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Abstract

This paper presents an estimator for semiparametric models that uses a feed-forward neural

network to fit the nonparametric component. Unlike many methodologies from the machine

learning literature, this approach is suitable for longitudinal/panel data. It provides unbiased

estimation of the parametric component of the model, with associated confidence intervals that

have near-nominal coverage rates. Simulations demonstrate (1) efficiency, (2) that parametric

estimates are unbiased, and (3) coverage properties of estimated intervals. An application

section demonstrates the method by predicting county-level corn yield using daily weather

data from the period 1981-2015, along with parametric time trends representing technological

change. The method is shown to out-perform linear methods such as OLS and ridge/lasso,

as well as random forest. The procedures described in this paper are implemented in the R

package panelNNET.1

Neural networks[1] (termed “deep learning”[2] in some contexts) are the current state-of-the-art

in machine learning and artificial intelligence. They have been successfully applied to tasks rang-

ing from computer vision, natural language processing, self-driving cars, and quantitative finance.

Hardware and software constraints limited the usefulness of these computationally-intensive ap-

proaches for many years. However, recent advances in hardware and software – and especially in

algorithm design – have made them increasingly accessible and effective.

Ultimately however, neural networks are nothing more than algorithms for finding an optimal

set of derived regressors from a set of input variables. These derived regressors are then used in a

linear model of some outcome. Given that neural networks ultimately yield linear models, many

standard econometric techniques can be applied to them in a fairly straightforward manner. That

insight forms the crux of this paper.

In particular, this paper presents a semi-parametric extension to cross-sectional and panel data

models, using neural networks to fit the nonparametric component of the model. The model dis-

cussed here is quite general, and is variously applicable to high-dimensional regression adjustment,

∗Economic Research Service, US Department of Agriculture. andrew.crane-droesch@ers.usda.gov. The views
expressed are those of the author and should not be attributed to the Economic Research Service or USDA

1https://github.com/cranedroesch/panelNNET
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heterogeneous/individualized treatment effect estimation, general nonparametric regression prob-

lems, and forecasting with longitudinal data.

The basic model is

yit = αi +Xitβ + f(Zit) + εit (1)

where y is an outcome for unit i in time t2, X is a N × PX matrix of data to be represented

linearly, and Z is a N × PZ matrix of variables to be represented nonparametrically. Choices of

which variables to be included in X or Z are left to the modeller. As will be made clear below,

it will be appropriate to include variables in X where the modeler has knowledge of appropriate

parametric structure and/or desires unbiased marginal effects. All or some elements of Z may be

included in X, yielding a linear “main effect” along with a nonlinear component. The compound

error αi + εit represents between-unit and within-unit variability, respectively.

Rather than estimating hundreds or thousands of individual effect parameters, standard econo-

metric practice removes α via the “within” transformation:

yit − ȳi =
(
Xit − X̄i

)
β + f∗(Zit − Z̄i) + εit − ε̄i (2)

This fails however when f() is nonlinear, because f(Zit) 6= f∗(Zit − Z̄i). While multidimensional

linear basis expansions of f(Z) can solve this problem, they are quickly overcome by the curse of

dimensionality as PZ grows.

Other machine learning approaches are also ill-suited to estimating 1. Random forests[3] can

consistently[4, 5] and efficiently estimate models of the form y = f(Z) + ε, but they have no clear

way to incorporate known parametric structure where available, nor an obvious way to eliminate

the nuisance parameters α. Elastic-net regression[6] and generalized additive models[7] can handle

fixed effects by first projecting-out fixed effects, but they require extremely large multidimensional

basis expansions if they are to serve as universal approximators of an arbitrary f() with a high-

dimensional Z.

This paper contributes to the econometric literature on nonparametric fixed effects models,

which have heretofore relied on series estimation or kernel methods[8, 9, 10] and thereby suffer

greatly from the curse of dimensionality. This paper also contributes to the machine learning

literature, which has not yet developed a nonparametric algorithm suited to settings with repeated

observations of many cross-sectional units. Finally, this paper contributes to the emerging literature

at the intersection of machine learning and causal inference[11], particularly that which seeks to

estimate personalized treatment effects[5, 12].

2The individual-time indices are presented without loss of generality. Any context with repeated observations of
one or more cross-sectional unit is admissible in this framework.
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1 Neural networks

1.1 Panel data

This paper proposes an estimator of 1 using a feed-forward neural network for the nonparametric

part:

yit = αi +Xitβ + V 1
itΓ

1 + εit

V 1
it = a

(
γ2 + V 2

itΓ
2
)

V 2
it = a

(
γ3 + V 3

itΓ
3
)

...

V L
it = a

(
γL +ZitΓ

L
)

(3)

where V l are derived variables or “nodes” at the lth layer. The parameters ΓL (termed “weights”

in the computer science literature) map the data Z to the outcome via the intermediate nodes.

A priori, no particular interpretation is attached to the derived variables V – they are simply

nonlinear combinations of Z that are chosen to make the model fit well.

The number of layers and the number of nodes per layer (i.e.: the dimension of V l) is a

hyperparameter chosen by the modeler. Note that Γ2:L are matrices of dimension equal to the

number of nodes of the lth layer and the next layer up. The function a() is termed the “activation”

function, and maps V from the real line to a defined interval – common choices are sigmoids

such as the logistic and the hyperbolic tangent. More recently, the “rectified linear unit”[13] (and

variants [14, 15]) activation function – a(x) = max(0, x) – has been shown to improve performance,

especially in networks with many layers. Hornik et al. [16] have shown that neural networks can

approximate any continuous function, given sufficiently many nodes and/or layers.

For a neural network with two layers, 3 can be written more compactly as

yit = αi +Xitβ + a(a(ZitΓ
3)Γ2)Γ1 + εit (4)

Because the top layer is a linear model in the X’s and the derived variables V 1, the “within”

transformation3 yit − ȳi =
(
Xit − X̄i

)
β +

(
V 1
it − V̄ 1

i

)
Γ1 + εit − ε̄i holds without altering β or Γ1.

Fixed effects are thus removed.

1.2 Estimation

The above are special cases of neural networks for continuous variables, and are fit to data in

the same way as the general case. The loss surface for neural networks is generally nonconvex,

and methods for minimizing this loss have been the focus of substantial research4. Most methods

3This is without loss of generality; multi-way fixed effects can similarly be projected-out without altering the
top-level parameters.

4See Friedman et al. [17] for an introduction, and Ruder [18] for a literature review
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Figure 1: Schematic drawing corresponding to equation 3, for a model with two parametric covariates,
four nonparametric covariates, and two hidden layers with three nodes each. Line segments represent
parameters, circles represent variables or derived variables.
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are variants of minibatch gradient descent, which iteratively calculates the derivatives of the loss

function with respect to the parameters for a subset of the data, alters the parameter estimates

in those directions according to a step size, and proceeds iteratively with a new sample of data

to convergence. This approach is popular in large-scale predictive applications because it works

with very large datasets, including those that can not fit into a computer’s memory. Quasi-Newton

methods are also feasible and work well with smaller and less complex networks.

In general, neural networks are overparameterized and will overfit the data, leading to poor

performance when generalizing to new data. One way of controlling this is to tune the number of

nodes and layers. Alternatively, the number of nodes and layers can be chosen to be sufficiently

high as to ensure a good fit, and the parameters then chosen to minimize the penalized loss function

R = N−1
∑
i

(yi − ŷi) + λ
∑

θ2 where θ is a vector of each of the parameters in the model, from

each layer. Because regularization induces bias, parameters for which unbiased estimates are desired

should not be included in θ – this may apply to the coefficients associated with parametric terms X,

if unbiased estimates of marginal effects are desired. The tuning parameter λ can then be chosen

by some variant of cross-validation, including optimization against a withheld test set where k-fold

cross-validation is impractical due to computational constraints.
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1.2.1 The “OLS trick”

While gradient descent methods generally perform well, they are inexact. The top level of a neural

network is a linear model however, in derived regressors in the typical context or in a mixture of

derived regressors and parametric terms in our semiparametric context. Ordinary least squares

provides a closed-form solution for the parameter vector that minimizes the unpenalized loss func-

tion, given a set of derived regressors, while ridge regression provides an equivalent solution for the

penalized case.

In particular, after the mth iteration, the top level of the network is

yit = αi +Xitβ
m + V m

it Γm + εit

Because gradient descent is inexact, the parameter sub-vector [βm,Γm] = θm does not satisfy

min
θ

(
ydm −W dmθ

)T (
ydm −W dmθ

)
+ λ̃θT θ (5)

where W = [X,V ], dm indicates the “within” transformation and λ̃ > λ is the penalty corre-

sponding to the “budget” that is “left over” after fitting the lower level parameters, which generate

V . Given that the general ridge regression solution is equivalent to minimizing ((y−Wθ)T (y−
Wθ) such that θT θ < c, one may calculate the implicit λ̃ for the top level of the neural network

by minimizing

min
λ̃

(
BTB − θmT θm

)2
where

B = (W TW + λ̃I)−1W Ty

One may then replace θm with B. Doing so ensures that the sum of the squared parameters at

the top level of the network remains unchanged, but ensures that the (top level of the) penalized

loss function reaches its minimum subject to that constraint. This facilitates approximate inference,

discussed in section 1.3.

1.3 Inference

Bootstrap approaches to inference will generally be computationally prohibitive, but approximate

inference via linear taylor expansion is feasible[19]. One first computes the estimate of the Jacobian

ξ, either numerically or from analytical derivatives. For example, a neural net with two hidden
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layers has derivatives
∂ŷ

∂β̂
= X

∂ŷ

∂Γ̂1
p1

= V 1
p1

∂ŷ

∂Γ̂2
p2

=
∑
p1

a′(V 2Γ2)Γ1
p1 ◦ V 2

p2

∂ŷ

∂Γ̂3
p3

= a′(V 2Γ2)Γ1 ◦
∑
p2

a′(ZΓ3)Γ2
p2 ◦ Zp3

where a′() is the derivative of the activation function and the sums are row-wise sums of concate-

nated column vectors.

Given the Jacobian ξ̂ ≡
[
∂ŷ

∂β̂
, ∂ŷ
∂Γ̂1

, ∂ŷ
∂Γ̂2

, ∂ŷ
∂Γ̂3

]
, one may use it in a manner analogous to a data

matrix in an OLS regression to compute the parameter covariance matrix. Assuming homoskedas-

ticity, this would be ε̂T ε̂
N−pξ

(
ξ̂T ξ̂

)−1

. In panel-data settings, the “cluster-robust” estimator[20] may

be preferred:

V̂θ =
G

G− 1

N

N − pξ

(
ξ̂T ξ̂+ λI∗

)−1∑
g

(
ξ̂Tg ε̂

2
g ε̂

2T
g ξ̂g

)(
ξ̂T ξ̂+ λI∗

)−1

where G is the number of clusters. If causal inference is desired on parametric terms, I∗ = I except

for those diagonal entries corresponding to the parametric terms, which should be set to zero.5

Naturally, penalization induces bias when viewed from a frequentist perspective. Given however

that we are not interested in performing inference on penalized elements of θ̂ itself, but rather

on functions of θ̂ (i.e.: predictions from the fitted model), it is convenient to adopt the bayesian

interpretation of the smoothing process as applied to the linear taylor expansion considered here.

Following Wahba [21], Silverman [22], Nychka [23], Ruppert et al. [24], λ can be regarded as the

variance on a gaussian prior over the size of θ. If the estimated optimal penalty parameter λ̂ ≈
λ, Wahba [21] found for smoothing splines that bayesian credible bands around some estimated

function ĝ(X) derived from the penalized spline estimator have good frequentist properties in

an “across-the-function” sense – the true function was found within the estimated credible band

for ĝ(X), approximately at the nominal rate in large samples. While the individual parameters

themselves are biased, this perspective shifts the focus of inference from individual parameters

to the smooth functions that they represent. Given the similarities between splines and neural

networks – both are overspecified nonlinear transformations of a feature vector6 – we proceed from

the supposition that this finding may generalize to our case, and explore whether or not it does by

5Note that unbiased estimates of marginal effects of parametric terms are only guaranteed when such terms are
either exogenous, or when controlling for similarly unpenalized covariates renders them conditionally independent.
If E[XT ε|Z] = 0 and Z enters the model in some form that is subject to penalization, then such controls will not
generally solve the endogeneity problem.

6While splines transform a feature vector into a form that can be estimated by a (generalized) linear model, we’re
concerned here with the linear approximation to a nonlinear model.
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simulation in section 2.

The standard errors of the parametric terms may thus be calculated in the usual way from the

relevant diagonals of V̂θ, while the variance of predictions requires the computation of ξ̃(Z∗) for

new data Z∗. Pointwise variances are the diagonal of ξ̃V̂θξ̃
T .

2 Simulations

This section explores finite-sample properties of the proposed estimator through application to a

synthetic dataset, and comparison against standard fixed-effects regression techniques. The syn-

thetic dataset is designed to be intrinsically nonlinear and interactive – a setting in which neural

nets should greatly outperform linear models.

2.1 Data-generating process

We generate nt observations of data Z for each of ni cross-sectional units. The data Zit is dis-

tributed multivariate-normally in 5 dimensions, with each cross-sectional unit drawing from its

own random mean vector and covariance matrix. The deterministic outcome y∗it is set equal to

αi + t+ log(φ(Zit)), where φ is the standard normal density function in 5 dimensions, α is a fixed

effect equal to i, and t is time. As such, the effect of Z is nonlinear, the marginal effect of z ∈ Z
is dependent on Z−z, and is correlated with the group-level intercept. We add noise by setting

yit = y∗it +N (0, 400).

The data are split into training, testing, and validation sets, by time period. Observations in

the most “recent” decile comprise the validation set, which is held aside to gauge out-of-sample

performance on the selected model. The training and testing sets are divided among the remainder

from even and odd-numbered time periods.

2.2 Fitting

These data were fit with panel neural nets of the form yit = αi + Pt + f(Zit) + ε, as well as with

standard fixed-effects models of the form yit = αi +Pt+Zitβ+ ε. In the neural net, the coefficient

on the time trend is left unpenalized in order to observe any bias, and to observe properties of their

estimated confidence intervals. The f(Zit) are represented with a 4-layer network, with 12, 11, 10,

and 9 nodes from the bottom to the top. The activation function a() is the “leaky” rectified linear

unit [14];

f(x) =

{
x/100 if x < 0

x if x > 0

The penalty parameter λ is chosen iteratively. The simulation commences with a large penalty

(λ = 8), and the parameters are estimated subject to that penalty. At convergence, the model
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is saved, and λnew ← λold/2. The model is then re-fit, starting from the parameter values of the

previous model, with some random jitter added to help avoid becoming trapped in local minima.

Fitting proceeds with progressively smaller values of λ until prediction error on the test set fails

to improve for three iterations. The selected model is the one that minimizes E(ytest− ŷtest)2. Note

that k-fold cross-validation is generally preferable to the training set/test set approach taken here,

but would require each model to be refit k times, and thus would be computationally-prohibitive

in our monte-carlo setting.

This process is repeated 1000 times for different draws of the DGP. The selected model is

assessed for mean squared error in the validation set, bias in the parametric coefficient, coverage of

estimated intervals around the parametric coefficient, and average coverage of estimated intervals

around individual predictions in the validation set.

2.3 Results

Results are presented in table 1. The panel neural nets provide substantially better accuracy than

do fixed-effects regressions, and provide parametric estimates that are approximately unbiased.

Confidence and prediction intervals – on parametric estimates and predictions respectively – cover

at approximately nominal rates.

Table 1: Results of monte carlo simulations described in section 2. Standard errors in parenthesis.

T N. Train N. Test N. Val MSE MSE (FE) Bias β̂ β̂ coverage ŷ coverage

20 900 900 200
668 1212 -0.0018 0.967 0.9361

(88.16) (175.5) (0.1549)

40 900 900 200
627.1 1165 0.001776 0.987 0.9498
(84.6) (179.3) (0.07569)

20 1800 1800 400
667.5 1227 0.003283 0.958 0.9288

(68.96) (128.1) (0.1113)

40 1800 1800 400
626 1182 0.0002555 0.958 0.9429

(64.12) (127.4) (0.05525)

20 2700 2700 600
664.1 1225 -0.0005533 0.95 0.9268
(58.8) (99.36) (0.08988)

40 2700 2700 600
624.6 1191 0.00001122 0.953 0.9416

(57.77) (111.4) (0.2117)
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3 Application: predicting county-level agricultural yields

from weather

This final section applies the panel neural net to the prediction of agricultural yields from weather

data. This problem is relevant for short-term economic forecasts as well as for longer-range climate

change impact assessment.

It is also a natural use-case for a semi-parametric panel data model. First, weather data over

an entire year is high-dimensional. While there is only one outcome per year in our setting, the

explanatory variables come in the form of several weather variables over hundreds of days of the

growing season. Models that penalize high-dimensional covariate sets can help avoid overfitting.

Second, additively-separable models like ridge regression or LASSO may not be appropriate.

The “law of the minimum” – a generally-accepted concept in ecology and agronomy – states that

plant growth is limited by whatever single growth factor is most constrained. We therefore require

an inherently nonlinear and interactive representation of the process that maps weather to yields.

Third, machine-learning algorithms that do not have a linear representation – like decision trees

and random forests – have no clear way to incorporate unobserved cross-sectional heterogeneity7,

which can be important – especially in linear fixed-effect models that do not admit time-invariant

regressors.

Finally, agricultural yields in developed countries have seen substantial increases in recent years,

driven primarily by technological change. This is naturally represented by a parametric trend, which

is incompatible with models like random forests that cannot extrapolate beyond the support of the

training data.

3.1 Data

County-level corn yield data for Iowa, Illinois, and Missouri is taken from the National Agricultural

Statistical Service of the US Department of Agriculture. We use only county-years with at least

5000 acres planted in corn, and only counties with at least 20 such years. We exclude all counties

that have more than 20% of their agricultural land under irrigation. We focus on grain corn, rather

than silage.

Weather data comes from PRISM [26]. From its native gridded format, daily data is aggregated

into areas corresponding to the agricultural area of each county. We posses measurements of

minimum and maximum temperature, precipitation, and dewpoint. These data are subset into

a growing season that runs from April through October, leaving us with a total of 856 weather

variables.

7One exception is the RE-EM trees of Sela and Simonoff [25], which can incorporate random effects into decision
tree estimation.
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In addition, we augment the weather data with (time-invariant) soils data from SSURGO [27].

The subset we use contains measurements of 38 chemical and physical soil properties, averaged

over the county. While such data in linear fixed-effects models will generally be collinear with the

individual effects and thereby dropped, the nonlinear nature of the panel neural net allows these

variables to moderate the effects of the time-varying weather data. We also include latitude and

longitude as regressors, which allows estimated relationships to vary smoothly in space.

3.2 Models

We model these data from the period 1981 to 2014, saving 2015 as a test set for evaluation of our

fitted models. These are:

3.2.1 FE-OLS

A standard fixed effects model, we fit

yit = αi +
[
Statei × [timet, time

2
t ]
]
β +ZitΓ + εit

Note that time-invariant soil and location data is collinear with the fixed effects, and dropped from

Z.

3.2.2 LASSO

As above, but solving for θ = [β,Γ] to minimize Σ(y − ŷ) + λΣ|θ|.

3.2.3 Random Forest

The model is

yit = g ([Statei × [timet]] ,Zit) + εit

and as such does not incorporate any information on the longitudinal nature of the data, except the

time trends. We grow 500 trees, with each split in each tree selecting from 1/3rd of the available

variables.

3.2.4 Panel neural network

The models is

yit = αi +
[
Statei × [timet, time

2
t ]
]
β + g (Zit) + εit

The quadratic state-by-year time trends are subject to the weight decay penalty, along with Γ. We

use an architecture of 40 nodes on the bottom layer, 20 in a middle layer, and 10 in a top layer.
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The activation function is the rectified linear unit, and training is by batch gradient descent using

the adaptive step size algorithm (“RMSprop”) of Tieleman and Hinton [28].

3.2.5 Results

Results are presented in figure 2. Figure 2a shows in-sample, cross-validation, and 2015 prediction

errors for the panel neural net – 5-fold cross-validation predicted the 2nd best value of λ out of those

tested. For this model, mean-squared error was 273, and predictions were approximately unbiased

(figure 2d), though some under-prediction is apparent in north-central Illinois (2f).

The random forest’s MSE was 1197, and its poor performance appears to owe to substantial bias

(2g). Indeed, its rampant under-prediction appears to stem from its inability to model a linear time

trend such that it can effectively extrapolate one year beyond its training sample – operating like

a nearest-neighbor algorithm, random forest will model 2015 as being similar to 2014 and adjacent

years, and have no way of discerning a long-term trend in a noisy signal.

The LASSO performs better here than the random forest, with a MSE of 609. Its predictions

are biased slightly upwards. This likely stems from over-reliance on the time trend, as this model

was unable to discern nonlinear functions the daily training data.

The fixed-effects model is not shown, as the optimal value of λ for the lasso was 0.015 – quite

close to zero and thus to the OLS solution.
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Figure 2: Prediction results
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4 Conclusions and Future Work

This paper has proposed an adaptation of neural networks to panel data, and demonstrated (1)

unbiasedness of parametric estimates, (2) good properties of estimated confidence intervals, and (3)

efficiency both in a simulated dataset and in an application to yield prediction from weather data.

Further work will provide refinements to the panelNNET software used, and demonstrate the

applicability of this class of models to the problem of heterogeneous treatment effect estimation

from randomized and quasi-experiments.
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