addition
to total revenue brought about by an additional unit of
an input. On the basis of the results, we conclude that:

1. An additional $1.00 of machinery investment yields
about 40¢ in additional revenue.

2. An additional 10-hr day of operation or hired labor
yields approximately $32 of additional revenue.

3. An additional 10-hr day of family labor yields ap-
proximately $60 in additional revenue. This vari-
able has come under question in both forms as to
its validity in the analysis.

4. An additional $1.00 of cash farm expenditures
yields 95¢ in additional revenue.

5. An additional $1.00 of land investment yields about
0.5¢ in additional revenue. This low marginal
value product is partly the result of inadequate data.

Since the C-D and CES forms yield almost equivalent
results, the policy implications are the same. Generally,
the return to the variable factors, labor and cash expendi-
tures, is adequate, but the return to the fixed factor, land,
appears too low.

Disregarding the return to family labor, which is at
this point a questionable input, each of the inputs needs
some elaboration. The return to machinery investment
implies that generally machinery will pay for itself in
21/, years. However, no account is taken of depreciation,

which will lower the return per year and extend the
break-even point to a later period. Thus, while the figure
is probably high, it is not unrealistic.

The fact that about 287, of the sample is rented land
may explain the low return to land. If the land was
rented on a crop share basis, this part of the gross farm
income was not measured, so gross farm income is under-
estimated. If the rent is paid in cash, it is part of cash
farm expenses and an implied overestimate of the land
investment has occurred. Additionally, the appreciation
in value of the land is estimated to be about 5.87, (119).
These factors could raise the return from 0.59, to about
8%,. Also, the land input is measured at its value in
1966 and thus the return is to a stock of capital and not
to a flow of capital.

A profit-maximizing entrepreneur will use units of a
variable productive service until the value of the marginal
product (VMP or MVP) of the input is exactly equal
to the input prices, assuming perfect competition. The
results in table 9 show that cash expenditures, the variable
capital measure, are adding about 93¢ to total revenue
for every $1.00 they add to total cost. Since this input
is an aggregate of such things as seed, fertilizer, etc., one
cannot attribute a return to each item separately, but the
overall return appears to approximate a profit-maximizing
rate of use.

The return to operator and hired labor is composed
not only of a wage to hired labor but a return to the
operator. Although one can’t measure the productivity
of each type of labor separately, it is clear that a great
deal of the short-run returns over and above the costs
of production are due to the productivity of this skilled
labor input.

Both production function forms suggest that the farm-
ing in this region is subject to increasing returns to scale
with inputs highly substitutable for one another. The re-
turns to factors are relatively consistent with what one
would expect within the limitations of the data.
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APPENDIX |
Elasticity of substitution for the two-point production function C-D and CES

If the production function is of the form
Y = f(xl, xz)

then the elasticity of substitution, o, is by definition

- d(x?_/xl) / (x2/xl)
d(fllfz) / (fl/fz)

where the ratio of the marginal products, (f1/f2), has been substituted for
the marginal rate of substitution between inputs.

Evaluating the above expression

2
d(lexl) = —xz/xl dxl + l/xl dx2

letting z = fllf2 = —dx2/dxl
then dx2 = —zdx1
and a(x./x.) = (-x./x.2 = z/x,)dx
2’ %1 2/%1 179%1 -
Additionally
H(fl/fz) = d(z) = Bz/Bxl dxl + az/ax2 dx2

leaxl dxl - azlax2 zdx

1
dz £,875180
where ™ = 5
1 £,
and
3, faf1a7Fifay
X, 2
2 £,

f, and fii being first and second partial derivatives of y with respect to X

4

Substituting these expressions into our original formula

31



2
dx1 (-xz/x1 - z/xl) ) f1/f2

(fzfll‘flle) {fzflz'flfzz) %, /%y
dxl -

YA
2 \ 2
£, £,
which reduces to
fle[xlfl + x2f2]
o= 2 2.
X%l f, = 26 8,8 0 + £p0fy ]

Utilizing this formula one can examine both the Cobb-Douglas and CES
input production functions.

The Cobb-Douglas may be written in unrestricted form as

b b
_ 1 2
Y = Axl x2 .
The derivatives of the function are
b.Y(b,-1)
_ Y _ 1 1
£ =0, Y% £12 = PP 7% fa = 2
12 X
1
b, Y(b.-1)
- - X _ e 2 2"
£, =0, ¥/x, 21 = P1P) 3% f22 = 7 -
172 x2

The elasticity of substitution then becomes

Y Y Y Y
(bl ;I) (1::2 ;;) [xl(bl 'x—]:) + x2(b2 ;—2')1

g = - ;
Qi x PrY )7 b2 v? 20b. )b, Xy (b.b, — )+b2Y(b2—l) .2 —339
12| 2 2 2 1% 72 %, V12 xox, 2 1 2
1 2 *) *1
which reduces to
)
blblexz [blY + sz]
g = -
2. 2.3 2.3 2. 2.3 2. 2.3 2. .3
e b, ) b.b, Y - b, b, i b, b,"¥ ) b, b)Y
12|72 2 2 2 L 2 2 2 2 2
1 %2 1 %2 1 %2 S ) 1 %2



3 2,3

i blzsz +b.b,Y
3 2,3

blzsz +bb, Y

The unitary elasticity of substitution is, of course, a famous

property of the Cobb-Douglas form,

Beginning again with the generalized form of the elasticity of substi-

tution

|x f_ + x f |
o = 3 '
’xlxz[fnfz -2 50, fzzfl]

The CES function is written

_ -8 _ -g, =v/g
y Y[blx1 + (1 bl)x2 ]
let T=>.x "8 4 (1-b.)x "%  then
171 1772
y = y1V/8
TV/8 - v/
- v
T =y g/ng/
R ez LA A F
1
yb V(y -g/v g/v) V/g—lxl-g-l
3y _ ~-g/v +g/v_ -g-1 _
3%, Yol B vy X £
_al_ Y-g/v(l"b )V y1+8/v % —g_l = f
x2 1 2 2
822 -g/v g/v 3y -g-1 1+g/v -g-2
7= (& blv)[(g/v + Dy e 1 ) +y (-g-1)%; ]
axl
= Y-g/vb v[yg/\ﬁ'lx -g-l]y~1(g/v+1)§-L + (Y-g/vb v y1+g/vx-g-l)x—l
1 1 axl 1 1l
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1 1
% -1 3y 12 -1 3
=y G e T e g = £y
Bxl lJ 1
EEZ_ - “1( Jv+1) EX_T 2 - '1( 1) 3y __ ¢
7 =y /vl 5y o (Bt 5~ =1,
ax2 2) 2
_éfz_ -1 dy 3y
Bxlx2 =y " (g/vl) axl sz = f12 ®

Examining the denominator of the elasticity of substitution formula first

2 2
D = —xlxz[fllf2 - 2f1f2f12 + f22fl ]

2, -1 2 -1 -1
D = —xlxz[f2 (y (g/v+l)fl =%, (g+1)fl)—2f1f2(y (g/v+l)f1f2

+ £ 267 v E,” - x, g )E) )

2.2, -1 -1 2 2.2 -1
= -xlxz[fl f2 (y “(g/v+1) - X (g+l)flf2 - 2f1f2 y “(g/v+l)

2

+ £ f22y'1(g/v+1) - x, 7t 2

9 (g+1)f2fl ]

2

[-x 2

-1 2 -1
= -x;X (g+l)flf - x, (g+1)f2f

2" "1 2

2

2
= x2(g+l)f1f2 + xl(g+l)f2f1

D = (g+l)flf2(xlf1 + x2f2)

_ ££,[x £ 4%, ]
(g+1)E £, [x £+ ]

1

g = —

gtl °

Thus, if one is able to estimate the parameter g, one can determine the elas-

ticity of substitution between inputs.



APPENDIX I

Generality of the CES production function

The range of values of g gives the CES function its generality. The
data will determine the value of g from negative one to plus infinity. The
value of g < -1 is ruled out largely because economic theory requires some
rationality with respect to productién. If g < -1 the isoquants are concave
from below, implying a negative marginal product for ome input. If g = -1 the
isoquants are straight lines and if g > -1 the isoquants are convex from below
and all marginal products are positive.

If g = 0 then 0 = 1 which, of course, is the Cobb-Douglas assumption.

This reduction is simply accomplished for the two-input case since
Y = y[byx, "8 + (1-b))x, %] ~v/g
given g = 0 reduces to
Y = y[b, + (1-b)]1"
1 1 .
Since Y[l]°° is not defined, 1'Hospital's rule may be applied in this case to

the logarithm of both sides,

Y__v -g _ -8 _f(®
log ” . log [b + (1 bl)x2 ] =

11 h(g)

= - -g - -8
where f(g) v log [blxl + (1 bl)x2 ]
and h(g) = g
then
-8 - (1- -8
[-blx1 log ¥; (1 bl)x2 log x2]
df -V -8 -g
e _ byx; © o+ (l-bl)x2
dh 1
de -8 -8
and lim df v .1m|P1%p  log ¥ + (-bx, 7 log x,
_ _g o dg g+o -8 R -g
T a bx, ° + (1-b)x,
g *o dg lim

g*o !
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Thus, as g goes to zero we have,

1o ¥ - 1og v - y [bl log Xy + (1—bl) log x2]
b, + (1-b1)
= v [b1 log X + (l—bl) log x2]
log Y = log v + vb1 log X) + v(l—bl) log X,
vb1 v(l—bl)

Y = 1631 X,

which is the Cobb-Douglas function.

If g = -1 g == then
- -g L -8, -v/g
Y = ylbyx, ®+ (1-b)x, 7]
reduces to v
Y = y[byx, + (1-b,)x,]

assuming constant returns to scale, i.e., v = 1, the CES function reduces to a

linear production

Y = Yblxl + Y(l—bl)x2
If g == c =20 then
- -g _ -84 -v/g
Y Y[blx1 + (1 bl)x2 ]

reduces to

—c0 ~®_y [
Y = Y[blxl + (l-bl)x2 ]

= 0° which is indeterminate,

Rewriting the CES function, and taking logs of both sides,

x, -8 -v/g
Y = Y[xl—g[bl + (l—bl) ;I ]
; g ig -v/g
= yx,|b, + (l—bl) [;I]
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x -8
v 2
Y/Yx1 = [bg * (1~b1) ‘-I
X -8
v v 2
log Y/yx, = - —1log [b, + (1-b.) | == ]
1 g 1 1 %1

Again, applying L-Hospital's rule to evaluate lim on the right hand side,
g—>oo

X, e x,| -8 X,
lim| b, + (l—bl o l- (1-b1) — log |+

-V g 1

1im 1
g—roo

Thus as g+~ we have

log S v l;-. 0=0=1logl
yxv bl
1

v

Y Yxl

Assuming constant return to scale Y = yx One could alternatively have found

1.
Y = YX,. This is the Leontief production function Y = y (min xi).

APPENDIX I
The likelihood function of transformation

The deterministic version of the CES function

k

- -g,-v/g _ _ 8lv
Y, = [z 0X]] =1, ..., m O =y o by

is obtained by applying the transformation of the form

TR Yi"l
Yi =5 (0#0) where A = -g/v

and adding a disturbance term. The version under this transformation becomes

k -g
A ex -1
5T |¢E P H
= = = 4+ u

Yi A A i

Let X be a random variable of the continuous type having a probability

density function, f£(x). Let A be the l-dimension space where f(x) > 0. Next
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consider the random variable Z = u(x) where Z = u(x) defines a one-~to-one
transformation which maps the set A onto the set B. Let the inverse of Z=u(x)
be denoted by x = u-l(z) and let the derivative dx/dz = v'(z) be continuous
and not vanish for all points in the set B. Then the probability density

function (p.d.f.) of the random variable z = u(x) is given by
-1 .
£(z) = £(u " (2))|v'(2)]

for all z contained in the set B.

T
In the stochastic version of the CES consider the random variable Y R

which has a p.d.f. of

TR TR, 2
i i

(Y
exp -
2 202

)

£(5 ) =

where 02 is the varidnce and the mean of the transformed variable is

k
o I o X5 -1,
t=1
The random variable Yi will be defined as one-to-one transformation of YiR.
The transformation Yi= u (YER) will map the set A composed of YTR into the set B

composed of Y. Corresponding to Z

u(x) above, the specific transformation in this

is,
Y=u (YTR) = ( Y§R+ 1) T2 A4 0.
TR -1
The inverse, denoted above as Yi = u (Yi), must thus be defined as
A
yTR _ i
i A )

The derivative of the inverse becomes
TR
' _ 4@ - A=l
v (Yi) = i Yy

in
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Then the p.d.f. of Yi becomes

TR, 2
(Y"IR-}JY' ) 1A=L
f(Y.) = exp - —-‘———L——, 0.
2 2c”
ang
The likdihood of a random sample Y., ..., Y 1is a product of the indi-
1 n

vidual probability density functions:

n
2@1,.”,Yn)=fCH)..” ﬁg==fW1LfW2L ”.,fﬁn)= Ht fWiL

i=1
Thus
n 1 TR TR, 2
—_— (Y "-uYi ) A-1
LYo, ceay Y ) = T exp - ————— |y 7|
1 DT o1 Vane? 262 1
B TR _TR.2
S e Y
(A \tee 2 DN By
/2o =1 552 =1 1
The logarithm of the likdihood function is
n n
L=lnf=-21n2r-2mno?- & @GrayiH?+ (-1) I Ilnv,.
2 2 R e 1=1 1

202

The procedure at this point would be to find values of A and 6 (recall
uY?R is composed of 6s) which will maximize L, since the parameter values
which maximize ln 2 will maximize %, The first-order conditions for a maximum
require that all the first partial derivatives of the log lilklihood function

be equal to zero. The first partials are nonlinear in the parameters, and a

two-step maximization procedure is used.
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