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The Cost of Algae Contamination in Fresh Water Lakes: Identification of 
Environmental Quality Marginal Bid Functions Using Hydrology-Based Instrument 

 

Abstract 

Unbiased estimation of hedonic, marginal willingness to pay functions has proven to be a 
difficult task despite Rosen publishing his seminal paper over 40 years ago. Concerns 
over endogeneity in Rosen’s second stage have led researchers to either assume an 
explicit utility functional form or use data from multiple markets to imperfectly identify 
marginal bid functions. The methodology proposed in this paper overcomes problems 
associated with both approaches by deriving marginal bid function estimates using data 
collected from multiple markets and exogenous instruments of environmental attributes 
developed from ecological and hydrological processes unique to our study setting. 
Unbiased parameter estimates recovered from this process are then converted into an 
inverse Hicksian demand function using the methodology proposed by Hausman (1981). 
We empirically demonstrate our model using remote-sensing water quality data, housing 
transactions and demographic data collected from 7 counties bordering Lake Erie. Using 
our estimated Cobb-Douglas demand function, we find annualized benefits of $3,215 per 
household when water quality conditions meet the standards discussed under the 2012 
Great Lakes Water Quality Agreement. This large improvement in welfare has 
significantly different implications for policy compared to the naïve estimate of $1,465 
derived from first-stage estimates of WTP. Our analysis provides new policy insights that 
highlight the potential welfare gain from early intervention to avoid large damages 
produced from environmental change.   
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Highlights 

• Overcome endogeneity difficulties present within hedonic literature by developing 

instrumental variable unique to study setting 

• Demonstrate significant difference in welfare estimates using first and second stage 

hedonic estimates 

• Evaluate welfare implications associated with fulfilling the 2012 Great Lakes Water 

Quality Agreement 

• Near lake home owners accrue $136 million in annualized benefits  
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The Cost of Algae Contamination in Fresh Water Lakes: Identification of Environmental 
Quality Marginal Bid Functions Using Hydrology-Based Instrument 

 

I. Introduction 

Recovering public good demand curves using hedonic theory has proven to be an elusive task. 

Rosen (1974)’s seminal paper initiated this undertaking by laying out a two-step procedure. 

Within the first stage a hedonic price function is recovered by regressing the market price of a 

differentiated product onto its bundle of underlying characteristics. The resulting price function 

can then decomposed into a set of attribute (implicit) prices which Rosen believed to be akin to 

observable market prices, if they existed.  A number of studies have used these estimates to 

evaluate marginal changes in public goods (Black 1999; Chay and Greenstone 2005; Greenstone 

and Gallagher 2005) as they are often interpreted as the consumer’s marginal willingness to pay 

(MWTP) for each attribute at their utility-maximizing decision. Rosen, however, intended to 

recover marginal bid function estimates using these attribute prices as the dependent variable 

within a second stage regression, allowing researchers to not only recover MWTP estimates but 

also entire demand functions for each characteristic of the differentiated product. 

    A number of identification issues have arisen within the literature, however, which have 

discouraged using Rosen’s full model. Brown and Rosen (1982) argue no new information is 

added between the first and second stage, within a single market setting, unless additional a 

priori functional form restrictions are imposed on the hedonic price function.1 The subsequent 

second stage estimation procedure will therefore reproduce information already recovered from 

the first stage, making it impossible to recover unbiased demand parameter estimates. Further 

                                                           
1Ekeland and et al. (2004) discovered that additional functional form restrictions are not needed 
if the hedonic price function is estimated non-parametrically. 
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identification issues arise when examining the consumer’s simultaneous decision to choose both 

the quantity they consume and the price they pay for each attribute through their optimal 

consumption decision.2 Consumers with strong tastes for an amenity will be incentivized to find 

a market and a product that allow them to consume as much of that good as desired at as low of a 

price as possible. Unobserved consumer preferences within the second stage, in other words, will 

be correlated with both the quantity and price variables, leading to inconsistent estimation of the 

marginal bid function (Bartik 1987). 

    Despite these problems there is still a need to recover entire demand functions rather than 

MWTP point estimates. First-stage MWTP estimates are formed and only valid at the point of 

tangency between the consumer’s bid curve and the hedonic price function. Any policy that 

would non-marginally change the availability or quantity of a public good could therefore not be 

evaluated accurately using these first stage estimates as this would likely alter the equilibrium 

hedonic price schedule (Palmquist, 2005). Evaluation of non-marginal changes and the recovery 

of consumer preferences is crucial, however, for policy decision-making. In particular optimal 

policy intervention requires knowledge of where, when and to what extent changes in public 

goods are needed, and these decisions depend in part on the demand for the public good of 

interest. 

   Researchers have responded to this dilemma by either adding data from multiple markets 

(Bartik 1987; Epple 1987; Zabel and Kiel 2000; Zhang et al. 2016) or by assuming an explicit 

functional form for the utility function (Chattopadhyay 1999; Bajari and Benkard 2005; Bishop 

and Timmins 2008).  Although the multi-market approach circumvents the problem of having to 

                                                           
2This is especially true within the property hedonics literature where consumers implicitly decide 
the availability and price they pay for public goods through their location decision (Epple and 
Sieg 1999). 
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specify a full utility functional form, it requires market segmentation exist either across time or 

space and the assumption that unobserved consumer preferences are not stratified across 

markets.3 Empirical studies tend to support the former assumption but not the latter (see Zhang et 

al. (2016) for a complete discussion on this topic). 

     The methodology proposed within this paper overcomes problems associated with both 

approaches by deriving marginal bid function estimates using data collected from multiple 

markets and exogenous instruments of environmental attributes developed from ecological and 

hydrological processes unique to the study setting. Unbiased parameter estimates recovered from 

this process are then converted into an inverse Hicksian demand function using the methodology 

proposed by Hausman (1981). We empirically demonstrate our model using remote-sensing 

water quality data, housing transactions and demographic data collected from 7 counties 

bordering Lake Erie. Finally, welfare implications associated with fulfilling the 2012 Great 

Lakes Water Quality Agreement are calculated using our recovered Cobb-Douglas marginal bid 

function, with aggregate, annualized benefits estimated to be $136 million for near Lake Erie 

homeowners.  

    The rest of the paper is structured as follows. The next section will provide an overview of the 

literature and discuss the current limitations present within the multi-market, second-stage 

hedonic setting. Section 3 describes our study setting, while Section 4 introduces our model and 

econometric specification. Finally Section 5 presents our study’s results and section 6 concludes. 

 
 
 

                                                           
3Advancements made by Zhang et al. (2016) have been able to relax the market stratification 
assumption, however, by partially identifying demand parameter slope estimates, even in the 
presence of within and across market taste-based sorting, using imperfect instruments (Nevo and 
Rosen 2012) rooted in the logic of Tiebout sorting behavior (Tiebout 1956). 
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II. Literature Review 

Following the recovery of attribute prices from the first stage hedonic regression, Rosen (1974) 

proposed using a system of simultaneous equations to recover consumer marginal bid curves and 

supplier marginal offer curves for each attribute of the differentiated product: 

(1) ∂P(Z)
∂Zj

=  θ′𝑗𝑗�Zi1, … , ZiK, Xi𝑂𝑂 , Xi𝑈𝑈� 

(2) ∂P(Z)
∂Zj

=  ɸ′𝑗𝑗�Zi1, … , ZiK, Yi𝑂𝑂 , Yi𝑈𝑈� 

Where j indexes product attributes 1, …, K and i indexes consumer-supplier pairs 1, …, N, θ′𝑗𝑗(. ) 

denotes the marginal bid function for attribute j, while ɸ′j(. ) represents the marginal offer 

function for attribute j. The marginal bids and offers made for attribute j will vary depending on 

the bundle of product characteristics transacted {Zi1, … , ZiK} and by the observed and 

unobserved characteristics of the buyer, Xi𝑂𝑂 and Xi𝑈𝑈, and seller, Yi𝑂𝑂 and Yi𝑈𝑈.4 Finally P(Z) 

represents the hedonic price equilibrium, which is a function of all of the product bundles 

purchased/sold within the market (i.e. Z = {Z11, … , Z1K, Z21, … , Z2K, Z31, … , ZNK}), while ∂P(Z)
∂Zj

 

is the price for attribute j and is derived by taking the derivative of the hedonic price function 

with respect to characteristic j. 

   Rosen (1974)’s proposed second stage simply restates the outcomes produced under a hedonic 

equilibrium. At each point along the hedonic price equilibrium consumers and suppliers are 

paired such that neither party can improve their objective function by selecting a new bundle of 

                                                           
4The superscript on Xi and Yi is used to distinguish observed consumer/supplier characteristics 
(O) from unobserved characteristics (U). In addition, for clarity purposes we denote the marginal 
bid made by consumer i for attribute j as θ′ij and the marginal offer made by supplier i for 
attribute j as ɸ′

ij. 
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characteristics bought/sold at a different point on the hedonic price function.  This optimal 

pairing of buyers and sellers only occurs when consumers are on their lowest bid curve tangent 

to the hedonic price function (θij) and when suppliers are on their highest offer curve tangent to 

the hedonic price function (ɸij). The occurrence of three such pairing (denoted as A, B and C) 

along the hedonic price equilibrium is graphically depicted in Figure 1, while the equalities 

presented in equations (1) and (2) capture these tangency conditions.5  

   For any vector of chosen characteristics {Zi1, … , ZiK} the derivative of the hedonic price 

function with respect to attribute j (∂P(Z)
∂Zj

) can therefore provide a point estimate of both 

consumer i’s marginal bid function for attribute j and supplier i’s marginal offer function for 

attribute j.6 Figure 2 displays the intersection between the marginal bid curve, marginal offer 

curve and the derivative of the hedonic price function at three separate equilibrium outcomes. 

Notice how the hedonic price function intersects each curve only once, providing an estimate of 

a single point on both the marginal bid function and the marginal offer function. Rosen believed 

both the consumer’s marginal bid function and supplier’s marginal offer function could be fully 

recovered using the estimated hedonic price function, if the above system of equations was 

treated as a “garden variety identification problem”. In particular he proposed using observed 

demand shifters, Xi𝑂𝑂, as instrumental variables for the endogenous quantity regressor (Zj) within 

                                                           
5The hedonic price equilibrium can be interpreted as a product of the interactions between a 
distribution of buyers and sellers operating within a market and represents the set of prices 
needed for market-clearing conditions to hold for all variants of the differentiated product.  
6Note: by further assuming a constant marginal utility of income, consumer i’s marginal bid 
function for attribute j becomes equivalent to an inverse ordinary demand curve (see McConnell 
and Phipps 1987). Similarly, Rosen (1974) refers to supplier i’s marginal offer curve for attribute 
j as a profit-compensated supply function for attribute j. 
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the marginal offer function and similarly using observed supply shifters, Yi𝑂𝑂, as instrumental 

variables for the endogenous quantity regressor (Zj) within the marginal bid function.7 

    This approach seems plausible under a standard system of supply and demand equations since 

exogenous shifts in the supply curve should trace out the demand curve. However as mentioned 

by Brown and Rosen (1982) and Bartik (1987), this system of equations is not equivalent to a 

standard set of supply and demand curves.  In particular under a hedonic setting, shifts in the 

marginal offer function will also correspond to shifts in the marginal bid function. Consumer 

preference parameters derived from this process will be identified based on movements from one 

hedonic equilibrium to the next and not by shifts up and down the same curve. Figure 3 

demonstrates the bias produced from this identification strategy. Suppose you are attempting to 

recover consumer B’s marginal bid curve for attribute j (θ′B,j) by exogenously shifting the 

marginal offer curve from ɸ′
B,jto ɸ′

A,j using variation in Yi𝑂𝑂. Rather than recovering points B 

and D from this process, which would allow for the identification of consumer B’s marginal bid 

function, points A and B are recovered instead.  Estimates of θ′B,j (θ′Rosen) will therefore be 

biased as variation in supplier characteristics will not be cleanly separated from variation in 

consumer characteristics. Econometrically this suggests that supplier characteristics are unable to 

meet the stringent exogeneity condition required for valid instrumental variables since the 

correlation between Yi𝑂𝑂 and Xi𝑈𝑈 is nonzero. 

    One way to circumvent this problem is by adding additional information from multiple 

markets. The intuition behind this approach is based off of two assumptions: first the shape of 

the hedonic price function must vary across hedonic markets, and second preferentially-identical 

                                                           
7OLS estimation of equations (1) and (2) will produce bias parameter estimates for the variable 
of interest, Zj, as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�X𝑈𝑈, Zj�  ≠ 0 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�Y𝑈𝑈, Zj�  ≠ 0. 
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households are assumed to be randomly distributed. The first assumption appears to be an 

intuitive result of spatially and time-varying conditions that form the hedonic price equilibria.8 

The second assumption, on the other hand, is less accepted in the literature but allows 

preferentially-identical households, located across multiple markets, to select different optimal 

bundles. If both assumptions hold estimation of multiple points along a shared marginal bid 

function is possible. 

    Figure 4 demonstrates the intuition behind the multi-market approach. Consider three 

consumers (A, B and E) living in two separate markets characterized by the hedonic price 

functions P′(Zj|Z−j) 1 and P′(Zj|Z−j) 2, where the superscript on P′(Zj|Z−j) indexes the hedonic 

market. Note that consumers A and B live in market 1, while Consumer E lives in market 2. 

Further suppose that consumers B and E have identical observable characteristics and 

preferences (i.e. XB𝑂𝑂 =  XE𝑂𝑂; XB𝑈𝑈 =  XE𝑈𝑈). Under this setting consumers B and E will select 

different quantities of characteristic Zj despite sharing a common marginal bid curve, θ′j. This is 

due to the difference in attribute prices they face in their respective markets. Consumer B faces 

lower attribute prices for characteristic j than consumer E, resulting in a higher quantity of 

attribute j selected by consumer B. Differences in the hedonic price function across markets then 

allows variation in Zj to be cleanly separated from variation in Xi𝑈𝑈allowing for unbiased 

estimation of consumer B and E’s shared marginal bid curve.  

     Although using data from multiple markets appears to be an intuitive work-around to Rosen’s 

endogeneity problem, this approach is likely not applicable in most empirical settings since it 

depends upon the assumption that consumer preferences are not stratified across markets. 

                                                           
8Empirical evidence supports this hypothesis as well, with researchers finding variation in the price 
function across cities (Witte et al. 1979) and metro regions (Zabel and Kiel 2000). 
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Tiebout (1956)’s “voting with your feet” model provides theoretically rationale explaining why 

we should expect consumers with similar preferences to live near each other. In particular 

individuals who are able to sort themselves into separate but preferentially-distinct communities 

are often able to obtain higher levels of utility than those who are restricted in their location 

decision. This is most apparent when society uses majority rule to determine its allocation of 

public goods. When preferentially-distinct communities are formed through sorting the bundle of 

public goods that residents receive from living within these communities will closely resemble 

their own utility-maximizing choice. Residents will, in other words, move as a means to 

minimize the difference between their preference for public goods and the median voter’s 

preference for public goods. In a world without sorting, however, each community will host a 

wide-range of individuals each with their own unique set of preferences. The median voter’s 

decision in this case will not appease many from within his/her own community since the 

difference between their decision and the remaining residents’ desired allocation of goods will be 

substantial. This will incentivize homeowners and communities to obtain higher utility levels by 

segregating into distinct markets, eventually causing the market to move back into a sorting 

equilibrium.  

     Consequently the marginal bid function estimates produced from a multi-market hedonic 

approach will still be biased due to the presence of sorting. Figure 5 further examines the 

identification issues arising from this approach. Following our previous example, suppose there 

are three consumers (A, B and E) living in two hedonic markets. Unlike the previous example, 

however, relax the assumption that consumer preferences are randomly distributed across 

markets and allow for the possibility of a sorting equilibrium. Under this scenario even if 

identification of the marginal bid function is drawn from observably similar consumers (i.e. 
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XB𝑂𝑂 =  XE𝑂𝑂) purchasing different bundles of attributes across markets, the estimated parameter 

coefficients will likely be biased due to systematic differences in unobserved preferences. 

Variation in the hedonic price equilibrium across markets will be correlated with unobserved 

consumer preferences and can therefore no longer be used to isolate variation in Zj from 

variation in Xi𝑈𝑈. The vertical distance between consumer B and consumer E’s marginal bid 

function in figure 5 depicts this bias. In this particular example the slope parameter estimate for 

attribute j will be positively biased due to positive correlation between unobserved preferences 

for attribute j and the quantity of attribute j consumed (i.e. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�X𝑈𝑈, Zj� > 0) and the positive 

stratification of preferences across markets (i.e. XB𝑈𝑈 >  XE𝑈𝑈). 

   Subsequently, our paper extends the multi-market approach by providing unbiased estimates of 

marginal bid functions using data across multiple markets and exogenous instruments developed 

from processes unique to our public good of interest. Our approach avoids issues prevalent 

within the structural, single market literature (Chattopadhyay 1999; Bajari and Benkard 2005; 

Bishop and Timmins 2008) and the reduced-form, multi-market literature (Bartik 1987; Zhang et 

al. 2016) by not having to explicitly specify a full utility functional form for all attributes of the 

differentiated product while still being able to derive an unbiased estimate of the marginal bid 

function for a single public good. We demonstrate this advancement by recovering marginal bid 

functions for water quality using remote-sensing harmful algal bloom data and housing 

transactions located in multiple markets along the Lake Erie shoreline.  

 
 

III. Application to Lake Erie 
 
 
Lake Erie is one of the most valuable natural resources located within the United States. It 

provides drinking water for millions of people each year, supports a $10.7 billion annual tourist 
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industry (Great Lakes Commission 2014) and is diverted daily to help generate power, grow 

crops and manufacture goods (NOAA 2016). However many of these services are under threat 

due to persistent harmful algal blooms (HABs) that impair water quality through their production 

of harmful toxins. In 2014, for example, over 500,000 Toledo, OH residents were unable to drink 

their tap water due to heightened levels of microcystin, a freshwater toxin, produced from a 

nearby HAB.  

   In addition the toxic algal blooms experienced during the “Toledo Water Crisis” and in Lake 

Erie’s western basin are predicted to worsen in duration and frequency due to rising summer 

temperatures and increased agricultural runoff (Robson and Hamilton 2003; Mooij et al. 2005). 

A number of management strategies have been proposed in response to these expected 

conditions which aim to limit the amount of agricultural loadings occurring within Lake Erie’s 

watershed. Some of the more favored policy suggestions include the use of buffer strips (Scavia 

et al. 2016), a tax on fertilizer (Sohngen et al. 2015) and shorter, more diverse crop rotation 

cycles (Smith et al. 2015). Little is known, however, in regards to the benefits accrued from 

taking such actions. Our study fills in this gap by empirically estimating a water quality marginal 

bid function for near Lake Erie homeowners, which allows for unbiased estimation of welfare 

changes resulting from non-marginal changes in water quality. 

   Housing, water quality, recreational and demographics data have been collected to empirically 

estimate a marginal bid function for water quality. Housing transactions data was assembled 

from county auditor and tax offices covering the 7 counties and subsequently augmented with 

lender information (i.e. loan amount, lender name, owner name, etc.) using data purchased from 

CoreLogic. Records from this combined dataset include historic sales information, a geolocation 

and select structural characteristics for each property sold between July 2002 and December 
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2015. We further cleaned our sample by removing houses that sold for less than $50,000, were 

sold more than once over a 12 month span, were delinquent or vacant, or had extreme structural 

characteristics9; this was done to remove potential sources of omitted variable bias that are 

associated with these non-standard housing transactions. 

    Additional spatial characteristics were added to each housing transaction using its geolocation 

provided by the county parcel shapefiles. Tract and blockgroup IDs were attached to each 

property using shapefiles collected from the Census, while a continuous measure of Lake Erie 

proximity was calculated using a hydrological shapefile provided by the USGS’s National 

Hydrography Dataset. Two additional discrete, mutually-exclusive lake proximity measures were 

also constructed from our continuous distance measure: a dummy variable controlling for 

whether or not the property was adjacent to Lake Erie (i.e. within 20 meters of the lake) and an 

additional non-adjacent, near lake dummy variable was formed for houses located between 20 

and 500 meters from the lake. Finally we merged individual attribute data (i.e. income, gender 

and race) obtained through the Home Mortgage Disclosure Act (HMDA) with our property 

transactions dataset using a set of variables common across both datasets. Approximately 64% of 

the individuals within the transactions dataset were matched with information from HMDA using 

the following set of the variables: transaction date, lender name, loan amount and the property’s 

census tract, garnering a total matched sample of 140,708 housing transactions. A description of 

all the variables used in this study is provided in Table 1, while Table 2 displays summary 

statistics for the entire sample as well as at the commuting zone level for all of the property-

related characteristics. 

                                                           
9Any observation with a covariate value in the 1st or 99th percentile is tagged as a potential 
outlier and removed from the sample. 
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    Housing transactions were then categorized into distinct housing markets based on the time 

period and location it was sold in. Commuting zones were first used as a natural breaking point 

between markets given the distinct political, demographic and economic factors that form each 

region.10 We further disaggregated our sample using two time periods identified by major shifts 

in the national and local housing market: a “boom” period between 2002 and 2007 and a “bust” 

period between 2008 and 2015.11 A total of 8 housing markets are identified using this 

disaggregation strategy, with hedonic price functions expected to change not only across space 

but across time. Although housing markets are traditionally segmented based on spatial 

jurisdictions or political boundaries (Palmquist 1984; Goodman and Thibodeau 1998), a newer 

line of literature has recently defined preferentially-distinct communities across both time and 

space (Zabel and Kiel 2000; Banzhaf and Walsh 2008). This paper follows more closely with the 

latter by assuming differences across space and time shift the hedonic equilibrium. 

     In addition 10 day algal-composite data spanning 2002 - 2014 for all of Lake Erie have been 

acquired. These data were uniformly gridded into 1100 meter by 1100 meter squares using 

remote sensing data collected from the National Oceanic and Atmospheric Administration 

(NOAA 2015) and converted into a Cyanobacterial Index value by Wynne and Stumpf (2015).  

A snapshot of the time-varying algae data at two time periods (September 2011, 2012) highlights 

the heterogeneity in the water quality across space and time as shown in Figures 7 and 8.  To 

attach these algal readings to housing transactions a number of temporal and spatial aggregates 

                                                           
10Commuting zone information was obtained from the USDA’s Economic Research Service 
(ERS) division. According to the ERS, commuting zones were formed with the explicit intention 
to reflect local economies where people live and work (USDA ERS 2016) 
11Figure 6 displays the national and Cleveland Case-Shiller Housing Price Index between July 
2002 and December 2015. Changing the temporal breakpoint from Jan 2008 to Jan 2007 has no 
quantitative impact on our results.  
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were examined. The primary set of results discussed below, however, attach algal concentration 

levels at the household level using readings only taken from the three closest observed algal 

locations.12 Given the measurements taken from these locations, mean annual algal reading were 

then estimated for every observation within the study. Only algal measurements taken within 12 

months of the transaction sale month were used to create this estimate, with the current month of 

algal concentrations excluded from this process to remove the possibility that future algal 

readings were used to predict current housing values.  

      

VI. Empirical Estimation 
 

Estimation of the first-stage hedonic price function took the following form: 

(3)  ln Piltm = α0𝑚𝑚 +   α1𝑚𝑚Xi + α2𝑚𝑚δ𝑙𝑙 +  α3𝑚𝑚Mt  +  α4𝑚𝑚Yt + α5𝑚𝑚LakeAdji +

α6𝑚𝑚NearLakei +  α7𝑚𝑚Distancetolakei +  α8𝑚𝑚NearLakei ∗ Distancetolakei   +

 α9𝑚𝑚(NearLakei + LakeAdji) ∗ log (Algaeit) + є𝑖𝑖𝑙𝑙𝑖𝑖𝑚𝑚 

 

Where the log of the price of house i sold in location l during time period t within market m is 

given by ln Piltm. Separate regressions were run for each housing market providing a total of 8 

hedonic price function estimates.  House-specific structural attributes Xi (i.e. square footage, 

number of bathrooms, lot size, etc.), spatial fixed effects δ𝑙𝑙, and month Mt and year Yt dummies 

were all included within each of these regressions. Inclusion of both spatial and temporal fixed 

effects within equation (3) is an essential component of our analysis as it greatly reduces the 

potential for omitted variable bias by limiting identification of our key parameters of interest 

                                                           
12Our results are robust to using more spatially aggregated/disaggregated measures of algae. 
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(α0𝑚𝑚, … , α9𝑚𝑚 for m =1, … , 8) to come from either variation across space, but within the spatial 

fixed effect, or across time.   

     Additional terms that control for proximity to lake and water quality were also added to (3). 

LakeAdji, NearLakei, Distancetolakei and NearLakei ∗ Distancetolakei control for any 

proximity effect that may exist for non-lake, near lake and lakeshore properties. Inclusion of the 

two discrete variables (LakeAdji; NearLakei) controls for any premium a house gains from either 

being adjacent to the lake or within the lake community but not adjacent. Holding all else equal, 

we expect lake adjacent homes to be valued higher than near lake homes (i.e. α5𝑚𝑚 >  α6𝑚𝑚 for m 

= 1, … , 8) given previous findings within the literature which show significant variation in the 

capitalization of local amenities across space (Abbott and Klaiber 2013). We further include two 

lake proximity covariates which vary continuously across space. The first term, NearLakei ∗

Distancetolakei, allows the lake proximity effect to vary within the NearLake distance band and 

is expected to negatively influence a house’s value (i.e α8𝑚𝑚 < 0 for m = 1, ... , 8). The premium 

associated with living within a lake community is lessened, in other words, as you move further 

from the lake yet remain within the lake community. The second continuous measure, 

Distancetolakei, captures any additional premium that is associated with living close to a lake, 

but not within the lake community.  

    The primary variable of interest, however, is the logged algae variable interacted with the sum 

of the mutually exclusive distance bands: (NearLakei +  LakeAdj) ∗ log (Algaeit). By 

interacting logged algae with this term we limit algae’s impact on property values to occur only 

within the pre-specified near lake distance band.  Estimates from Wolf and Klaiber (2017) 

suggest this band should be set somewhere between 500 - 600 meters; we therefore follow this 

recommendation and set our distance dummy equal to 500 meters. Finally, a vector of 
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idiosyncratic and independently distributed error terms (ϵilt𝑚𝑚) were also included within (5) to 

capture any remaining unobserved variation in housing values. 

     Following the estimation of eight separate hedonic regressions, the implicit price for algae is 

then recovered by taking the derivative of the hedonic price equilibrium with respect to algae. 

Given the functional form assumed in (3), derivation of these prices takes the following form: 

 

(4)  ∂Pılt
�

∂algae

𝑚𝑚
= α9𝑚𝑚� ∗ Pilt(

NearLakei+ LakeAdji
Algaeit

) 
 
The attribute prices recovered from (4) are useful by themselves since they can be used to 

determine consumer’s marginal willingness to pay for public goods such as water quality. 

However, as previously mentioned, these attribute prices are only valid near the consumer’s 

optimal consumption decision. Large changes in public goods, therefore, cannot be accurately 

evaluated unless an entire marginal bid function is recovered. Consequently we estimate a 

marginal bid function for water quality by using the attribute prices recovered from (4) as the 

dependent variable within Rosen (1974)’s second stage regression. We assume the consumers’ 

marginal bid function for water quality follows a Cobb-Douglas specification:  

 

(5) log � ∂Pılt�

∂algae

𝑚𝑚
� =  γ0 + γ1log (Algae𝑖𝑖𝑖𝑖) +  γ2log (Wi) +  γ3log (Demographics𝑖𝑖) +

                                                     γ4log (CompositeGood𝑖𝑖) + υ𝑖𝑖𝑙𝑙𝑖𝑖 
 
Where Algae𝑖𝑖𝑖𝑖 is the same vector of algal measurements used in the first stage regression, W𝑖𝑖 is a 

vector of product attributes other than algae (i.e. square footage, distance to Lake Erie, parcel lot 

size, etc.) ,13 Demographics𝑖𝑖 is a vector observable consumer characteristics that are expected to 

                                                           
130-1 indicator variable quantities such as Fireplace, Garage, etc. are not log transformed within 
equation (5)’s specification. 
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influence demand for water quality, CompositeGood𝑖𝑖 is the amount of numeraire consumed,14 

υ𝑖𝑖𝑗𝑗𝑖𝑖 is an error term and γ are a vector of structural utility parameters. OLS estimation of (5) 

would result in biased estimation of our primary variable of interest, γ1, since unobserved 

preferences for water quality will be correlated both with how much algae the consumer accepts 

at his residential location and the implicit price he pays for water quality. Consistent estimation 

of (5) therefore requires a valid and exogenous instrumental variable for Algae𝑖𝑖𝑖𝑖. 

  

Exogenous Instrumental Variable Strategy 

Our proposed instrumental variable is derived from hydrological and ecological processes that 

directly affect the density and frequency of harmful algal blooms (HABs) on Lake Erie. In 

particular we use a measure of discharge flow rates from the Maumee watershed, one of the 

prominent Lake Erie tributaries, as a proxy for algal concentrations. Discharge flow rates are 

predicted to be positively correlated with algae, but uncorrelated with unobserved consumer 

preferences for water quality.  Water flowing out of the Maumee watershed and into Lake Erie’s 

western basin often contains high concentrations of agricultural runoff collected from nearby 

fields.15 Consequently when heavy rainfall events occur in the spring, recently applied fertilizer 

will be transported from the farmers’ fields to Lake Erie’s shallow western basin via the Maumee 

River.  Faster and heavier outflow from the Maumee River will therefore increase the rate at 

which these nutrients are disseminated across the. Subsequently, as the water column becomes 

                                                           
14CompositeGood𝑖𝑖 is formed by subtracting household i’s income from their annualize home 
price. Annualized home values are estimated by taking its market price and multiplying it by 
11% (Poterba 1984). 
15Approximately 80% of the land within the Maumee watershed is used for agricultural purposes 
(Richards et al. 2002). 
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inundated with higher concentrations of Phosphorous and Nitrogen, co-limited16 blooms of 

Microcystis form (Michalak et al. 2013; Zhou et al. 2013; Stumpf et al. 2012). 

   Given this finding uncovered from the hydrological and biological literature, we adjust our 

second stage hedonic approach by first instrumenting for the endogenous algae variable using an 

aggregate measure of discharge flow rates: 

(6)  log�Algae𝚤𝚤𝑖𝑖� � =  ξ0 + ξ1Discharget +  ξ2log (Wi) + ξ4 log(Demographicsi) +
                                          ξ5 log(CompositeGood𝑖𝑖) +  µilt 

 

(7) log � ∂Pılt�

∂algae

𝑚𝑚
� =  γ0 + γ1log (Algae𝚤𝚤𝑖𝑖� ) +  γ2log (Wi) +  γ3log (Demographics𝑖𝑖) +

                                                 γ4log (CompositeGood𝑖𝑖) +  υ𝑖𝑖𝑙𝑙𝑖𝑖 
 

   To obtain a measure of discharge flow rates, we collected data from the United States Geologic 

Survey (USGS)’s monitoring station located on the Maumee River in Waterville, Ohio (USGS 

2016). Water flow rates are recorded daily and then aggregated by the USGS into monthly 

averages. Using this monthly data, we construct an annual maximum spring time flow rate for 

every time period within our study sample.17  Only discharge measures taken between March 

and June are taken into consideration, however, as they are known to have the strongest impact 

on HAB intensity.18  

   A pair of dummy variables indicating whether or not the homeowner owns a boat or fishing 

license are also included within the vector of demographics in equation (7).  Boat license data for 

                                                           
16Most cyanobacteria are considered nitrogen-fixing and phosphorous-limited, which indicates 
that P is the key nutrient limiting HAB growth. The species of Microcystis found on Lake Erie, 
however, is believed to be co-limited by both P and N (Paerl et al. 2011). 
17As indicated by the sole time subscript on Discharget, this measure does not vary across space. 
All observations occurring within the same time period, in other words, have the same aggregate 
discharge value attached to it.  
18 This aggregate estimate follows closely with the measures used in Stumptf et al. (2012)’s HAB 
forecasting model. In particular Stumptf et al. (2012) create yearly discharge rates using only 
readings taken between March and June. 
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permits sold between 2009 – 2015 and fishing license data for permits sold between 2011 – 2015 

were collected from the Ohio Department of Natural Resources. Both of these statewide datasets 

contain address information which allowed us to geographically reference the boating and 

fishing license datasets to the housing transactions data using Google Earth. Households that 

purchased a boat or fishing permit after their sale date, but before the property’s next sale date, if 

there was one, were labeled as boat owners or fishermen. A description of all the variables used 

in equations (6) and (7) are included at the bottom of Table 1. In addition Table 3 presents a set 

of summary statistics for these variables. 

Converting Inverse Ordinary Demand Curves into Inverse Compensated Demand Curves 
 

The marginal bid function derived from equations (6) and (7) is equivalent to a consumer’s 

inverse uncompensated (Marshallian) demand curve for water quality. Compensated (Hicksian) 

inverse demand functions are preferred, however, when evaluating the welfare implications of a 

quantity change as they hold consumer utility constant. Following the methods discussed in 

Hausman (1981) and Palmquist (2005), we convert our fitted inverse Marshallian demand curve 

into a Hicksian demand curve by substituting the expenditure function in for income. Within our 

study’s current setting this substitution would take the following form: 

 

(8) log � ∂θ�i
∂Algae

� =  γ�0 + γ�1log (Algae𝑖𝑖𝑖𝑖) +  γ�2log (Wi) +  γ�3log (Demographics𝑖𝑖) +

                                                 γ�4log (m𝑖𝑖 − θ�𝑖𝑖) 
 

Where m𝑖𝑖 is equal to annual income for household i and ∂θ�i
∂Algae

 is the derivative of the consumer 

i’s bid function with respect to algae. The first substitution, ∂θı�

∂Algae
=  ∂Pılt�

∂algae

𝑚𝑚
, follows from the 

tangency condition outlined in Rosen (1974)’s first stage, while the second substitution, m𝑖𝑖 −
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θ�𝑖𝑖 = CompositeGood𝑖𝑖, is simply the definition of our composite good. Taking the exponent of 

the left and right-hand side produces a standard ordinary differential equation: 

 

(9) ∂θ�i
∂Algae

=  eγ�0Algae𝑖𝑖𝑖𝑖
γ�1  Wi

γ�2Demographics𝑖𝑖
γ�3(m𝑖𝑖 − θ�𝑖𝑖)γ�4 

 
 
Solving for θ�i then yields equation (10), 
 
 

(10) θ�i =  m𝑖𝑖 − �−(1 − γ�4) e
γ�0Algae𝑖𝑖𝑖𝑖

γ�1+1 Wi
γ�2Demographics𝑖𝑖

γ�3

γ�1+1
+ C�

1/(1−γ�4)
 

 
 
Where C is the constant of integration. As suggested by Palmquist (2005), we invert (10), 

solving for C, and set it equal to our constant level of utility: 

 

(11) C = u = �m𝑖𝑖 − θ�i�
1−γ�4 + (1 − γ�4) e

γ�0Algae𝑖𝑖𝑖𝑖
γ�1+1 Wi

γ�2Demographics𝑖𝑖
γ�3

γ�1+1
 

 

The equation for compensating variation resulting from a quantity change in algae can then be 

calculated using the information provided in (10) and (11): 

 

(12) CV𝐴𝐴𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = θ�i(Algae𝑁𝑁 , u0) −  θ�i(Algae0, u0)  
 
(13) CV𝐴𝐴𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = m𝑖𝑖 − �−�1−γ�4

γ�1+1
� �eγ�0Algae𝑁𝑁

γ�1+1 Wi
γ�2Demographics𝑖𝑖

γ�3 −

         eγ�0Algae0
γ�1+1 Wi

γ�2Demographics𝑖𝑖
γ�3� + (m𝑖𝑖 − P𝑖𝑖𝑙𝑙𝑖𝑖)1−γ�4�

1
1−γ�4 −   P𝑖𝑖𝑙𝑙𝑖𝑖 

 
 
Where Algae0 indicates the original level of algae observed by consumer i during time period t 

(i.e. Algae0 =  Algae𝑖𝑖𝑖𝑖) and Algae𝑁𝑁 is the new level of algae after an improvement/degradation 



 
 

22 
 

in water quality conditions occurs. In addition we know the value of consumer i’s bid function is 

equal to the price they initially paid for their house; this allows us to substitute P𝑖𝑖𝑙𝑙𝑖𝑖 for 

θ�i(Algae0, u0) in equations (11) and (12). 

 

IV. Results 
 
Figure 9 displays the first-stage hedonic point estimates for α9𝑚𝑚 and their corresponding 95% 

confidence intervals. 7 of the 8 markets have negatively signed values for α9𝑚𝑚, which matches 

our expectations and previous findings within the literature which show a robust negative 

relationship between housing/land values and various measures of water impairment (Leggett 

and Bockstael 2000; Poor et al. 2001; Walsh et al. 2011). As indicated by the varying confidence 

intervals in Figure 9, the rate at which water conditions are capitalized into near lake housing 

values varies significantly across markets, with near lake homes located within the “Erie Bust” 

market, for example, losing approximately 7.3% of its value when algal concentrations increase 

by 1% as compared to the 1.5% drop experienced in the “Toledo Bust” market. The relationship 

between housing values and structural attributes19 across all markets matches expectations: 

housing values increasing at a decreasing rate as square footage and parcel lot size increase. In 

addition property values increase when improvements are made to the house (i.e. adding a 

fireplace or a garage) but lose value as the building ages. Lakeshore and near lake homes are also 

valued more because of their proximity to Lake Erie. Lake adjacent homes are valued 

approximately 80%20 more than non-adjacent homes, while homes within 500 meters, but non-

adjacent, obtain a premium of around 35%. This proximity effect appears to be spatially limited 

                                                           
19Full first-stage hedonic results are available in Table A1. 
20 Dummy variable estimates presented in the text have been corrected using the technique 
suggested by (Halvorsen and Palmquist 1980). 
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to 500 meters, however, with non-lake houses gaining no additional value the closer they are 

located to the lake. 

    We further test the robustness of our first-stage results by changing the functional form 

assumption made on the hedonic price function. In our first approach we specify a log-log 

hedonic price function which allows changes in algae to non-linearly affect the market value of a 

home. However, due to the concerns presented in Kuminoff et al. (2010) and Cropper et al. 

(1988), we specify two additional models which vary how algae and housing values are specified 

within the first stage regression.  Results from these modified regressions are displayed in Table 

A2 and are qualitatively similar to our initial findings. Omitted variable bias is also a major 

concern in the hedonics literature (Abbott and Klaiber 2011; Kuminoff and Pope 2014) given the 

number of unknown factors that can affect a home’s value. One way to mitigate these concerns is 

through the use of spatial and temporal fixed effects. We test how various combinations of 

spatial and temporal fixed effects affect our results and present them in Table A3.   The sign and 

magnitude on most of the results remain unchanged when moving from Table A1 to Table A3; 

however some significance is lost when weaker fixed effects are implemented, which further 

highlights the importance of using more stringent fixed effects. 

    Demand slope estimates along with important preference shifters recovered from the second-

stage regression are displayed in Table 4. Only housing transactions located within 500 meters of 

Lake Erie that had a correctly signed implicit price estimate21 were used to estimate the second-

stage hedonic regression. Observations located further than 500 meters from Lake Erie were 

                                                           
21Given that our public good of interest is a bad rather than a good, we convert our original 
marginal damage estimates into implicit water quality prices by multiplying the vector of α9𝑚𝑚 
estimates by -1. Observations with incorrectly signed implicit price estimates were dropped (i.e. 
observations with negative implicit price values) due to our Cobb-Douglas functional form 
specification. 
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always given an implicit price value of 0 due to the functional form restrictions implemented 

within the first-stage regression and therefore had to be dropped from the analysis. Using this 

subsample of 4,553 households three separate marginal bid functions were estimated using OLS 

and two-stage least squares.  

   The first column in Table 4 presents results from an OLS regression, while the final two 

columns use multi-market dummies and discharge flow rates respectively as instrumental 

variables for the endogenous algae covariate. Estimates on the slope parameter across all three 

columns have a magnitude greater than 1, indicating that water quality is an elastic good. Both 

the OLS and multi-market estimate are similar in magnitude and significance, however, which 

suggests the market dummies are not an acceptable exogenous instrumental variable within the 

given setting. Results from a Wu-Hausman test (Wu 1973; Hausman 1978) of endogeneity 

further collaborate this finding. In particular, we are unable to reject the null hypothesis that 

log (Algae𝑖𝑖𝑖𝑖) is an exogenous variable (F(1,95) = 0.0233; p =0.879) using the recovered 

parameter values from column 2. However, we are able to reject this hypothesis at the 10% level 

using values from our preferred model (F(1,95) = 3.316; p =0.0717). 

   We further test the robustness of our finding by changing the functional form assumption made 

in (7). The second panel in Table 4 presents results using a semi-log functional specification. 

Similar to the top panel the instrumented slope estimate in column 3 is much larger in magnitude 

than those recovered from OLS and the multi-market approach. The market instrument appears 

to perform better under this scenario however, successfully rejecting the null hypothesis that 

Algae𝑖𝑖𝑖𝑖 is an exogenous variable at the 1% level (F(1,95) = 70.69; p<0.001).22 The tendency for 

                                                           
22The parameter value derived from the 3rd column is also able to reject the Wu-Hausman test at 
the 1% level (F(1,95) = 17.01; p < 0.001 



 
 

25 
 

both the OLS and market IV estimate to underestimate the true magnitude of the slope 

coefficient suggests that welfare estimates derived from these fitted marginal bid functions will 

be biased too. Under this particular setting, welfare predictions attributed to an improvement in 

water quality would underestimate homeowners’ true gains, while predictions made under the 

opposite scenario would overestimate homeowners’ losses.   

    In addition maximum, March – June discharge rates appear to be a relevant instrument for 

algae densities on Lake Erie obtaining a first-stage F-score of 48.81 within the Cobb-Douglas 

specification and 43 within the semi-log specification. As indicated by Table A4 discharge is 

also positively correlated with algae and the log transformation of algae, matching predictions 

uncovered from the biology and hydrology literature. Coefficients from the other covariates 

within the marginal bid function are for the most part insignificant. Boat owners and fishermen, 

for example, do not appear to have stronger preferences for water quality than non-boat owners 

and non-fishermen. This non-result is likely due to the lack of boating and fishing license data 

availability between 2002 and 2009 which may be biasing our estimates towards 0.   Finally, we 

find a positive and robust relationship between the implicit price people pay for water quality 

and the amount of the composite good they consume. Parameter estimates for γ4 are positive and 

significant in all but one of our specifications, indicating that water quality is a normal good.  

 

Differences in Welfare Estimates 

   Although theoretically it’s well understood why we can’t use first-stage MWTP estimates to 

evaluate large changes in non-market goods, there are only a handful of studies that analyze the 

difference in welfare estimates using both MWTP point and marginal bid function estimates. 

Starting from the mean algae reading for the 4,453 households within 500 meters of Lake Erie 
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(9.48) we plot the difference in welfare estimates, in Figure 10, across these two approaches 

using the preferred Cobb-Douglas marginal bid function recovered in Table 4 and the average of 

the MWTP estimates recovered from (4). The solid black line in Figure 10 corresponds to the 

absolute difference in welfare estimates between those predicted under a second-stage setting 

and those derived using MWTP point estimates, while the dotted gray line shows the percentage 

difference in welfare estimates.23 Welfare estimates derived from small changes in water quality 

are equivalent across both approaches; however the further we move from the hedonic 

equilibrium the more inaccurate the MWTP point estimates becomes. For example, a 40 

reduction in mean algae readings would cause welfare estimates derived from first-stage 

hedonics to be off by more than 11%. Within the current setting this would equate to an absolute 

difference in welfare estimates of approximately $2,500 per household per year! Given these 

findings, we suggest to proceed with caution when attempting to provide non-marginal, policy-

relevant estimates using first-stage hedonic estimates. 

 
V. Discussion and Conclusion 

 
A number of steps have been taken by policymakers to reduce the frequency and intensity of 

HABs on Lake Erie.  During the 1960s and 1970s large algal blooms formed across the lake due 

to industrial, septic and agricultural runoff. The Great Lakes Water Quality Agreement 

(GLWQA) was formed jointly by the United States and Canada in response to these conditions 

in 1972 which called for the reduction of phosphorous runoff into the lake. Water conditions 

dramatically improved over the course of several years after the agreement had been reached and 

the ecosystem appeared to recover from its previous eutrophic state. However these improved 

                                                           
23 ΔWelfareFunction− ΔWelfarePoint

Welfare0
, where Welfare0 is equal to total consumer surplus at the initial 

algae level. 
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conditions did not last long; by the late 1990s annual harmful algal blooms had re-emerged due 

to the introduction of Zebra Mussels in the late 1980s (Vanderploeg et al. 2001) and the rise of 

soluble reactive phosphorous loadings in the 1990s (Joosse and Baker 2011).  

    Policymakers have attempted to curb these worsening conditions by passing amendments to 

the original GLWQA in 1983, 1987 and 2012. The most recent version calls for a 40% reduction 

in spring phosphorous loadings to the western basin from both the United States and Canada 

(GLWQA 2016). Despite this call for action little is still known about the economic benefits 

gained from a reduction in algae. Our paper attempts to partially fill in this gap by providing 

benefit estimates for near lake homeowners using our derived MWTP function. Estimates from 

Stumpf et al. (2012)’s HAB forecasting model24 predict a 40% reduction in June total 

phosphorous loadings would correspond to approximately a 32.3% reduction in algae. Under 

these new conditions near lake homeowners are expected to gain, on average, $3,215 in 

annualized benefits per household. This estimate is more than double what would be predicted 

using MWTP estimates ($1465)! Aggregating this estimate across all Ohio, single family 

residents within 500 meters of Lake Erie produces an annual benefit of $136 million.25 These 

                                                           
24Stumpf et al. (2012)’s forecasting model uses either June total phosphorous loadings or March 
– June Maumee watershed discharge rates to predict future HABs. Given the GLWQA’s focus 
on reducing phosphorous runoff, we estimate future conditions using total phosphorous data 
provided by Stumpf et al. (2012).  
25A total of 33,305 single family houses are located within 500 meters of Lake Erie in our 6 
county study area. We include all of these homes within our aggregated benefit calculation due 
to the rationale provided by McCluskey and Rausser 2003. McCluskey and Rausser (2003) claim 
that homeowners incur additional losses/benefits when nearby environmental quality changes, 
even if the affected property is never sold on the market. Assuming properties are similar to 
capital assets, a change in liquidity, produced by a change in environmental quality, should be 
offset by higher or lower rates of return. However, under our study’s setting unsold property 
owners do not experience a drop in return rates after water quality improves despite the fact that 
their property becomes more liquid. Property owners who hold onto their properties, even after 
Lake Erie water quality improves, therefore accrue additional benefits by not being penalized for 
having a more liquid asset. 
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large gains help justify the already stringent land management practices and fertilizer restrictions 

implemented by both the United States and Canadian government.   

    Our study’s findings show that precise marginal bid function estimates can be recovered when 

exogenous, second-stage hedonic instruments are available. Our slope estimates are more 

negative than those predicted under an OLS and multi-market setting, suggesting that welfare 

estimates derived from these parameters would underestimate the true gains attributed to an 

improvement in water quality and would overestimate the losses associated with a degradation in 

water quality.  In addition we find large differences in welfare estimates derived from first stage 

and second stage hedonic estimates; MWTP point estimates, for example, undervalue a 40% 

reduction in algae by approximately $2,500 per household per year. This large discrepancy 

further highlights the need to recover entire MWTP functions when evaluating large scale 

changes in non-market goods. Finally, estimates from our paper were used to predict future 

benefits recovered under the 2012 GLWQA. Near lake homeowners will receive, on average, an 

additional $3,215 in annualized benefits when total phosphorous loadings are reduced by 40%. 

Pairing this estimate with existing agricultural loss estimates caused by more stringent land 

management practices will allow policymakers to better understand the implicit tradeoffs that are 

made between higher agricultural yields and improved water conditions.   
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Figure 1 – Hedonic Equilibrium 
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Figure 2 – Hedonic Equilibrium in Derivative Space 
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Figure 3 – Rosen’s Second Stage Estimation 
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Figure 4 – Intuition Behind a Multi-market Approach 
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Figure 5-Bias Produced under a Multi-Market Hedonic Setting 
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Figure 6 - Case-Shiller Home Price Index 
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Figures 7 and 8 – Housing Transactions and HAB Data 

 



 
 

40 
 

Figure 9: First-Stage Coefficients 
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Figure 10 – Difference in Welfare Estimates 
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Table 1: Variable Descriptions 
 

 
 
 
 
 
 
 

Variable Description
Totalrooms Number of rooms
Totalbaths Number of baths
Sqft Structural square footage in hundreds of feet
Acres Parcel acreage
Age Age of the house
Fireplace Indicator variable for fireplace (includes both wood-burning and fabricated fireplaces)
Garage Indicator variable for garage
Basement Indicator variable for basement
Pool Indicator variable for pool
Central AC Indicator variable for central air conditioning
LakeAdj Indicator variable for properties located within 20 meters of a lake
NearLake Indicator variable for properties located between 20 and 500 meters of a lake
Distancetolake Distance to closest lake in hundreds of meters
Algae Annual mean Cyanobacterial Index value. One unit is equivalent to 10,000 Microcystis cells/mL
Discharge March - June max water discharge from Maumee watershed. Measured in cubic feet per second
WaterTemperature Annual maximum surface water temperature. Measured in degrees Celsius.
Fishing License Indicator variable for whether or not the household owned a fishing license between 2011 and 2015
Boating License Indicator variable for whether or not the household owned a boating license between 2009 and 2015
Composite Good Annual income spent on non-housing related goods. Calculated by subtracting income from annualized housing costs
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Table 2: Housing Summary Statistics 

Variable Name Mean Std Dev Min Max Mean Std Dev Min Max Mean Std Dev Min Max Mean Std Dev Min Max
Purchase Price 144,223 84,498 50,000 730,000 104,534 44,392 50,000 301,000 141,109 86,770 50,000 730,000 136,876 76,468 50,000 550,000
Total Square Feet 1,634 618.1 576 4,815 1,430 456.1 616 3,275 1,614 613.1 738 4,815 1,557 573.3 634 3,934
Parcel Lot Acreage 0.300 0.383 0.0352 4.998 0.648 0.840 0.0682 4.990 0.212 0.179 0.0490 4.651 0.471 0.645 0.0493 4.966
Age 49.83 25.52 1 100 49.66 24.91 1 100 59.79 21.93 1 100 44.23 23.49 1 100
Total Number of Rooms 6.419 1.376 3 12 5.863 1.101 3 9 6.435 1.367 4 11 6.633 1.607 3 12
Total Number of Bathrooms 1.660 0.691 1 4.500 1.525 0.566 1 3.500 1.541 0.661 1 4.500 1.751 0.669 1 4
Sale Year 2,008 3.692 2,002 2,015 2,008 3.638 2,002 2,015 2,008 3.674 2,002 2,015 2,008 3.677 2,002 2,015
Garage (0/1) 0.850 0.357 - - 0.604 0.489 - - 0.967 0.178 - - 0.590 0.492 - -
Fireplace (0/1) 0.426 0.494 - - 0.407 0.491 - - 0.463 0.499 - - 0.433 0.496 - -
LakeAdj (0/1) 0.00607 0.0776 - - 0.0108 0.103 - - 0.00115 0.0339 - - 0.0212 0.144 - -
NearLake (0/1) 0.0881 0.284 - - 0.150 0.357 - - 0.0481 0.214 - - 0.214 0.410 - -
DistanceToLake (100s) 44.94 30.70 0 99.99 35.23 27.34 0 99.96 53.51 29.48 0 99.99 22.54 23.92 0 99.82
Algae 4.924 10.89 1 129.4 8.896 10.13 1 52.22 1.005 0.113 1 10.65 23.84 19.30 1 88.67
WaterDischarge 8,923 2,951 3,350 16,726 8,958 2,946 3,350 16,726 8,898 2,926 3,350 16,726 8,947 3,045 3,350 16,726
Fishing License (0/1) 0.163 0.369 - - 0.219 0.414 - - 0.121 0.327 - - 0.243 0.429 - -
Boating License (0/1) 0.0527 0.224 - - 0.0605 0.238 - - 0.0337 0.181 - - 0.101 0.302 - -
Income (1000s) 84.83 31.18 10.81 583.7 67.04 11.43 36.42 127.7 86.58 36.23 10.81 583.7 86.65 24.24 42.27 225.7

Variable Name Mean Std Dev Min Max Mean Std Dev Min Max Mean Std Dev Min Max
Purchase Price 179,784 98,202 50,000 595,000 95,423 41,073 50,000 375,000 170,004 103,606 50,000 650,000
Total Square Feet 1,921 668.1 744 3,887 1,361 411.6 677 3,945 1,598 602.7 576 3,940
Parcel Lot Acreage 0.328 0.341 0.0352 4.998 0.236 0.390 0.0650 4.912 0.359 0.445 0.0373 4.049
Age 27.97 24.00 1 98 58.55 21.75 1 100 40.18 24.88 1 100
Total Number of Rooms 6.878 1.447 4 11 5.895 1.073 4 10 5.954 1.485 3 11
Total Number of Bathrooms 2.061 0.723 1 4 1.316 0.466 1 3.500 1.752 0.687 1 4
Sale Year 2,008 3.732 2,002 2,015 2,007 3.537 2,002 2,015 2,008 3.708 2,002 2,015
Garage (0/1) 0.929 0.257 - - 0.908 0.289 - - 0.603 0.489 - -
Fireplace (0/1) 0.339 0.473 - - 0.207 0.405 - - 0.458 0.498 - -
LakeAdj (0/1) 0.00458 0.0675 - - 0.00521 0.0720 - - 0.0863 0.281 - -
NearLake (0/1) 0.0940 0.292 - - 0.0619 0.241 - - 0.340 0.474 - -
DistanceToLake (100s) 41.15 30.05 0 99.99 56.27 30.65 0 99.99 22.86 30.74 0 99.81
Algae 1.595 1.750 1 16.80 24.24 11.52 1 129.4 26.09 24.23 1 111.5
WaterDischarge 8,939 3,007 3,350 16,726 8,878 2,827 3,350 16,726 9,041 3,083 3,350 16,726
Fishing License (0/1) 0.185 0.388 - - 0.192 0.394 - - 0.223 0.416 - -
Boating License (0/1) 0.0606 0.239 - - 0.0658 0.248 - - 0.149 0.356 - -
Income (1000s) 95.30 28.21 31.61 165.7 64.84 11.06 25.20 143.8 116.4 40.57 56.14 221.6

Lorain (N=24254) Lucas (N=11902) Ottawa (N=4196)

All Counties (N=156112) Ashtabula (N=5009) Cuyahoga (N=73703) Erie (N=7721)
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Table 3: Second Stage Summary Statistics 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Name Mean Std Dev Min Max
Discharge 15,438 3,915 7,542 24,190
Water Temperature 24.52 1.053 18.84 27.26
Fishing License (0/1) 0.226 0.418 - -
Boating License (0/1) 0.119 0.324 - -
Composite Good (1000s) 69.88 91.50 0.950 2,416

 (N=4,553)
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Table 4: Water Quality Marginal Bid Function Estimates  
 

Variable OLS Market IV Discharge
LogAlgae -1.032*** -1.028*** -1.202***

(0.0212) (0.0343) (0.0965)
Fishing License (0/1) -0.0347* -0.0349* -0.0240

(0.0185) (0.0212) (0.0264)
Boating License (0/1) 0.0336 0.0330 0.0649*

(0.0231) (0.0262) (0.0332)
Log (Composite Good) 0.0859*** 0.0853*** 0.118***

(0.0189) (0.0189) (0.0221)
Observations 4,553 4,553 4,553
First Stage F-Test - 96.75 74.31

Variable OLS Market IV Discharge
Algae -0.0765*** -0.121*** -0.132***

(0.00801) (0.0117) (0.0143)
Fishing License (0/1) -0.0537* -0.0329 -0.0277

(0.0318) (0.0617) (0.0631)
Boating License (0/1) -0.00955 0.0870 0.111

(0.0399) (0.0814) (0.119)
Composite Good (1000s) 5.13e-05 0.000516* 0.000631**

(0.000258) (0.000287) (0.000288)
Observations 4,553 4,553 4,553
First Stage F-Test - 20.58 43.00

Cobb-Douglas Specification (Log-Log)

Semi-Log Specification

Notes: ***, **, * indicates significance at the 1%, 5% and 10% level respectively. Bootstrapped 
standard errors have been clustered at the tract level. All other structural variables from the first 
stage have been included within each regression. We suppress these results, however, for brevity.



 
 

46 
 

Table A1: First-stage Hedonic Results Full Set 

 

 

 

 

Boom Boom Boom Boom Bust Bust Bust Bust
VARIABLES Toledo Erie Cleveland Ashtabula Toledo Erie Cleveland Ashtabula

LogAlgae*(LakeAdj + NearLake) -0.0469*** -0.0485*** -0.0396* -0.0172 -0.0148 -0.0726*** 0.0224 -0.0303**
(0.0134) (0.0152) (0.0228) (0.0174) (0.0159) (0.0179) (0.0212) (0.0142)

Totalrooms -0.00256 0.0120*** 0.0102*** 0.0156*** -0.00439 0.00625 0.0117*** 0.0193*
(0.00218) (0.00292) (0.00132) (0.00520) (0.00290) (0.00486) (0.00130) (0.00958)

Totalbaths 0.0453*** 0.112*** 0.0525*** 0.0707*** 0.0508*** 0.0688*** 0.0559*** 0.0804***
(0.00607) (0.0131) (0.00316) (0.0166) (0.00613) (0.0122) (0.00367) (0.0221)

Sqft (100s) 0.0524*** 0.0372*** 0.0327*** 0.0675*** 0.0555*** 0.0499*** 0.0431*** 0.0666***
(0.00243) (0.00825) (0.00132) (0.00523) (0.00266) (0.00808) (0.00138) (0.00955)

Acres 0.118*** 0.0924** 0.158*** 0.114*** 0.0766*** 0.0834** 0.151*** 0.0683**
(0.0180) (0.0368) (0.0117) (0.0241) (0.0199) (0.0357) (0.0113) (0.0260)

Age -0.00679*** -0.00512*** -0.0106*** -0.00463*** -0.0101*** -0.0109*** -0.0115*** -0.00645***
(0.000593) (0.00116) (0.000403) (0.00144) (0.000595) (0.00207) (0.000424) (0.00213)

Fireplace(0/1) 0.0308*** 0.0754*** 0.0253*** 0.0762*** 0.0270*** 0.0668*** 0.0347*** 0.0541***
(0.00457) (0.0121) (0.00292) (0.0135) (0.00597) (0.0134) (0.00320) (0.0107)

Garage(0/1) 0.0963*** 0.0285* 0.0498*** 0.0471*** 0.0549*** -0.000205 0.0509*** 0.0205
(0.00817) (0.0147) (0.00568) (0.0109) (0.0167) (0.0114) (0.00637) (0.0147)

Basement(0/1) 0.0877*** 0.107*** 0.0658*** 0.0855*** 0.0774*** 0.0419 0.0677*** 0.0757***
(0.00605) (0.0169) (0.00500) (0.0131) (0.00776) (0.0300) (0.00518) (0.0149)

Pool(0/1) 0.0430*** 0.0328 0.0500*** 0.0463*** 0.0587*** 0.0890** 0.0495*** 0.0358
(0.00746) (0.0384) (0.00606) (0.0127) (0.00791) (0.0396) (0.00702) (0.0212)

CentralAC(0/1) 0.00798 0.0632*** 0.0290*** -0.0614*** 0.0159** 0.0678*** 0.0257*** -0.0518***
(0.0139) (0.0154) (0.00240) (0.0108) (0.00776) (0.0180) (0.00275) (0.0129)

Stories 0.0253** -0.0198 -0.0202*** -0.00210 0.00225 -0.00978 -0.0126** -0.0374*
(0.0112) (0.0206) (0.00548) (0.0136) (0.00980) (0.0207) (0.00558) (0.0202)

Distancetolake(100s) 0.000588* -0.000449 -2.26e-05 0.000326 0.000220 -0.000762 0.000326 -3.94e-05
(0.000345) (0.000496) (0.000294) (0.000264) (0.000362) (0.000606) (0.000281) (0.000332)

LakeAdj 0.581*** 0.597*** 0.591*** 0.560*** 0.584*** 0.794*** 0.589*** 0.476**
(0.0885) (0.0714) (0.0317) (0.0407) (0.0828) (0.0955) (0.0505) (0.180)

NearLake 0.215** 0.370*** 0.145*** 0.395*** 0.178** 0.445*** 0.188*** 0.413***
(0.0862) (0.0871) (0.0305) (0.0485) (0.0751) (0.0841) (0.0342) (0.0481)

NearLake*Distancetolake(100s) -0.000376* -0.000567*** -0.000372***-0.000983*** -0.000357** -0.000443** -0.000448***-0.000978***
(0.000208) (0.000161) (6.04e-05) (0.000163) (0.000153) (0.000177) (7.53e-05) (0.000126)

Sqft Squared (10000s) -0.000492*** -0.000264 -0.000145*** -0.00113*** -0.000484*** -0.000527*** -0.000284***-0.000933***
(6.46e-05) (0.000222) (2.56e-05) (0.000135) (6.10e-05) (0.000177) (2.68e-05) (0.000252)

Acres Squared -0.0192*** -0.0112 -0.0249*** -0.0172*** -0.00885** -0.0103 -0.0247*** -0.00894*
(0.00411) (0.00902) (0.00257) (0.00509) (0.00415) (0.00891) (0.00240) (0.00509)

Age Squared 3.51e-05*** 2.08e-05* 7.35e-05*** 1.35e-05 6.67e-05*** 7.13e-05*** 7.89e-05*** 2.84e-05
(5.70e-06) (1.17e-05) (4.20e-06) (1.45e-05) (5.97e-06) (1.97e-05) (4.59e-06) (1.96e-05)

Constant 10.87*** 10.91*** 11.35*** 10.56*** 11.08*** 11.18*** 11.24*** 10.80***
(0.0629) (0.0865) (0.0305) (0.0972) (0.0639) (0.0981) (0.0355) (0.116)

Tract FE 123 17 553 24 108 17 511 24
Month FE 11 11 11 11 11 11 11 11
Year FE 5 5 5 5 7 7 7 7
Observations 14,581 1,678 58,222 1,447 11,308 1,590 50,686 1,196
R-squared 0.867 0.795 0.884 0.761 0.871 0.761 0.866 0.718
Notes: ***, **, * indicates significance at the 1%, 5% and 10% level respectively. Standard Errors have been clustered at the tracr level.
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Table A2: Robustness to First-Stage Functional Form Specification  

 

 

 

 

 

 

 

 

 

 

 

 

Commuting Zone Boom (2002 - 2007) Bust (2008 - 2015) Commuting Zone Boom (2002 - 2007) Bust (2008 - 2015)
Ashtabula -0.000936 -0.00337 Ashtabula -266.3 -589.3

(0.00172) (0.00265) (280.8) (345.0)
Cleveland -0.0132** 0.00497 Cleveland -2,069** 114.7

(0.00538) (0.00687) (925.4) (1,840)
Erie -0.00370*** -0.00424*** Erie -766.4*** -775.1***

(0.00111) (0.00140) (222.0) (263.0)
Toledo -0.00172** -0.00131** Toledo -194.4 -341.8**

(0.000728) (0.000579) (157.6) (161.6)

Semi-Log Specification Level-Level Specification

Notes: ***, **, * indicates significance at the 1%, 5% and 10% level respectively. Standard Errors have been clustered at 
the tract level. All regressions include tract, year and month fixed effects.
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Table A3: Robustness to Various Temporal and Spatial Fixed Effects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Commuting Zone Boom (2002 - 2007) Bust (2008 - 2015) Commuting Zone Boom (2002 - 2007) Bust (2008 - 2015) Commuting Zone Boom (2002 - 2007) Bust (2008 - 2015)
Ashtabula -0.0283 -0.0348*** Ashtabula -0.0180 -0.0322** Ashtabula -0.0160 -0.0273**

(0.0198) (0.00992) (0.0176) (0.0130) (0.0173) (0.0121)
Cleveland -0.101*** -0.0437 Cleveland -0.0390** 0.00267 Cleveland -0.0402* 0.0203

(0.0306) (0.0581) (0.0193) (0.0214) (0.0230) (0.0215)
Erie -0.0632** -0.0799*** Erie -0.0464*** -0.0741*** Erie -0.0479*** -0.0715***

(0.0256) (0.0213) (0.0155) (0.0184) (0.0153) (0.0185)
Toledo -0.0236 -0.0162 Toledo -0.0450*** -0.0161 Toledo -0.0468*** -0.0143

(0.0346) (0.0245) (0.0133) (0.0160) (0.0135) (0.0156)

Tract Fixed Effects Tract and Year Fixed Effects

Notes: ***, **, * indicates significance at the 1%, 5% and 10% level respectively. Standard Errors have been clustered at the tract level in all specifications. 

No Fixed Effects
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Table A4: Algae, Discharge Correlation Table 

 

 

 

 

Discharge Algae Log(Algae)
Discharge 1.00
Algae 0.19 1.00
Log(Algae) 0.23 0.87 1.00


