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1 Introduction

The U.S. farm sector is entering its fourth year of declining net farm income, and demand

for credit faces upward pressure. As liquidity built up during high-income years is depleted,

more farms may require additional lines of credit to cover operating expenses. The objective

of this study is to demonstrate the benefit of applying machine learning methods to data

from the USDA Agricultural Resource Management Survey (ARMS) in order to predict

whether or not a farm applied for new financing. This will allow us to better predict which

farm types will demand more credit in coming years. Better predictions of farms desiring

additional financing will allow agricultural finance industry participants to better understand

the characteristics of their potential customers and meet their needs. Additionally, the

results can inform where industry segments are demanding greater financing and where

credit constraints might occur.

ARMS data is used for a variety of official statistics, forecasting, and economic research,

all of which could benefit from advances in machine learning. While our focus on this

study is demonstrating how machine learning can be used with ARMS data and predicting

demand for credit, future extensions could also take advantage of new approaches for machine

learning for statistical inference. Further, various sources of detailed survey and market data

for the farm sector are available and currently being used in research that might benefit from

advances in machine learning methods.

The 2014 ARMS included research questions that asked respondents to indicate whether a

respondent applied for new financing in 2014 calendar year. The newly available data allows

us to categorize whether or not farm operations applied for new financing, and determine

whether or not the demand for new credit can be predicted given other observable data

about the operation. As a starting point we use a simple machine learning model, the logit

model of binary classification variables, to predict whether or not each operation applied for

financing. In order to demonstrate the potential benefits of machine learning methods, we

explain the typical machine learning project process and terminology. We then employ an

additional five machine learning algorithms to classify whether a farm operation responded
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to the 2014 ARMS survey indicating that they had applied for new financing. An analysis

of each of the six classification methods used suggests machine learning methods can lead to

accurate predictions and is a useful tool to add to the toolkit of econometricians and users

of econometrician’s predictions.

2 Background

Farm debt financing requirements vary by production specialization as well as operator

objectives and preferences. Some operators may demand more credit because they want

to increase the size of their operation or farm “full time”. For example, many U.S. dairy

farms used credit to fund investments to expand capacity over recent decades (MacDonald

et al., 2007). There are some consistent findings in what U.S. farm and farm operator

characteristics are related to debt use. Dairy and poultry operations have higher levels of

credit use, while crop farms are less leveraged on average. Commercial farms and farms

with younger primary operators also have higher levels of debt use (Ifft et al., 2014). While

these relationships are well-established, they do predict how credit demand will respond to

changes in farm sector or macroeconomic conditions.

Structural changes in the farm sector give rise to some methodological issues in modeling

credit demand. Harris et al. (2009b) note that the number of farms holding any debt

dropped from 60 percent in 1986 to 31 percent in 2007. Harris et al. (2009a) emphasizes

the importance of addressing truncation in research on farm loan use. Similar to trends in

value of production, Ifft et al. (2014) notes that debt use has drastically declined for low-sales

family farms and increased for very large family farms. Choice of functional form is a general

issue in modeling credit decisions. Some households are observed with no use of credit: this

may be due to credit constraints or while others may simply not demand credit.

Studies that use farm-level data to model credit demand are rare, with Katchova (2005)

being the only published paper (to the best of our knowledge) to use ARMS data to model

characteristics of farms that use credit. Katchova (2005) used 2001 ARMS data to explore

determinants of various credit decisions, including use of credit and level of credit. This paper
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illustrates one approach to addressing truncation in modeling credit demand, by separating

estimating of discrete decision to use any credit and the decision on amount of credit to

use. The decision to use credit is modeled using a logit model, and then five other machine

learning models that account for truncation are used to estimate the level of current debt

holdings and number of loans. Key factors found to influence the decision to use credit

across farm types are gross farm income, risk management strategies, operator age, and risk

aversion.

Prior to Katchova (2005), most studies relied on bank data to estimate credit demand.

More recently, Fecke et al. (2016) modeled individual loan amounts using data from a German

bank and identified many factors that influence loan amount, including loan terms, value

of farm production, and business expectations. They also note that sample selection bias

is a common issue in the consumer credit choice literature as well as their study. Future

research on the decision to apply for a loan is recommended. Using farm survey data from

Ireland, Howley and Dillon (2012) found that in addition to the standard relationships

between as farm size and operator age with debt levels, motivations, such as business or

lifestyle-orientation for farming, also drive debt use.

Some recent US-based papers have used aggregated data to estimate structural models

of credit demand by U.S. farms. Bampasidou et al. (2017) use ARMS data to create a

state-level panel, to estimate return to farm assets using farm sector characteristics and

macroeconomic variables. Hubbs and Kuethe (2017) model farm sector credit demand at

the national level from 1978 to 2014 and find frequently periods of excess demand and supply.

While these papers elucidate general trends and characteristics of credit demand, analysis

at this level cannot take advantage of the predictive potential of key farm-level attributes

that drive credit demand.

In addition to improving prediction, other methodological issues surrounding research

using ARMS data may benefit from machine learning methods. A major challenge for

researchers is how to take advantage of increasingly rich data sets to predict credit demand

and other farm-level decisions, within a transparent modeling framework. ARMS has many
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different measures of debt use as well as hundreds of variables on farm characteristics. The

richness of ARMS data is still underutilized for methods of variable selection. Machine

learning provides a transparent method to improve variable selection for prediction models.

Another issue is that while many variables commonly used in research have imputation for

missing responses (i.e. Morehart et al. (2014)), machine learning methods that can use raw

survey responses while including missing observations may provide more insight into key

drivers of credit demand as well as other decisions that can be estimated using ARMS data.

3 Data

The data used in this study comes from the 2014 Agricultural Resource Management Sur-

vey (ARMS). ARMS is an annual survey that is the USDA’s primary source of information

on U.S. farm businesses’ financial performance and position, production practices, and re-

source use. The survey enables a broader understanding of the U.S. farm sector by including

questions about the farm business along with questions on the demographics and economic

well-being of the primary farm operator’s household. The survey is constructed to be repre-

sentative for the continental United States and to enable estimates at the state-level for the

top agricultural States – typically the 15 states with highest levels of agricultural production.

For 2014 the sample size was increased to allow state-level estimates for the top 25 states.

Beyond the typical questions asked in the ARMS survey, the USDA asks additional

research questions that are included for just one year or are repeated sporadically. In 2014

additional questions focused on the debt portion of the farm’s balance sheet, specifically

applying for new loans or lines of credit. Section K of the 2014 ARMS survey included the

following questions:

Question 7: Did you apply for any new loans or line of credit for agricultural purposes

in 2014? (Yes/No)

Question 7a: Was a request for credit or loan application for agricultural purposes either

turned down or were you not given as much credit as you applied for in

2014? (Yes/No)
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Question 8: What was the MAIN reason you did not apply for any new loans or line of

credit for agricultural purposes in 2014?

We focus our research on question 7 regarding whether the farm operator applied for any

new loans or lines of credit for agricultural purposes in 2014. Of the 29,733 usable responses

in the 2014 ARMS sample, all but 1,132 (3.8 percent) answered this question 1. 32 percent

(9,226 farm operators) answered affirmatively that they did apply for a new loan in 2014.

There are differences in the characteristics of the farms and farm operators that applied

for a new loan (which we will refer as credit applicants) and farm operators that did not apply

for a new loan (which we will refer as non-applicants) in 2014. Similar to other research,

these groups vary by demographic characteristics including age and sex, but have similar

educational attainment. Farm characteristics including the commodity specialization, acres

operated, and the farm’s geographic location are also related to demand for credit, as well

as financial characteristics of the farm business and the farm household. The number of

surveyed farms in each category and the respective share of credit applicants are reported

in table 1.

Credit applicants are younger than non-applicants, with an an average age of 55 and 19

percent below age 45. Non-applicants by comparison had an average age of 61 with only

10 percent below age 45. As would be expected for a younger set of farm operators, credit

applicants own a smaller share of the land they operate (66 percent) on average compared

to non-applicants (126 percent)2. While they own a smaller share of land, credit applicants

operate farms that are about twice the size on average (1,428 acres operated vs. 719 acres

operated) compared to non-applicants.

Non-applicants were more than twice as likely to be female compared to applicants.

About 4 percent of those that applied for new credit were female, compared to 9 percent of

those that eschewed new credit. The differences are less stark when comparing the educa-

tional attainment of the two groups. Credit applicants had similar levels of education than

non-applicants.

Perhaps the starkest contrast between credit applicants and non-applicants is by farm
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size, as defined by gross cash farm income (farm sales). More than half of credit applicants

had sales greater than $350,000. Less than 20 percent of non-applicants reached that sales

level. The difference between the two groups increases as the sales benchmark increases.

25 percent of credit applicants had more than $1,000,000 in sales compared to less than 8

percent for non-applicants.

Farms specializing in dairy, corn, hogs, soybeans and wheat were the most likely to apply

for new credit in 2014. The geographic differences largely track with the primary commodity

specializations in the state. For example, farm operators in states where corn and soybeans

are a significant portion of production, including many of those in the Midwest, are more

likely to have applied for new credit in 2014. Around 40 percent of respondents from Iowa,

Nebraska, Indiana, South Dakota, and Illinois applied for a new line of credit in 2014. In

contrast, farm operators from states that typically specialize in specialty crops, including

Florida and California, were much less likely to have applied for new credit in 2014.

The financial characteristics of credit applicants differed in terms of profitability, solvency,

efficiency, and liquidity. Credit applicants had more than twice the net cash farm income

($168,800) compared to non-applicants ($76,600) on average. Half of all credit applicants had

an operating profit margin ratio of 4.7 or greater. By contrast the median operating profit

margin ratio for non-applicants was -7.4. Credit applicants had more farm assets ($3.6m vs.

$2.0m) and more farm debt ($761k vs. $147k). As a group, credit applicants were more

leveraged with a debt-to-asset ratio of 0.21, while non-applicants were less leveraged, with a

debt-to-asset ratio of 0.07.

The average farm operator that did not apply for credit in 2014 had less current assets

than those that applied for credit, but was much more liquid. The average non-applicant

had $251,200 in current assets compared to $612,500 for credit applicants. Conversely, the

average non-applicant had 64 dollars in current assets for every dollar in current debt, while

average credit applicant had nearly 9 dollars in current assets for each dollar of current debt.
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4 Empirical Strategy

We follow a ‘prediction pipeline’ frequently used in the machine learning literature (Foster

et al., 2016). We first define the question as a machine learning problem. Then, we explore

and prepare the data for modeling. The next step is method selection. The final step

is evaluation. For each step in this prediction pipeline, we provide necessary context and

language to compare to standard development of an econometric model.

4.1 Defining the Machine Learning Problem

When attempting to solve a prediction problem using machine learning techniques, it is

essential to explicitly pose the question one is trying to solve as a machine learning problem.

The type of problem will dictate the needed data and guide the model selection. We define

our specific problem as trying to predict the farms that will apply for a new loan. In machine

learning terminology, this is a binary classification problem. We are trying to classify farmers

into one of two groups: new credit applicants or non-applicants. There are numerous machine

learning methods that are well suited to tackle this problem and we outline several in the

model selection section below. Specifically defining the problem also enables use to gather

and prepare the data needed as inputs for the machine learning methods. Data preparation

is discussed next.

4.2 Data Preparation

Having defined the problem as a binary classification prediction problem where we want

to classify farmers as either new credit applicants or non-applicants, we can create what is

known as the label and features in machine learning literature. The ‘label’, or y-variable in

our case, is a binary variable that takes a value of 1 or true if the farm operation applied

for a new loan in 2014 and 0 or false otherwise. The explanatory x-variables are the ‘fea-

tures’ that may help to predict the label. Unlike inference where the estimated coefficients

are important, accurate prediction is the goal, hence many of the issues associated with

explanatory variable selection for inference can be avoided. Instead it is often preferable to
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include many more features and transformations of features including creating interactions

or aggregations of variables. Having quality data is essential to the success of the machine

learning models. We choose features that describe the primary farm operator, the farm, and

the farm household. This includes variables related the age of the operator, the size and

type of the farm, as well as how reliant they are on income from farming. The full set of

features (or variables) used is reported in table 2.

4.3 Model Selection

Having defined the research question as a machine learning problem and transformed the

data, we need to choose the machine learning methods that will actually perform the pre-

diction. The type of problem dictates the appropriate methods for empirical testing. Our

problem is a ‘classification prediction problem’, i.e., we want to classify a farm operator as

either applied for a new or did not apply for a new loan. Therefore, we need to select ma-

chine learning methods that are capable of solving a classification problem. There are many

applicable supervised machine learning methods out of which we choose six methods that

are commonly used, each with their own well-established strengths and weaknesses. These

six models fall into three broad categories: generalized linear models, naive Bayes models,

and ensemble models. Each model is described below along with their potential strengths

and weaknesses in solving the problem.

The most basic family of models is known as generalized linear models. These models

will perform well if the target variable or ’label’ can be approximated by a linear combi-

nation of the feature variables. Many commonly used models in the agricultural finance

literature, including ordinary least squares, ridge regression, and lasso models fall into this

category of models. From the large pool of generalized linear models, we choose the logis-

tic regression (logit) and stochastic gradient descent models. The L1 regularized logistic

regression model we use fits a logistic curve to the data. L1 regularized logistic regression

models have sparse solutions relative to other models. If the goal is to reduce over-fitting,

logistic regression might be produce favorable results. The stochastic gradient descent model

8



is another relatively simple generalized linear model that is computationally efficient. The

stochastic gradient descent model is an iterative optimization model where the model starts

with an initial set of parameters and iterative changes are made until the objective function

is minimized. This process is repeated with the initial starting parameters shuffled. This

model tends to perform well when given large data sets.

Slightly more complex than generalized linear models, though still fairly simple, naive

Bayes models are a family of supervised machine learning models that employ Bayes theorem

of conditional updating with the added ’naive’ assumption that the features are independent.

From this family of models, we choose the Gaussian naive Bayes which makes the added

assumption that the likelihood of the features is Gaussian. For obvious reasons, this model

will not perform well if the feature variables are not independent or if the likelihood function

of the features is not Gaussian. This model tends to perform well even with relatively small

amounts of training data. It is also computationally efficient which means its fast compared

to more complex models discussed below.

Ensemble or weighted models combine forecasts from numerous base models. The goal

of these models is to take advantage of the benefits of each base model while reducing

the drawbacks from any single model. We chose three ensemble models that take different

approaches to combining base models. The first is forests of randomized trees, often referred

to as a random forest model. For this model, decision trees are created each with a random

subset of the available features. For each tree, the data is split into two groups based on

a particular feature that best splits the data between positive and negative cases. Each

new subset of data is split again based on another feature that best splits the data. This

is performed for each tree and the results are averaged. This method has the potential to

introduce bias based on the selection of features for each tree, but may result in a preferable

model due to the reduced variation from averaging a diverse set of decision trees. This model

is also easy to perform using parallel processing making it useful for extremely large data

sets.

A variant on forests of randomized trees that we test is extremely randomized trees.
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Extremely randomized trees goes an additional step further in randomizing the subset of

features, by also randomizing the splitting thresholds. This method can increase the overall

bias of the results, but tends to reduce the variance over the standard forests of randomized

trees. Another type of ensemble model is called boosting, where rather than random forest

type models where the base models are performed independently, boosting methods perform

the base methods sequentially and try to minimize the added bias at each new model step.

This ensemble method is often used to combine numerous relatively weak prediction models

to produce a model that has more predictive power than any of the individual models.

We specifically choose gradient tree boosting, which iteratively adds decision trees in stages.

Gradient tree boosting tends to perform well when the features are heterogeneous i.e., binary,

categorical, and continuous feature variables. The iterative nature of this method means that

parallel processing is difficult which means scaling this model up to accommodate large data

sets is problematic.

There are numerous other models that could have feasibly been considered, but the chosen

set of models give breath of complexity and each has potential benefits over others. After

we’ve defined the problem, prepared the data, and selected competing models, we now can

evaluate the performance of each model. The next section covers the metrics and procedure

we follow for evaluation.

4.4 Evaluation

In most analysis using ARMS data the focus is on inference rather than prediction. Accord-

ingly, the focus is on the economic interpretation and statistical significance of estimated

regression coefficients. However, our emphasis is demonstrating the benefit of machine learn-

ing methods to successfully predict the farms that indicated they applied for new credit in

the 2014 ARMS data. Therefore, we analyze the predictive accuracy of each method model

considered.

Given that most econometric and machine learning methods minimize inaccuracy, evalu-

ating predictive accuracy on the same data used to fit the model, called in-sample prediction,
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results in overly optimistic accuracy estimates. This is often referred to as over-fitting the

model. Over-fit models tend to generalize poorly, resulting in poor predictive performance

when applied to other data. Therefore, we follow standard practice in the forecasting and

machine learning literature and base our analysis on out-of-sample rather than in-sample

predictions. To accomplish this we split our original data into a ‘training data’ set used to

fit the model and then apply the trained model to the ‘test data’ in order to evaluate its

accuracy. While there are many methods of assigning observation to the test data, we elect

to use a ‘stratified k-fold cross-validation’ because it allows us to evaluate the model using

all observations.

In the case of a stratified k-fold cross-validation, the data set is broken up into k equally

sized subsets called folds. It is called stratified because in addition to the equal size require-

ment, the subsets preserve the proportion of observations observed in each class in the full

data set. The model is then fit k times. Each time k-1 of the folds are used to fit the model

and the left out fold is used to evaluate model accuracy. K-fold cross validation is typically

preferred to simple out-of-sample testing where some percentage of the data is held out for

predictive accuracy testing because with k-fold cross validation each observation is used to

evaluate the model’s accuracy.

Ultimately, the decision on the number of folds used to split the data involves a trade-off

between computational resources and the bias associated with estimated accuracy statistics.

As k increases the proportion of data used to fit the model increases, resulting in lower

potential bias in estimated accuracy measures (Kuhn and Johnson, 2013). In the special

case where k equals the number of observations, known as leave one out cross-validation,

the difference between the size of the training data and original sample is small, resulting in

little bias. However, this approach is very computationally intensive, particularly in larger

data sets3. Although there are no set rules, 5- or 10- fold cross-validation are commonly

used (Kuhn and Johnson, 2013). We choose to use 5-fold cross-validation to evaluate each

model in our analysis.

Although the terminology used can sometimes differ, the methods used to evaluate the
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predictive accuracy of machine learning models aligns with that used in the forecast evalu-

ation literature. Contingency tables, often referred to as a confusion matrix, are commonly

used to analyze the ability to predict categorical outcome variables (Kuhn and Johnson,

2013). Because we are interested in the accuracy of predictions of a binary variable our

analysis of each models accuracy uses a 2x2 confusion matrix as outlined in table 3. The

matrix’s diagonal includes the true positive (TP) cases where the model correctly predicted

a farm applied for an application and true negatives (TN), where the model was able to cor-

rectly discern the farm operation did not apply for new credit. A models overall accuracy,

or percentage of correctly predicted outcomes, is calculated as the sum of these correctly

predicted cases to the total number of observations.

Accuracy = True positive + True negative

All predictions
(1)

.

While accuracy is often used to provide a high-level overview of a model’s predictive

ability, it does not account for the relative frequency of the categorical outcomes or the

ability to make correct predictions by chance. In the 2014 ARMS data, 32.3 percent of

respondents indicated they had applied for a new loan or line of credit. As a result, a

simple model assuming no farms applied for a new loan, would have an accuracy rate of

67.3 percent. It is clear that each model’s accuracy needs to be viewed to some baseline

comparisons. With this in mind, it can therefore be more informative to use a measure of

accuracy that takes into account the expected accuracy given the prevalence of the event of

interest in the confusion matrix (Kuhn and Johnson, 2013).

We use the ‘kappa statistic’, which takes into account the possibility of predicting the

correct outcome by chance, as an alternative measure of overall accuracy (Cohen, 1960). To

calculate kappa each model’s observed accuracy (O) is scaled by the probability of predicting

the outcome correctly by chance (E)4:

kappa = (O − E

1− E
) ∗ 100. (2)
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The kappa statistic measures the agreement between the predicted and observed outcomes on

a scale between -100 and 100 5 6; however, in practice values range between 0, which signifies

no predictive ability and 100, which indicates perfect agreement between the predictions and

outcomes.

Because the goal is to predict farm operations that applied for credit, we also consider

each model’s ability to discern between applicants and non-applicants. A model’s recall, also

commonly referred to as sensitivity, is a measure of its ability to correctly predict the event of

interest having occurred in the sample of observations where the event actually occurred. In

the context of predicting credit applications, recall measures each model’s ability to predict

that a farm applied for a new loan among the 9,226 operations that were actually observed

as having applied. It can be interpreted as the percent of farms that were correctly predicted

would apply for a loan out of the total that actually applied. A recall value of 80 percent

means the model was able to select 80 percent of the people that actually applied for a loan.

As shown in equation 3, recall can be calculated from the confusion matrix as the number

of true positives relative to observed positives.

Recall(sensitivity) = True positives

True positives + False negatives
(3)

Specificity is a related accuracy metric, which measures the ability to detect non-events

in the observations that did not have the event of interest occur. Therefore, we use specificity

as a gauge of the ability to correctly classify non-applicants as having not applied for new

financing.

Specificity = True negatives

True negatives + False positives
(4)

While sensitivity and specificity are useful in assessing model accuracy, they are condi-

tioned on the event of interest, in our case having applied for credit, having occurred or

not occurred (Kuhn and Johnson, 2013). However, most often models are used to predict

an event outcome without having prior knowledge of the event class the observation will

actually end up in. Positive predictive value (PPV), also called precision, is a measure of
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the unconditional probability of the event occurring, while negative predictive value (NPV)

is the unconditional probability of the event of interest having not occurred. In our case,

precision measures the accuracy of the model when it has predicted a farm applied for a

new loan. A precision value of 80 percent means that out of the farms the model predicted

applied for a loan, it was correct 80 percent of the time. PPV and NPV are easily calculated

directly from the confusion matrix as shown in the equations below.

Positive predictive value(precision) = True positives

True positives + False positives
(5)

Negative predictive value = True negatives

True negatives + False negatives
(6)

5 Results and Discussion

The metrics described in the previous section are reported in tables 4 and 5. We use these

metrics to evaluate the success of each model in predicting whether a farm operation applied

for credit in 2014. Table 5 summarizes the confusion matrix results into the accuracy metrics

outlined in the evaluation section. Focusing first on each model’s overall predictive ability,

the accuracy statistics suggest that applying the more complex ensemble machine learning

methods to ARMS data can improve the ability to predict credit demand compared to an

individual model, but not necessarily so. The logistic regression model was able to correctly

predict whether or not a farm operation applied for new credit 77 percent of the time. The

stochastic gradient descent (SGD) and extremely randomized trees (ERT) models both were

unable to correctly predict as many outcomes as logistic regression. On the other hand the

Gaussian naive Bayes (GNB), random forest, and gradient tree boosting models were each

able to correctly predict more than 80 percent of outcomes.

Comparing the model using the kappa statistic, which corrects for the likelihood of

correct predictions due to random chance, results in the same rank order of model accuracy.

The logistic regression model is again more accurate than the SGD and ERT. Likewise,
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the GNB, gradient tree boosting and random forest models continue to be most accurate.

Interestingly, the gap in relative accuracy between logistic regression and the three more

accurate machine learning methods widens once the role of chance is taken into account.

Because more than two-thirds of the ARMS sample reported not having applied for a new

loan, there is intuitively a greater likelihood of having been correct by chance when predicting

an observation was a non-applicant. Therefore, models predicting a greater number of non-

applicants could appear more accurate. By analyzing the reported specificity, sensitivity

and precision statistics, we can get a better sense of each model’s ability to discern between

applicants and non-applicants in more detail.

The specificity results suggest all but the SGD model were able to correctly predict that

most of the actual non-applicants did not applied for a loan. The gradient tree boosting ma-

chine learning algorithm was particularly adept at correctly assigning actual non-applicants

to the non-applicant group, correctly identifying nearly 100 percent of all non-applicants.

Comparing the models negative predictive value provides further insight into how often each

model’s prediction of a farm operation being a non-applicant was true. The logistic regres-

sion, SGD, ERT and gradient tree boosting models had a negative predictive value between

76 and 80 percent, suggesting just more than one out of every five times an operation was

predicted to be a non-applicant it was actually an applicant. By comparing both specificity

and negative predictive value, it is clear that the gradient tree boosting algorithm is trading

the ability to almost perfectly assign non-applicants to the non-applicant group for false neg-

atives, where applicants are incorrectly identified as non-applicants. In contrast the random

forest algorithm misclassified more of the actual non-applicants, but also was less likely to

incorrectly predict that actual applicants did not apply for a loan.

While there are more observations in the underlying data where the respondents did

not apply for a loan, being able to correctly identify applicants is likely of greater interest

to industry participants and policy makers. Analyzing recall (sensitivity) and precision

(positive predictive value) allow us to determine which models are best at classifying the

outcome class of interest. In comparison to most of the models relatively high specificity,
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recall is between 40 to 50 percent in all but two cases. This suggests the models had a

more difficult time classifying the less common applicant observations. Again the logistic

regression model’s performance falls in the middle of the model pack, identifying 49 percent

of applicants as applying for credit. The random forest method performs best, correctly

predicting the application of roughly two-thirds of actual applicants. The random forest

model also performs relatively well compared to logistic regression at avoiding false positives

where non-applicants are predicted to have applied for a loan. Although the GNB and

gradient tree boosting models each are better at avoiding false positives, they do so with the

trade-off of failing to identify as many actual applicants.

We are able to show that machine learning is a potentially useful prediction tool set

when applied to the rich ARMS financial data, though the prediction outcomes varied based

on the method. The results emphasize the importance of not blindly applying a machine

learning model, but testing different models and understanding the benefits and drawbacks

to each model in the context of the research objective. Random forests perform best over

most of the prediction metrics and were particularly adept at identifying non-applicants well

and applicants better than most other tested models. Random forests are widely used both

for prediction and inference, and our findings support the usefulness of this approach. In the

end, the best model depends on the prediction outcome that is most important to person

or organization that will use the model. Someone that is interested in accurately targeting

users, say to mail a letter and not have much waste may prefer a model with high precision

like gradient tree boosting. However, if someone is looking to reach as many potential new

credit applicants, they may choose a model that had better recall, as was the case for the

stochastic gradient descent model.

6 Conclusion

In this study we show how machine learning methods can be used with ARMS data to

predict demand for new credit. Some of the more complex machine learning methods can

perform better than a standard econometric model (logit) at predicting credit demand. We
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provide a useful framework for future application of machine learning methods to ARMS

data by explaining how machine learning methods are implemented. We illustrate how ma-

chine learning can be used transparently and describe how the implementation approaches

avoid issues such as over-fitting. In addition to improving forecasting capabilities, machine

learning can provide a variety of improvements to current methodologies being used in ap-

plied research in the farm and food sector. While machine learning is not a panacea to the

methodological challenges of prediction and statistical inference, there many benefits to its

application to research using ARMS and other food and farm data sets.
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Table 1: Summary Statistics
Share credit

Number applicants*
Commodity Specialization
Corn 2,802 49%
Soybean 2,295 43%
Wheat 725 39%
Cotton 308 53%
Specialty Crop 2,963 25%
Other Crop 6,993 31%
Cattle & Calve 8,598 25%
Dairy 1,700 50%
Hog 385 45%
Poultry & Egg 1,526 31%
Other Livestock 1,438 16%
Age
< = 34 1,136 52%
35-44 2,569 47%
45-54 5,646 39%
55-64 11,115 33%
>= 65 9,267 21%
Acres Owned
< 1% 2,537 46%
1% - 20% 2,632 54%
20% - 40% 2,731 51%
40% - 60% 2,751 46%
60% - 80% 2,551 40%
80% - 100% 2,110 39%
> 100% 14,421 17%
Education
Less Than High School 1,747 30%
High School 11,410 31%
Some College 8,174 36%
College 8,402 31%
Sales
Low-sales Small Farms 16,504 17%
Moderate-sales Small Farms 4,420 40%
Midsize Farms 4,923 52%
Smaller Million Dollar Farms 3,220 60%
Larger Million Dollar Farms 666 61%
Total 29,733 32%
Note: Survey weights are not applied
*Non-respondents excluded from calculation
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Table 2: Features Used in Machine Learning Models

Feature Feature description
GCFI Gross cash farm income
FARMHHI Total farm household income
TOTOFI Off-farm household income
FamilyFarm Family farm (Yes/No)
AL Alabama farm (Yes/No)
AR Arkansas farm (Yes/No)
CA California farm (Yes/No)
FL Florida farm (Yes/No)
GA Georgia farm (Yes/No)
IL Illinois farm (Yes/No)
IN Indiana farm (Yes/No)
IA Iowa farm (Yes/No)
KS Kansas farm (Yes/No)
KY Kentucky farm (Yes/No)
MI Michigan farm (Yes/No)
MN Minnesota farm (Yes/No)
MS Misssissippi farm (Yes/No)
MO Missouri farm (Yes/No)
NE Nebraska farm (Yes/No)
NC North Carolina farm (Yes/No)
ND North Dakota farm (Yes/No)
OH Ohio farm (Yes/No)
OK Oklahoma farm (Yes/No)
PA Pennsylvania farm (Yes/No)
SD South Dakota farm (Yes/No)
TX Texas farm (Yes/No)
WA Washington farm (Yes/No)
WI Wisonsin farm (Yes/No)
Northeast Residual Northeast region farm (Yes/No)
South Residual South region farm (Yes/No)
West Residual West farm (Yes/No)
AcresOwnedPercent Percent of operated acres that are owned
AcresCroplandPercent Percent of operated acres that are cropland
AcresOwned Total acres owned
CroplandAcres Total cropland acres
AcresOwnedPercentLT01 Category 1 acres owned
AcresOwnedPercentBtw01 20 Category 2 acres owned
AcresOwnedPercentBtw20 40 Category 3 acres owned
AcresOwnedPercentBtw40 60 Category 4 acres owned
AcresOwnedPercentBtw60 80 Category 5 acres owned
AcresOwnedPercentBtw80 100 Category 6 acres owned
AcresOwnedPercentGT100 Category 7 acres owned
WheatFarm Wheat specialized farm
CornFarm Corn specialized farm

22



SoybeanFarm Soybean specialized farm
CottonFarm Cotton specialized farm
OtherCropFarm Other crop specialized farm
SpecialtyCropFarm Specialty crop specialized farm
CattleCalveFarm Cattle and calve specialized farm
HogFarm Hog specialized farm
PoultryEggFarm Poultry and egg specialized farm
DairyFarm Dairy specialized farm
OtherLivestockFarm Other livestock specialized farm
OperatorAge Primary operator’s age
OperatorsAllYoung Are some operators <35 (Yes/No)
OperatorsSomeYoung Are all operators <35 (Yes/No)
LowSalesSmallFarm Gross cash farm income <150,000
ModerateSalesSmallFarm Gross cash farm income between 150,000 and 350,000
MidsizeFarm Gross cash farm income between 350,000 and 1,000,000
SmallerMillionDollarFarm Gross cash farm income between 1,000,000 and 5,000,000
LargerMillionDollarFarm Gross cash farm income >=5,000,000
OperatorRetired Primary operator retired? (Yes/No)
OperatorWorksOfffarm Primary operator works off-farm? (Yes/No)
OperatorFemale Primary operator female? (Yes/No)
OperatorEducSomeHS Education category 1
OperatorEducHS Education category 2
OperatorEducSomeCollege Education category 3
OperatorEducCollege Education category 4
AssetTotal Total farm assets
AssetCurrent Current farm assets
AssetNonCurrent Noncurrent farm assets
AssetRealEstate Real estate farm assets
RealDebt Real estate debt
NonrealDebt Nonreal estate debt
NonrealDebtShort Short-term nonreal estate debt
NonrealDebtLong Long-term nonreal estate debt
FCSloan Has an FCS loan? (Yes/No)
FSAloan Has an FSA loan? (Yes/No)
CommercialLoan Has a commercial loan? (Yes/No)
LifeInsLoan Has a life insurance loan? (Yes/No)
FarmerMacLoan Has an Farm Mac loan? (Yes/No)
ImplementDealerLoan Has an implement dealer loan? (Yes/No)
OtherLoan Has an other loan? (Yes/No)
Metro2013 Farm in metro county 2013? (Yes/No)
UnemploymentRate2009 2009 county unemployment rate
UnemploymentRate2013 2013 county unemployment rate
UnemploymentRate2014 2014 county unemployment rate
UnemploymentRateChange13 14 2013 to 2014 county unemployment rate percent change
UnemploymentRateChange09 14 2009 to 2014 county unemployment rate percent change

23



Table 3: Confusion Matrix Legend
Predicted

Applicants Non-applicants
Actual applicants True positives (TP) False negatives (FN)
Actual non-applicants False positives (FP) True negatives (TN)
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Table 4: Confusion matrices
Method Confusion matrices
Linear models
Logistic regression 4,566 4,660

2,002 17,373

Stochastic gradient descent 7,731 1,495
8,045 11,330

Näıve Bayes models
Gaussian näıve Bayes 4,205 5,021

551 18,824
Ensemble models
Random forest 6,200 3,026

1,553 17,822

Extremely randomized trees 3,839 5,387
2,542 16,833

Gradient tree boosting 4,439 4,787
96 19,279
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Notes
1We also included people that reported a new loan in the debt table from 2014 as having applied for a line

of credit for agricultural purposes, as high response rate was likely influenced by language in the survey that
stated “response to this inquiry is required by law” may have influenced responses to debt-related questions

2Acres owned percent can be above 100 percent because the farm owns more acres than it operates, i.e.,
the farm rents out land

3For our data this would require each model to be estimated 28,601 times. Even if each iteration could
be estimated in one minute, the 28,601 iterations for a given model would take nearly an entire day to run
and it would take the better part of a a week to run all six models.

4The probability of predicting the outcome correctly by chance is calculated using the confusion matrix
according to the formula E = ( T P +F P

N )( T P +F N
N ) + ( F N+T N

N )( F P +T N
N ).

5The kappa statistic is also often reported on a scale of -1 to 1, but we prefer to multiply by 100 so it is
on the same scale as accuracy

6A negative value for kappa would indicate the model found a relationship between the input data and
event outcome that predicted the opposite of what happens. In practice, machine learning techniques are
designed find concordant relationships between input and output data so this is unlikely to occur.
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