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Abstract 

Adoption of precision agriculture technologies in the U.S. has had varying impacts 
over the past two decades. Yield maps, and to a lesser extent, soil maps produced 
using global positioning have been increasingly used on U.S. corn fields since 2005. 
However, little research has been done on the mechanisms by which mapping 
technologies, in isolation, can lead to improved input productivity, technical 
efficiency, or profitability on U.S. farms. As such, we estimate a stochastic 
production frontier that permits us to analyze the extent to which maps and related 
technologies influence technical efficiency on U.S. corn fields. After controlling 
for farmers’ potentially endogenous choice of map technologies, we find that 
technical efficiency is significantly influenced by map adoption and the structure 
of field ownership. Given that maps are a basic information input, this suggests that 
increased availability of information or data-type inputs, by themselves, can 
provide indirect production benefits to farmers. 
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Introduction 

Precision agriculture technologies have had highly-varying adoption rates and impacts on U.S. 

row crop production over the past two decades. Among the most widely-used precision 

technologies are yield monitors, with adoption rates on national corn acreage increasing from 19% 

in 1998 to 61% in 2010. Yield maps have had similar, though not as pronounced, adoption trends 

on corn and soybean acres over this period (USDA-ERS, 2017a). This set of complementary 

technologies has proven to be among the most commercially advantageous, saving corn farmers 

roughly $25/ac (Schimmelpfennig and Ebel, 2016).  

In contrast, variable rate technologies (VRT) used for seeding and chemical applications 

have experienced somewhat sluggish growth, though they increase corn farm profitability by 1.1% 

(Schimmelpfennig, 2016), and increase savings associated with yield monitoring and soil mapping 

(Schimmelpfennig and Ebel, 2016). If relevant site-specific information were available freely, 

variable-rate nitrogen applications could be more profitable for corn farms (Bullock et al., 2009). 

This mixed evidence underscores substantial heterogeneity in both the revenue and cost 

advantages of sequentially- or simultaneously-adopted precision farming equipment. 

 Despite this mixed evidence, the economic relationships between output and yield 

monitors, VRT equipment, and global position systems (GPS)-based auto-guidance systems are 

generally straightforward: these are capital equipment used directly as inputs to crop production. 

As such, these technologies can have substantial fixed costs of adoption, with the potential for 

reducing variable costs or increasing revenues. For example, operation of a yield monitor from a 

tractor cab requires a network of several sensors that collect data from the combine’s grain elevator 

(Darr, 2017). Conditional on recurring expenses for GPS subscriptions and machinery repair, 

adoption involves an up-front purchase of software and other equipment. 
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 The economic relationships underpinning adoption and use of GPS-based yield maps and 

soil maps are less clear and have been less explored, perhaps because they are information inputs 

that do not directly enter the production function in a way comparable to conventional inputs (e.g., 

capital, labor, seeds, chemicals, tillage, and growing conditions). The value of a printed map in 

hard copy may be low if farmers prefer spatial analyses from experts, computer software, or a 

combination of sources (Griffin et al., 2008). More broadly, there may be little or no gain from 

GPS-based mapping on small family-held farms operated by owners with decades of experience 

farming the same or similar plots.  

 However, there could be substantial gains to these information sources on larger and less 

tightly-held farms with non-owner operators. This could occur because maps provide information 

that cannot be economically acquired through experience on very large farms, i.e., maps substitute 

for detailed knowledge of land characteristics and soil productivity (Deininger and Byerlee, 2012). 

Further, the incentive structures on large farms may systematically differ from those on small 

farms in such a way that adoption is more likely (Allen and Lueck, 1998; Sumner, 2014). In sum, 

the value of data-type inputs like maps may not directly manifest as reductions in per-acre variable 

costs or revenue increases. 

 The objective of this paper is to examine potential differences in technical efficiency on 

U.S. corn fields between adopters and non-adopters of GPS-based yield and soil maps. Adoption 

is modeled as a discrete choice problem, offering insights into the characteristics of fields, farms, 

and operators that influence technology choice. After controlling for endogenous choice of both 

technologies, we show that technical efficiency systematically differs between adopters and non-

adopters according to farm size, ownership status, and operator attributes, as well as management 

practices and other exogenous inputs. We estimate a stochastic frontier model (Aigner et al., 1977; 
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Wang, 2002) using a benchmark Cobb-Douglas production function. We account for endogeneity 

of yield and soil map adoption in the stochastic frontier using a control function method 

(Wooldridge, 2014). 

Technology Adoption, Farm Structure, and Technical Efficiency 
 
Our analysis is set within the broader context of research examining the relationships between 

technical efficiency, technology adoption, and farm structure. Some of the earliest work in this 

literature focuses on the linkages between farm size and farm productivity, with a sharp dichotomy 

between agriculture in developed countries and developing countries (Deininger and Byerlee, 

2012). Many studies report a significant inverse relationship between farm size and partial crop 

productivity (e.g., output per unit of land area) in developing world agriculture. For example, using 

a panel of plot-level data in 2010-2011 for rural Rwanda, Ali and Deininger (2015) find that 

doubling planted land area results in a 38-48% decrease in crop value per hectare. 

 The mechanisms giving rise to this inverse relationship in developing country agriculture 

are not well understood and so continue to be explored. Differences in wages between the 

agriculture sector and non-agriculture sector may be the result of limited labor mobility or other 

labor market imperfections that cause larger farms to be less productive per unit of land (Ali and 

Deininger, 2015). Institutional features and national policies that divert resources away from large 

farms to small farms may also play a substantial role (Adamopoulos and Restuccia, 2014). 

Although Foster and Rosenzweig (2011) find that larger farms in rural India have higher per-acre 

profitability and a greater (but diminishing) return to acquiring land, their analysis implies that 

removing barriers to land amalgamation could improve agricultural efficiency.  

 In contrast, the direct relationship in developed countries between farm size and 

productivity or efficiency, especially in the U.S. and Europe, is relatively better understood. Larger 
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operations, in principle, can exploit scale economies in costs or production to obtain higher profits, 

facilitated by managerial ability and technology or practice adoption, among other factors. For 

example, a farm with more able operators who can more efficiently combine productive inputs to 

generate higher profits may also be more successful at increasing its operational size. Large farms 

may also have lower unit prices of inputs because bulk purchases enable lower unit costs of 

processing and shipping (MacDonald et al., 2013). The extent to which technology and practice 

adoption impact farm productivity or efficiency, however, depends crucially on the type of 

agricultural production. Regarding this relationship, there are important distinctions between 

livestock operations and crop farms (MacDonald et al., 2010).  

 Certain livestock operations have been able to substantially increase in size because of 

decreased exposure to stochastic environmental conditions (e.g., extreme heat, intense rainfall, 

drought, and freezes). Livestock farms with enclosed animal housing allow for more monitoring 

and control of inputs, which permits “factory-style” production with the potential for scale 

economies. A large amount of empirical evidence confirms that commercial dairy farms tend to 

be technically efficient and experience small-to-moderate scale economies (e.g., Mosheim and 

Lovell, 2009; Mayen et al., 2010; Dong et al., 2016; Latruffe et al., 2017). The evidence is mixed 

for U.S. hog farms and U.S. broiler operations. MacDonald and Wong (2011) find modest scale 

economies in broiler growing, with no distinguishable effect of sub-therapeutic antibiotics on 

output. In contrast, Key and McBride (2014) find that hog farms using sub-therapeutic antibiotics 

have higher productivity than non-adopters, with evidence of mildly-decreasing economies of 

scale. This suggests there could be potentially important interactions between technology and 

practice adoption and technical efficiency, which could also be important for crop production. 
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 In a meta-analysis of agricultural technical efficiency, Bravo-Ureta et al. (2007) find that 

rice, corn, and other grain farms have lower levels of mean technical efficiency, on average, than 

dairy, cattle, and non-grain crop farms. At the same time, it is well-documented that field crop 

production generally experiences non-increasing returns to scale. However, the development and 

diffusion of new technologies and management practices can have major effects on both efficiency 

and scale of crop production. The latter effect could be somewhat nuanced. For example, 

widespread adoption could extend the range of output over which crop farms realize constant 

returns. Labor-saving innovations, like conservation tillage and herbicide-tolerant and insect-

resistant seeds, are two prominent examples of technologies that contribute to increased farm size 

(MacDonald et al., 2010). On the other hand, certain technologies that provide data for 

management decisions and recommendations, like yield maps and soil maps, could help reduce 

diseconomies of scale. This could be true because they provide non-owner operators and hired 

managers with information that substitutes for detailed local knowledge of land characteristics, 

soil characteristics, and areas of high pest pressure. 

 These information technologies, and precision agriculture equipment more broadly, may 

operate more directly on production by increasing input productivity, output productivity, or 

technical efficiency. Khanna (2001) used data from a mail survey of cash grain farms in Iowa, 

Illinois, Indiana, and Wisconsin to examine the factors influencing adoption of soil tests and 

variable rate fertilizer equipment. She estimates that gains to nitrogen productivity from only 

adopting soil testing were 6-7%, while additional gains from adopting variable rate technologies 

for fertilizer applications were 18-33%, depending on soil quality. Although yields are a partial 

measure of productivity, Schimmelpfennig and Ebel (2011) found that adopters of GPS mapping 
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had significantly higher yields on corn fields in 2001 and 2005 and soybean fields in 2002 and 

2006 than non-adopters. 

 Despite considerable research concerning the effects of precision agriculture on input costs 

and farm profitability, there has been much less focus on the linkages between data-driven inputs 

(e.g., yield and soil maps), farm structure, and technical efficiency. We take up this line of inquiry 

by estimating a two-step econometric model detailed in the next two sections. The econometric 

model and empirical specification are sufficiently general to allow us to quantify the role of data-

driven input adoption on technical efficiency. 

Motivating Structural Model 

 

We develop a structural model of technology adoption that motivates our empirical analysis. We 

assume that U.S. corn farmers operate in perfectly-competitive markets. As in prior work (e.g., 

Pope and Just, 2003; Isik and Khanna, 2003), we assume that farmers can vary the amount of 

certain inputs (e.g., labor and fertilizer) in the short-term, but that other inputs (e.g., land or capital) 

can only be changed in the long-run. These are referred to as variable inputs and fixed inputs. 

We assume farmers’ productive input choices are driven by the desire to maximize profits. 

Technology adoption decisions, on the other hand, are driven by both monetary and non-monetary 

factors. Non-monetary costs and benefits may reflect, among other things, farmers’ eagerness to 

try new technologies or their perceptions that precision agriculture technologies could be relatively 

more sustainable. These factors may also be influenced by farmers’ risk aversion.  

As such, the farmer’s objective is to maximize expected utility from a convex combination 

of profits and net non-monetary benefits: 

(1) 1 2

1 2

1 1 2 2 1 2
, {0,1}, {0,1}
max E E 1

                         . . exp ,

v

f f v v nm nm
x R T T

T Tb c

f v

U u PY p x p x p T p T u d T e T

s t Y ax x d e
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where (0,1]u  is a weight reflecting the importance of profits relative to net non-monetary 

benefits, P is the output price, pv is the price of variable input xv, pf is the price of fixed input xf,

1p  is the price paid for precision agriculture technology T1, 2p  is the price paid for precision 

agriculture technology T2, and Y is output (total bushels of corn). The production function for Y is 

assumed to have a Cobb-Douglas representation.  

There are several positive parameters in the model. The parameter a captures the impact of 

exogenous field-level factors, such as soil productivity, that can positively impact production. The 

parameters b, c, d, and e capture the productivity of variable input use, fixed input use, and the 

precision agriculture technologies. The parameters dnm and enm capture the non-monetary benefits 

associated with the use of the precision agriculture technologies, net of (un-modeled) non-

monetary costs. We explicitly assume there is a source of uncertainty, denoted by the random 

variable, . Without loss of generality, we normalize the utility function by u and define 

[ .1 0, )w u u  

Assuming that E exp 1 , the first order condition for variable input use is: 

(2) 
1 2E

0

T Tb c

f v

v

v v

cPax x d ed
p

dx x
.  

Solving equation (2) for the optimal level of xv implies that: 

(3) 1 2

1

1
* .

c
T Tb

v f

v

P
x ax d e c

p
 

Substituting equation (3) back into equation (1) demonstrates that the expected utility 

maximization problem can be expressed as follows.1 

1 All intermediate derivations are contained in the appendix. 
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(4)  

1 2

1 2 1 2 1 2

1 2

,

1 1

1 1

1 1 2 2

1

1

1 1 2 2

max E

1 .

T T

c

c c
T T T T T Tb b b

f f f f v f nm nm

v v

c c

T Tb
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v

U

P P
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c
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Therefore, a farmer uses precision agriculture technology T1 if: 

 (5)

1 1

1

1
2

1

E | 1 E | 0 0

ln1 1
ln ln ln ln ln ln 1 ln 1

1 1 1 1 1 1

ln .

c
f v

nm

U T U T

eb c c
P a x T c p c d

c c c c c c

p wd

  

We model a such that 0

1

i

N
a

i

i

a a A , where a0 is a constant, Ai are exogenous variables, and 

ai are productivity parameters. Equation (5) is restricted to positive values by exponentiating 

1 .
nm

p wd  We express 
nm

wd  as a linear combination of variables correlated with the farmer’s 

net non-monetary benefits of adopting T1. Thus, it is profit-maximizing for a farmer to use 

technology T1 if: 

(6) 1 2 2 1

1

ln ln ln ln ' 0,
i

N

A i P v v f f

i

cons A P p x T p
1

nm nmx   

where 1 0

1
ln ln 1 ln ln

1 1

c
cons a c c d

c c
, 

1i

i

A

a

c
, 

1

1
P

c
, 

1
v

c

c
,  

1
f

b

c
, 2

ln

1

e

c
, 1

nm
 is a vector of parameters, and 

nm
x is a vector of variables that are 

highly correlated with non-monetary factors influencing the technology adoption decision. 
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Similarly, it is profit-maximizing for a farmer to use technology T2 if: 

(7)     2

2 1 1 2

1

ln ln ln ln ' 0,
i

N

A i P v v f f

i

cons A P p x T p
nm nm

x   

where 
1

1
2 0

1 1
ln ln 1 ln ln 1

1 1 1
c

c
cons a c c e

c c c
, 1

ln

1

d

c
, and 2

nm
 is a 

vector of parameters. 

The results of the theoretical model suggest that there are cross-equation parameter 

restrictions across the production function ( 0

1

ln ln ln ln ln
N

i i f v

i

Y a a A b x c x  

1 2ln lnT d T e ), equation (6), and equation (7). As such, estimating these equations 

simultaneously could improve efficiency and facilitate model identification. However, as an 

intermediate step, we estimate a two-step, control-function-based stochastic frontier model 

(described below). Since variable input use decisions are made before yields are realized, we 

consider them to be exogenous variables in this analysis. 

Econometric Approach and Regression Specifications 
 
We estimate a two-step, control-function model to account for potential endogeneity of yield map 

and soil maps within the stochastic frontier framework. These are potentially endogenous because 

they are choice variables that could be correlated with the operator’s unobserved managerial ability 

or human capital, unobserved pest pressure, or other unobservable factors directly correlated with 

output. We use control functions (e.g., Wooldridge, 2014) to account for this potential 

endogeneity. In particular, we first estimate a bivariate probit model explaining field use of both 

maps. Generalized residuals are estimated as equation-level scores (first derivatives of the bivariate 

normal log-likelihood) and then linearly appended in the stochastic frontier regression. If 
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endogeneity is a substantial concern, estimated coefficients on the generalized residuals will be 

statistically significant (Wooldridge, 2014). 

Stochastic frontier analyses have been widely used to study technical efficiency, input 

productivity, and scale economies in the production economics literature (Kumbhakar and Lovell, 

2003). In this approach, output is related to inputs through a conventional production function, 

plus a composed error term. This error term can be decomposed as a random noise component 

minus a non-negative disturbance due to inefficiency. In this analysis, we assume that the random 

noise component is a mean-zero, independent and identically-distributed (i.i.d.) error term. The 

inefficiency is assumed to follow a truncated normal distribution with truncation point at zero. 

 For field i with productive input i
x and efficiency-related inputs i

z , we model total field 

output i
y  as the following generalization of a primal stochastic frontier model (Wang, 2002):  

(8) 

0

2

,

2

1

1

,

ln ln

0,

, .0

k

j

i j ji i i i

i o

m

l

l li i

i i

i u i

y x u

u z

N

N

d

   

Note that i  and i  are assumed to be mutually independent. Following the extensive literature 

on frontier estimation, we assume that the productive inputs are labor, capital, total nitrogen 

applied, and farm acreage. The Cobb-Douglas production specification in (8) is modified slightly 

to incorporate soil quality variables and regional indicators, denoted by 
id  with regression impacts 

given by .  Note that this specification implies that 0

1

ˆ ˆ .i i l li

m

l

E u z  Given the expected 

differences in technical efficiency on fields with differing levels of map adoption, as well as farm 
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structure, we assume that i
z  contains indicators for use of yield maps and GPS-based soil maps, 

indicators for whether the field is insured, owned by the operator, or rented for free, and years of 

operator experience with the field. Estimation of all coefficients in equation (8) is performed via 

maximum likelihood. 

 Un-modeled heteroscedasticity in stochastic frontier models has potentially more severe 

consequences than those of linear models. Although estimated regression coefficients (excluding 

the intercept) remain unbiased in the presence of heteroscedasticity in i , technical efficiency 

estimates will be biased. Ignored heteroscedasticity in the inefficiency term generates bias in both 

the frontier and efficiency estimates (Kumbhakar and Lovell, 2003).2 As such, we parameterize 

both variance terms as functions of field-level characteristics:  

(9) 

2

, ,0

2

1

1

u, u,0

exp

exp .

O

n

Q

u

i n

i pi

p

i
h

h

   

 Wang (2002) argues that u  and 2

u,i  should be specified using the same set of regressors since it 

permits non-monotonic (and less ad hoc) relationships between inefficiency and its potential 

influences. We would ideally use the same set of regressors to parameterize 
2 2

, ,,,
u i i

u ; that is, 

set , ,
l n p

h lz n ph . Numerical difficulties due to the nonlinear optimization in the 

maximum likelihood routine prevent us from implementing this most general parameterization. 

 Given the Cobb-Douglas specification in equation (8), output-oriented technical efficiency 

is our preferred measure of field-level productivity. This measure quantifies how much output 

2 The magnitudes of potential biases resulting from ignored heteroscedasticity must ultimately be empirically 
determined. As a specification check, we report parameter estimates and marginal effects under the assumption that 
the noise and inefficiency terms are homoscedastic.    
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(bushels of corn) is lost due to an inefficient combination of inputs. Under the heteroscedasticity 

assumption, the output-oriented technical efficiency index is (Battese and Coelli, 1988): 

(10) 

*
*

*2

* *

*

*

exp | exp
1

,
2

i
i

i

i i i i

i

i

E u    

where 

2 2

, ,

* 2 2

, ,

i i u i i

i

i u i

, 

2 2

, ,2

* 2 2

, ,

i u i

i

i u i

, and  is the cumulative distribution function of 

the standard normal distribution. One attractive feature of this index is that values lie in 0,1 .  

Confidence intervals can then be constructed using standard formulas (e.g., Kumbhakar et al., 

2015), although these intervals do not account for parameter uncertainty.  

  Input-oriented technical inefficiency, in contrast, quantifies by how much inputs can be 

reduced without resulting in output loss, i.e., :min y f x , where f  is a neoclassical, 

single-output production function and  is a real-valued scalar (Kumbhakar and Lovell, 2003). 

Output-oriented measures appear more commonly in the literature, though input-oriented 

measures are suitable if inputs (rather than output) are considered endogenous. Only in special 

cases (e.g., constant-returns-to-scale production) will these two measures coincide. Using standard 

formulas, we consider input-oriented technical efficiency as a robustness check to our preferred 

output-oriented efficiency estimates.3      

 

3 Assuming a Cobb-Douglas production function with input elasticities 
j
 , as in equation (8), and exp( ) , 

it can be shown that 
1

ˆ ˆ/|
k

i i j

j

E u . Note that
* * *

*

* *

/
|

/

i i i

i i i

i i

E u , where *i
and *i

are 

given by the formulas immediately below equation (10), and  is the probability density function of the standard 

normal distribution (Jondrow et al., 1982; Kumbhakar et a., 2015).      
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Data Construction and Field Characteristics 

The U.S. Department of Agriculture’s (USDA) Agricultural Resource Management Survey 

(ARMS) is a primary source of information about resource use, production practices, and financial 

characteristics of U.S. farms. It is a cross-sectional, multi-phase survey. More specifically, it has 

a stratified, dual-frame, probability-weighted sampling design. The sampling strata have sampling 

weights that are recalibrated after survey implementation to create population estimates based on 

useable observations. The survey approach collects information based on a list of farms (e.g., list 

frame), as well as farms within geographical areas (e.g., area frame). This increases survey 

comprehensiveness, as well as complexity (USDA-ERS, 2017b). 

After an initial selection procedure to screen operations outside of the survey’s scope, the 

surveys are administered in two phases. Phase II of the survey is enumerated and gathers field-

level information about input use, practice adoption, and other management practices. Commodity 

versions of the Phase II survey are administered approximately once every five years. The Phase 

III survey is administered by mail each year on a larger and diverse national sample of crop and 

livestock operations. Although there are multiple versions of the Phase III survey, the core version 

elicits data on acreages, commodity marketing and income, operating and capital expenditures, 

assets and debts, and other farm and household financial information (USDA-ERS, 2017b). 

Production Costs and Returns Data 

We use data from the 2010 ARMS Phase II corn survey, as well as 2010 Costs and Returns 

data used to generate national cost of corn production estimates. These cost estimates have been 

produced annually for major livestock and field crop enterprises since 1975, though the 

methodology was revised in 1995 to incorporate recommendations from the American Agricultural 

Economic Association’s Task Force on Commodity Costs and Returns. Each year, preliminary 
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cost of production estimates are released the first week of May, with final estimates released during 

the first week of October. Forecasts for major field crops are released and updated mid-June 

through mid-December of each year (USDA-ERS, 2017c). 

 The cost of production accounts includes direct costs incurred for crop production. These 

costs are decomposed into cash and non-cash expenditures. Cash expenditures are realized when 

inputs are purchased or rented, whereas non-cash expenditures accrue to inputs that are owned by 

the operation. Marketing and storage costs are excluded. Generally, there are four methods used 

to estimate commodity costs: direct costing, input quantity valuation, indirect costing, and whole-

farm expense allocation. The extent to which these four methods are used for certain costs depends 

largely on whether item-specific expenses can be directly reported by the respondent in the ARMS 

survey. For example, the direct costing approach is used for commercial fertilizers and chemicals, 

while unpaid labor hours are estimated using a method that incorporates off-farm wage estimates. 

The capital variable used in this analysis is an estimate of the cost of replacing capital consumed 

in annual production on the field, plus an annualized measure of the opportunity cost of the 

remaining field-level capital investment in machinery and equipment (USDA-ERS, 2017c). 

 After dropping fields with missing information and merging with soil, weather, and climate 

datasets, we have a sample of 1,793 conventional (e.g., non-organic) corn fields in 2010. Using a 

calibrated base weight provided by the National Agricultural Statistics Service (NASS), our 

sample can be extended to represent 70 million acres planted to corn. This represents 

approximately 79% of the 88.2 million planted corn acres in 2010 (USDA-NASS, 2017). Fields in 

our sample are from prime U.S. corn-growing regions, primarily from the Corn Belt, Great Lakes, 

Great Plains, and Prairie regions.  
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Compilation and Construction 

 Productive inputs are derived from the cost of production estimates associated with the 

ARMS Phase II survey. These inputs are assumed to be labor, capital, nitrogen, and land. Labor is 

calculated as the sum of paid and unpaid labor hours provided on the field. The capital variable, 

expressed in 2010 dollars per acre, is a general measure of the cost of replacing capital used to 

produce corn on the particular field. Total nitrogen (in pounds) is the sum of the nitrogen content 

of purchased commercial fertilizer and the (estimated) nitrogen content of applied manure. Land 

(in acres) is the reported size of the farm. Output (in bushels) is calculated as the product of the 

field’s size and yield (in bushels/acre). 

 Although ARMS Phase II has detailed information about management practices related to 

crop rotations, pesticide and fertilizer use, irrigation, and field operations, less detailed information 

is collected on machinery and equipment prices. We therefore predict prices for yield and soil 

maps using ARMS data about field-level use of consultant services. In particular, we observe 

whether technical or consultant services were hired to make recommendations about fertilizers, 

soil or tissue sampling, pest management, irrigation, and other decisions, including development 

and/or interpretation of yield maps or remote sensing maps. Total cost of these services (in 

aggregate) are also reported.  

To obtain predicted prices for both map types, we first pool ARMS data across 2006-2007 

and 2009-2012. Fields for which no recommendation services were employed are dropped from 

the pooled sample. We next perform a weighted OLS regression of total technical/consultant 

services costs on indicators for the particular services hired and their interactions with the set of 

19 states in our sample, in addition to a full set of state and year fixed effects. State-level yield and 
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soil map prices (or, more accurately, controls for prices) are constructed from coefficient estimates 

of the state-by-year interactions. 

Prices for the productive inputs are constructed from the ARMS cost of production 

estimates. In particular, the wage rate is calculated as the sum of the cost of paid and unpaid labor 

hours divided by total labor hours. The nitrogen price is calculated similarly as the sum of the costs 

of nitrogen from commercial fertilizer and manure divided by total pounds of nitrogen applied. 

The price of land is calculated as its opportunity cost, as measured by cash rental rates on farmland 

producing corn in the same local area. To proxy for fuel costs, we use the 2010 state-level price of 

diesel from the April release of NASS’ Agricultural Prices survey. 

County weather data are derived from Oregon State University’s PRISM Climate Group 

database (Daly et al., 2008). Using daily data from annual PRISM records, we construct 

cumulative season growing degree days (GDD) by summing monthly GDD for each month of the 

growing season (May, June, July, and August). Monthly PRISM data are also used to construct 

precipitation measures, again by summing over each month in the growing season.  

County averages of soil characteristics from the Natural Resource Conservation Service’s 

(NRCS) Soil Survey Geographic Database (SSURGO) were used to control for soil productivity. 

The National Commodity Crop Productivity Index (NCCPI) is an index developed by NRCS that 

captures a soil’s inherent capacity to grow certain field crops (Dobos et al., 2012). The index lies 

in [0,1] and aggregates certain physical and chemical properties of soil (e.g., type, depth to water 

table, available water capacity, saturated hydraulic conductivity, and other characteristics) and 

weather attributes (e.g., frost-free days). In the econometric analysis, we use NCCPI values from 

the Corn and Soybeans sub-model. Apart from these county variables, we also include two field-

level measures indicating if any part of the field contains a wetland or is highly-erodible. 
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Empirical Trends and Regression Results 

Table 1 contains weighted means of variables either used directly in the econometric 

analysis or used to create variables that enter the analysis. Several interesting trends emerge 

pertaining to technology adoption and productive inputs. Corn fields for which both yields and 

soils were mapped are on farms with an average size of 1,262 acres. This is nearly four times as 

large as the average farm size for fields that use neither technology (378 acres). This positive 

correlation between adoption of site-specific information and farm size could suggest that these 

technologies have the greatest returns on large operations. Average per-acre nitrogen applications 

also vary substantially with adoption of these technologies, ranging from 135 pounds/acre (lb./ac) 

among non-adopting fields to 162 lb./ac on fields with both technologies. 

Labor hours and capital use, however, have less straightforward associations with adoption. 

Fields with mapped yields but not GPS-mapped soils use the highest quantities of labor and capital, 

though fields with both map types employ labor and capital in amounts roughly equal to those used 

on fields with only GPS soil maps, on average. This suggests that complementarities between 

mapping technologies could result in very modest labor and capital savings.4 Given the 

relationship between map adoption patterns and input use, it is not surprising that average yields 

are higher on fields with both technologies (173 bu/ac) than on fields using neither (146 bu/ac). 

Interestingly, we observe no significant differences in average wage rates or nitrogen prices 

across the four adoption cases. Regardless of technology, the mean price of labor is $21/hour and 

the mean price of nitrogen is $0.39/lb. One reason for this trend could be that operators exhibit 

little impact on prices paid for both hired labor and chemical inputs. Both prices likely reflect some 

degree of measurement error, especially since wage costs for unpaid labor and the nitrogen content 

4 The extent to which adoption of site-specific information can increase productivity of certain conventional inputs is 
currently being explored in robustness analysis. 
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of manure are difficult to accurately impute. However, fields using both technologies are, on 

average, more than twice as valuable ($11,027/ac) as fields using neither type of map ($5,132/ac). 

Although non-owner operators could potentially use map output to help negotiate higher rental 

contract terms, this trend more likely reflects scenarios in which maps are more actively used in 

conjunction with careful input monitoring on high-value cropland. 

There are also interesting trends pertaining to adoption and structural aspects of the corn 

field or operator. Roughly 52% of non-adopting fields are owned by the operator. This ownership 

percentage declines to just 35% on fields employing both types of maps. On these fields, roughly 

52% are rented for cash with a fixed cash payment. A much smaller percentage of fields are rented 

for cash with a flexible-cash payment, combination of cash and share of the crop, or rented for 

free. As expected, mean years of experience operating fields for which both maps are adopted 

(19.5 years) are lower than those for fields without adoption (22.1 years). This likely reflects an 

experience effect rather than an age effect, given that the literature has not found a significant 

relationship between operator’s age and adoption (Schimmelpfennig and Ebel, 2016). Last, 

approximately 93% of fields with both maps are insured, while 72% of fields without maps are 

insured. Since the former set of fields have relatively higher land values (in terms of per-acre rental 

rates), we would expect higher rates of insurance uptake. 

Table 2 provides difference-in-means tests across the four technology adoption cases using 

an adjusted Wald test that accounts for the ARMS survey design. The reference group for 

comparison is the set of fields without either map. Thus, estimates of significant differences in 

means, relative to fields with no maps, are reported for the fields adopting soil maps but not yield 

maps, yield maps but not soil maps, and both maps. These means tests provide evidence of 
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significant interactions between productive inputs, prices, and structure variables across adoption 

decisions. 

Figures 1 and 2 plot average yields and percentages of planted corn acres by state across 

the four map adoption scenarios.5 The figures confirm many of the trends from Table 1 while 

providing insight to regional patterns of adoption. In 2010, corn was still largely produced on fields 

adopting neither yield maps nor soil maps. Operations in Corn Belt states (Iowa, Illinois, Indiana, 

and Ohio), however, adopt these technologies at somewhat higher rates. Similarly, among the set 

of fields adopting both types of maps, average yields are highest (in excess of 150 bu/ac) in Corn 

Belt and upper Midwest states. However, this region is also highly productive without use of either 

type of map.  

The weighted means appearing in Table 1 and spatial tends from Figures 1 and 2 generally 

confirm the hypotheses detailed earlier. Mapped fields are higher-yielding, insured at higher rates, 

and are relatively higher-value. These fields are located on generally larger farms with non-owner 

operators that have one-to-two years less experience with the field than on fields for which neither 

map technology is used. Regression results presented in the next section, however, provide more 

rigorous evidence of trends. 

Determinants of Map Adoption 

Table 3 presents estimated coefficients from the bivariate probit regression. Although 

many of the estimated coefficients for input and output prices have the expected sign, most of them 

are insignificant in both equations. For example, the corn price, diesel price, wage rates, and land 

rental rates are all positively associated with adoption of both yield and soil maps, though large, 

5 These figures are intended to illustrate trends over broad geographical regions. We do not claim that they are 
statistically representative by state. Although only Illinois, Indiana, Iowa, Minnesota, Nebraska, and Ohio are depicted 
in Figure 2, the 19-state sample used in the empirical analysis also includes Colorado, Georgia, Kansas, Kentucky, 
Michigan, Missouri, New York, North Carolina, North Dakota, Pennsylvania, South Dakota, Texas, and Wisconsin. 
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jackknifed standard errors suggest that these prices have no meaningful impact. However, the cost 

of capital has a small but positive coefficient in the first equation, indicating that yield maps tend 

to be adopted on fields with more intensive capital use. That this capital variable is insignificant 

in the soil map equation could be due to the fact that its adoption hinges more on less capital-

intensive decision factors (including soil data available online or from an extension agent). The 

regression-based controls for the price of yield maps are insignificant in both equations, though its 

coefficient has the expected sign in the first equation. However, the controls for GPS-based soil 

map prices are significant at the 10% level or better in both equations. Higher soil map prices are 

associated with less adoption of these maps, as well as less adoption of yield maps, which could 

be somewhat indicative of complementarities between the two technologies. 

    In the yield maps equation, we also find evidence of significant impacts of inherent soil 

productivity and field ownership. Operators who own the field are less likely to adopt yield maps. 

Gains to using yield maps could be lower to owners because their substantial local knowledge of 

the field renders them less useful. Alternatively, mapping or other site-specific information could 

be more important for renters if contract terms necessitate careful input monitoring. 

The soil, weather, and years of experience variables are generally insignificant in the 

regression equations. One important exception, though, pertains to soil productivity captured by 

the NCCPI regressor: yield maps tend to be adopted on fields that are more suitable for growing 

corn and soybeans. However, the correlation between the equations is 0.80 and significant at the 

1% level. This suggests that adoption of both maps are correlated management decisions. 

Stochastic Frontier and Efficiency Estimates 

Prior to estimation of the stochastic production frontier, we first undertake tests of:  1) 

skewness in the residuals from ordinary least squares (OLS) estimation, and 2). the presence of 
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inefficiency (e.g., 2

, 0
i u i

u ). Regardless of functional form, if the stochastic frontier model is 

a suitable representation of U.S. corn production, then OLS residuals should be negatively-skewed 

because 
i i i

u , with 
i
distributed symmetrically (i.i.d. normal) and 0.

i
u  Both the 

D’Agostino et al. (1990) and Coelli (1995) tests reject the null hypothesis of zero skewness in the 

residuals at the 5% significance level.6 This weakly suggests the presence of an asymmetric error 

and supports our choice of stochastic frontier estimation.  

Similarly, if there is no inefficiency in the model, then 2

, 0
i u i

u . This is straightforward 

to test using the likelihood ratio test (LRT) statistic, 02
A

L H L H , where 0L H  and 

A
L H  are the likelihoods under the OLS (restricted) and stochastic frontier (unrestricted) 

models, respectively. For each of the specifications discussed below, the LRT tests reject the null 

hypothesis of no inefficiency at the 1% significance level, again validating our choice of 

implementing the stochastic frontier approach.7       

Table 4 contains coefficient estimates from the second-stage stochastic frontier analysis. 

Since the nature of the heteroscedasticity is unknown, we begin by estimating a full specification 

that includes a set of variables hypothesized to influence the variance of both the noise and 

inefficiency terms (model 1). We next drop a subset of regressors that do not significantly influence 

either variance term (model 2). To investigate the extent to which ignored heteroscedasticity could 

bias parameter estimates, we compare our results to those under an assumption of 

homoscedasticity of both error terms (model 3). 

6 The D’Agostino et al. (1990) skewness test of normality is rejected at 0.015.  The Coelli (1995) test statistic, 

which has an asymptotic standard normal distribution is -2.43, larger than the standard normal critical value of 1.96 

at 0.05.  
7 The LRT test statistics are 120.7, 104.5, and 59.0 for specifications (1), (2), and (3) in Table 4. The test statistic has 

a mixture of chi-squared distributions, with corresponding critical values of 25.5 and 22.5 at 0.01with 12 and 

10 degrees of freedom, respectively (Kodde and Palm, 1986).  
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The elasticities associated with labor hours, nitrogen applications, and capital equipment 

are all statistically significant at the 1% level and have the expected sign and magnitude across the 

three specifications. We find that nitrogen applications and capital have the largest elasticities, 

implying that a 1% increase in either input increases field output by 0.39-0.41%.  Given the nature 

of the random field selection in the survey process, it is not of major concern that the farm size 

variable is insignificant. This could reflect that, even among large farms, output from a randomly-

selected field in a given year could be low due to poor weather conditions or high pest pressure 

during the growing season. Estimates of the productive inputs sum to 0.88-0.89, and a joint test of 

significance confirms modestly decreasing returns to scale, consistent with most empirical crop 

production studies (e.g., MacDonald et al., 2010, 2013).  

 We find mixed evidence on the relationship between soil quality, regional indicators, and 

field output. The soil productivity index for growing corn and soybeans (NCCPI) is insignificant, 

as is the indicator for whether the field contains any NRCS-designated highly erodible land. Both 

variables tend to have high explanatory power for U.S. corn production during this time, similar 

to the results from other studies (e.g., Wechsler et al., 2017). The standard errors of these regressors 

could be inflated due to collinearity with indicators for the Heartland region and Northern Crescent 

region (Heimlich, 2000). These regions include the traditional Corn Belt and several upper 

Midwest states, where there is a high concentration of corn-soybean farms and high-value cropland 

on productive soils. 

Median efficiency, as given by the 50th percentile of the empirical distribution of the 

output-oriented efficiency index contained in equation (10), is 80-81%. This is somewhat low for 

U.S. field crops, though well within the range of U.S. agriculture more broadly. Our estimates 

compare favorably to mean technical efficiency estimates from stochastic frontier studies using 
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cross-sectional data (75.2%), with a Cobb-Douglas functional form (76.3%), on a sample of North 

American farms (78.7%), or producing corn (74.5%) (Bravo-Ureta et al., 2007). The 95% 

confidence intervals for mean efficiency are generally [0.50, 0.97], again confirmed by other 

findings in the literature.8  

The empirical distributions of the technical efficiency estimates are negatively-skewed, as 

implied by the underlying stochastic frontier framework, though quite similar across three 

specifications (Figure 3). The most general model, specification (1), has relatively more density 

on [0.60, 0.80], while the homoscedastic model, specification (3) places somewhat more density 

on the far right side of the distribution. This general agreement among the three specifications 

provides suggestive evidence that the output-oriented technical efficiency estimates are not being 

severely biased by ignoring heteroscedasticity or omitting map variables from influencing the 

variance of the statistical noise. 

Although evidence of decreasing returns to scale suggests there will be discrepancies 

between the input- and output-oriented measures of technical efficiency, these discrepancies are 

minor. On average, the input-oriented measure indicates that U.S. corn farms are 12-14% less 

efficient than the productivity levels implied by the output-oriented measure. There are also only 

minor differences in the empirical distribution of the input-oriented efficiency estimates across the 

three specifications (Figure 4). Relative to the most general heteroskedastic model, the distribution 

of the reduced heteroskedastic model (specification 2) is less dispersed and produces slightly 

higher estimates of technical efficiency. The homoscedastic model also provides several efficiency 

estimates that are relatively high (including outliers), though with a much greater spread in the 

8 Note that the 95% confidence intervals are generally too narrow because they do not incorporate parameter 
uncertainty. However, estimation uncertainty can be easily incorporated, for example, by bootstrapping the confidence 
intervals. 
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empirical distribution of the efficiency estimates. Thus, we find that controlling for certain 

observation-specific determinants of corn production variability reduces the overall spread in the 

distribution of the efficiency estimates. 

 Many of the regressors in our parameterization of the mean inefficiency term and variance 

terms are significant at the 10% level or lower. This provides some statistical validation of our 

empirical specifications, though the coefficients cannot be directly interpreted due to the non-linear 

and non-monotonic relationships between the regressors and the mean and variance terms. 

Importantly, coefficients on the generalized residuals for adoption of yield maps and soil maps are 

individually significant at the 1% levels in the first two specifications, with the exception of the 

coefficient on the generalized residual for soil maps in the equation for 2

,i  in specification (1). 

Nonetheless, this implies that endogeneity of map adoption decisions in the stochastic frontier 

model is of concern and that not accounting for this endogeneity could have biased associated 

parameter estimates. This statistical evidences validates our use of the two-step control function 

procedure. 

The Impacts of Yield Maps, Soil Maps, and Farm Structure on Technical Inefficiency 

 Adoption of yield maps was associated with a 1.60-1.82% reduction in technical efficiency 

on U.S. corn fields in 2010 (Table 5). Although small, these impacts are statistically significant at 

0.10  or lower (depending on the specification) and are commensurate with the magnitudes of 

impacts of other precision agriculture technologies on profitability and variable corn production 

costs (Schimmelpfennig and Ebel, 2016; Schimmelpfennig, 2016). In contrast, corn fields on 

which soil properties were mapped had 1.55-1.64% increases in inefficiency. There are several 

likely causes of this counterintuitive relationship, including selection bias and omitted variables 
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bias not corrected by the generalized residuals.9 However, there has been a net beneficial effect: 

adoption of both maps is associated with a 0.04-0.18% reduction in efficiency. 

 Adoption of yield maps has had a similar, but small, effect on reducing the variability of 

corn production due to inefficiency. Excluding the point estimate from the general heteroscedastic 

specification (model 1), the variance of the inefficiency term is 0.55-0.78 lower on fields whose 

yields have been mapped. Similar to its counterintuitive impact on mean inefficiency, soil map 

adoption is associated with an increase in the variance of inefficiency by 0.46-0.70.10 As with the 

marginal effects of mean inefficiency, joint adoption of both maps has had a positive impact on 

corn production by lowering the variance associated with inefficiency, if only slightly. 

 Two other regressors of interest, the operator’s years of experience with the field and 

whether or not the field is owned, tend to have small but intuitive marginal effects on technical 

inefficiency. Although insignificant in the first two specifications, in the homoscedastic model, 

corn fields that are owned by the operator have inefficiencies with somewhat lower means and 

variances (0.07% and 0.03% lower, respectively). An additional year of operating the field is 

associated with a reduction in mean inefficiency by 0.33-0.36% and a reduction in the variance of 

inefficiency by 0.16-17% (for specifications 1 and 2). The incongruities in the effects of these two 

regressors across the specifications could be because specification (3) also includes an indicator 

9 In particular, fields that require soil properties to be mapped using GPS technologies may be influenced by other un-
modeled attributes causing them to be less efficient. Moreover, collinearity between yield maps, soil maps, and other 
un-modeled precision agriculture technologies (e.g., VRT and guidance systems) could result in omitted variables 
bias. This explanation is unlikely given the relatively low correlations in our data among the different combinations 
of technologies.  
10 Even though the yield map and soil map regressors do not directly enter the heteroscedasticity functions in 

specifications (2) and (3), they still indirectly impact both variance terms. This is because they directly enter ,
i

E u

which in turn impacts 
2

u, .
i
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for whether or not the field is rented free-of-charge and does not include re-scaled versions of the 

‘years operating the field’ variable.11   

Market Implications of Map Adoption and Data Inputs 

 U.S. crop production has experienced substantial structural change in the past three 

decades.  During this time, production and acreage have shifted from mid-size farms to generally 

larger farms. Between 1982 and 2007, median farm size on U.S. cropland almost doubled from 

589 acres to 1,105 acres. Larger farms have higher average rates of return on equity, a result of 

using labor and capital more intensively (MacDonald et al., 2013). During the past twenty years, 

crop farms in prime corn-growing regions have relied more extensively on corn-soybean rotations, 

concomitant with the use of genetically engineered (GE) herbicide-tolerant corn and soybean 

seeds. Use of these GE technologies tends to simplify farmers’ pest management decisions and 

reduce labor time, potentially further reinforcing labor and capital productivity and possibly that 

of other inputs. 

 Most recently, there has been increasing public and private interest in the profitable use of 

large datasets (e.g., “big data”) to increase the value of U.S. agricultural production. This 

increasing interest has, in part, been the result of rising broadband connectivity in rural areas, 

development and successful release of intuitive and easy-to-use smartphone applications, and 

broader trends toward automation and digitization of paper records. One current impediment to 

research on the economics of large datasets and their implementation in U.S. agriculture is a lack 

of access to farms’ otherwise private information on management decisions and practice adoption. 

11 For specifications (1) and (2), the non-linear optimization did not converge due to scaling issues. For these 
specifications, we re-scaled the ‘years operating field’ regressor by dividing by 10. Specifications (1) and (2) with the 
rent-free indicator variable did not converge, so this variable was excluded from both models.  
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  In the absence of comprehensive data on how operators have begun to use and interact 

with “big data” and analytics-based inputs, we can gain insight from unexplored avenues by which 

information inputs may provide value to farmers. That is, we may be able to infer how farmers 

might use (and derive value from) data on growing conditions from their smartphones, for 

example, by analyzing previous impacts of map use. Our analysis suggests that farmers who make 

use of yield maps (though not GPS-based soil maps) are more technically efficient than farmers 

who do not use such maps. This is similar to past findings that farms using mapping technologies 

have higher net returns and operating profits (Schimmelpfennig, 2016) and, more broadly, that 

information inputs provide value in production of certain field crops (e.g., Roberts et al., 2009). 

Generally, successful incorporation of relevant field-level data can increase efficiency and 

profitability of U.S. corn farms. 

Conclusion 

The goal of this research has been to analyze possible differences in technical efficiency on U.S. 

corn fields between adopters and non-adopters of GPS-based yield and soil maps. We model 

adoption using a bivariate probit model, which provides insights into the characteristics of fields, 

farms, and operators that influence mapping decisions. After having controlled for endogenous 

choice of both maps, we find that technical efficiency is significantly influenced by use of yield 

maps, soil maps, field ownership status, and other structural characteristics. These impacts are 

estimated using a generalized heteroscedastic stochastic frontier method (Wang, 2002) with a 

benchmark Cobb-Douglas production function. Further, we find evidence of endogenous yield and 

soil map adoption using estimated coefficients from first-step generalized residuals (Wooldridge, 

2014). 
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 Adjusted tests of differences in means suggest several interesting trends across map 

adoption scenarios. Mapped fields are higher-yielding, insured at higher rates, and are relatively 

higher value. These fields tend to be located on generally larger farms with non-owner operators 

that have one-to-two years less experience with the field than on fields for which neither map 

technology is used. Although map adoption rates are lower relative to other technologies released 

in the last two decades (e.g., herbicide-tolerant corn seeds or insect-resistant corn seeds), adoption 

is higher in certain regions of the U.S., including Iowa, Illinois, Indiana, and Ohio.     

There are three potential caveats to our findings. First, we do not observe field-level prices 

for yield maps or soil maps, which could contribute to measurement error in these variables. 

Nationally-representative data on mapping prices paid by farmers are not generally available, 

though external data on custom rates could be used to internally verify our regression-based 

approach to controlling for prices. Second, we do not currently account for adoption of variable-

rate technologies or guidance systems in the first or second stage of our regressions.  Given the 

complementarities between different components of precision agriculture equipment (e.g., 

Khanna, 2001; Schimmelpfennig and Ebel, 2016; Schimmelpfennig, 2016), omitted variables bias 

could occur if map adoption decisions depend on joint use with these other technologies. Third, 

we assume that productive inputs in the stochastic frontier are exogenously determined. Recent 

parametric methods have been developed to correct endogeneity bias in stochastic frontiers (e.g., 

Shee and Stefanou, 2015; Amsler et al., 2016), though some techniques are not fully general and 

rely on strong assumptions about the way in which productive inputs are correlated with either the 

noise term or inefficiency term.  
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Figure 1. Average Corn Yields on Fields with Yield Maps and GPS-based Soil Maps, 2010 
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Figure 2. Percentage of Planted Corn Acres with Yield Maps and GPS-based Soil Maps, 2010 
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Figure 3. Output-Oriented Efficiency Index Estimates 
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Figure 4. Relative Input-Oriented Inefficiency Index Estimates 
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Table 1. Select Weighted Means by Map Technology Adoption Decision, 2010 

Note: Means have been expanded to the population of 2010 U.S. corn fields using a NASS-provided base weight. 

Variable Unit 

No Yield or 

GPS Soil Maps 

No Yield Maps, 

GPS Soil Maps 

Yield Maps, 

No GPS Soil Maps 

Yield and 

GPS Soil Maps 

Yields and Productive Inputs  

Yield Bushels/acre 146 149 167 173 

Labor Hours Hours 57 74 83 77 

Farm Acres Acres 378 683 1217 1262 

Nitrogen Applications lb/acre 135 147 148 162 

Capital  Dollars 3633 5773 6841 6110 

Prices 

Corn Price Dollars/bushel 5.28 5.22 5.23 5.26 

Labor Price Dollars/hr 20.94 21.1 21.3 20.7 

Land Price Dollars/acre 5131.62 8104.88 10713.51 11027.43 

Nitrogen Price Dollars/pound 0.39 0.39 0.39 0.38 

Field and Operator Structure 

Acres Owned Percent in (0,1) 0.52 0.48 0.37 0.35 

Acres Rented for Fixed Cash Payment Percent in (0,1) 0.33 0.38 0.38 0.52 

Acres Rented for Flexible Cash Payment Percent in (0,1) 0.01 0.03 0.01 0.05 

Acres Rented for Share of Crop Percent in (0,1) 0.12 0.11 0.23 0.08 

Acres Rented for Cash and Share of Crop Percent in (0,1) 0.004 0 0 0 

Acres Rented for Free Percent in (0,1) 0.01 0 0 0 

Operator Experience with Field Years 22.08 20.55 19.09 19.50 

Insurance Percent in (0,1) 0.72 0.77 0.89 0.93 

Field Characteristics and Geographic Location 

NCCPI, Corn and Soybeans Index in (0,1) 0.57 0.60 0.63 0.65 

Indicator for Highly Erodible Land Percent in (0,1) 0.12 0.18 0.12 0.10 

Indicator for Wetland Percent in (0,1) 0.02 0.01 0.04 0.02 

Heartland Region Percent in (0,1) 0.49 0.60 0.69 0.82 

North Crescent Region Percent in (0,1) 0.29 0.08 0.13 0.09 
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Table 2. Difference in Weighted Means Across Adoption Decisions, Relative to Fields with No Maps  

Note: Differences in means estimated using the delete-a-group jackknife procedure. Significance is denoted as *** p<0.01, ** p<0.05 
and * p<0.1.

Variable Unit 

No Yield Maps, 

GPS Soil Maps 

Yield Maps, 

No GPS Soil Maps 

Yield and 

GPS Soil Maps 

Yields and Productive Inputs  

Yield Bushels/acre 3 21** 26** 

Labor Hours Hours 17 26*** 20*** 

Farm Acres Acres 305** 839*** 884*** 

Nitrogen Applications lb/acre 13* 13** 27*** 

Capital  Dollars 2140*** 3208*** 2477*** 

Prices  

Corn Price Dollars/bushel -0.07* -0.05** -0.03 

Labor Price Dollars/hr 0.19 0.38 -0.20 

Land Price Dollars/acre 2973*** 5582*** 5896*** 

Nitrogen Price Dollars/pound 0 0 -0.01 

Field and Operator Structure  

Acres Owned Percent in (0,1) -0.04 -0.15*** -0.17*** 

Acres Rented for Fixed Cash Payment Percent in (0,1) 0.05 0.05 0.19*** 

Acres Rented for Flexible Cash Payment Percent in (0,1) 0.02 0 0.03 

Acres Rented for Share of Crop Percent in (0,1) -0.02 0.11*** -0.04 

Acres Rented for Cash and Share of Crop Percent in (0,1) - - - 

Acres Rented for Free Percent in (0,1) - - - 

Operator Experience with Field Years -1.53 -2.99*** -2.58 

Insurance Percent in (0,1) 0.04 0.17*** 0.21*** 

Field Characteristics and Geographic Location     

NCCPI, Corn and Soybeans Index in (0,1) 0.02 0.06*** 0.08*** 

Indicator for Highly Erodible Land Percent in (0,1) 0.06 -0.01 -0.02 

Indicator for Wetland Percent in (0,1) -0.01 0.02 0 

Heartland Region Percent in (0,1) 0.11 0.20*** 0.32*** 

North Crescent Region Percent in (0,1) -0.21*** -0.16*** -0.20*** 
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Table 3. First-Stage Bivariate Probit Estimates of Yield Map and Soil Map Adoption 
 
Variable Yield Map Equation GPS Soil Map Equation 

Prices   
Corn price 0.38 0.06 
Nitrogen price -3.31 -1.74 
Labor price 0.014 -0.003 
Land rental rate 0.00002 0.0002 
Capital costs 0.00003* -0.000009 
Diesel price 1.22 0.47 
   
Control for yield map price -0.02 0.01 
Control for soil map price -0.04* -0.05**

   
Structure   
Field is owned  -0.27** -0.12 
Years operating field -0.003 -0.000007 
   
Soil and Weather Conditions   
NCCPI, corn and soybeans 0.93* 0.54 
Field contains highly-erodible land -0.09 0.06 
Field contains wetland -0.16 0.18 
Cumulative season GDD -0.0004 0.0003 
Cumulating season precipitation -0.0005 -0.006 
   
Correlation of errors across equations 0.80***

Number of observations 1,640 1,640 

Note: Estimates have been expanded to the population of 2010 U.S. corn fields using a NASS-
provided base weight. Standard errors are computed using the delete-a-group jackknife procedure. 
The ‘years operating field’ variable has been divided by 10. Significance is denoted as ***p<0.01, 
**p<0.05, and *p<0.10. 
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Table 4. Stochastic Frontier Estimates 
 (1) (2) (3) 

Input, Soil, and Region Characteristics Estimates, ˆ and ˆ      

Log(Farm Size) 0.01 0.01 0.01 
Log(Labor Hours) 0.08*** 0.08*** 0.07***

Log (Total N Applied) 0.38*** 0.38*** 0.39***

Log(Capital) 0.41*** 0.41*** 0.41***

NCCPI, Corn and Soybeans 0.11 0.09 0.11 
Highly Erodible Land -0.06 -0.05 -0.05 
Field Contains Wetland 0.09 0.10 0.14**

Heartland Region 0.14*** 0.14*** 0.15***

Northern Crescent Region 0.10** 0.09** 0.10**

Constant 1.86*** 1.96*** 1.87***

    

Mean Inefficiency Estimates,     
   

Yield Map Adoption -12.55*** -13.91*** -16.52*

Soil Map Adoption 10.77*** 11.34*** 14.79*

Own Field -0.12 -0.11 -0.70*

Rent Field for Free   1.44*

Years Operating Field -0.14** -0.15** -0.08 
Field is Insured -2.37** -2.25** -0.49 
Generalized Residual, Yield Maps 3.98*** 4.34*** 4.85**

Generalized Residual, Soil Maps -3.54*** -3.65*** -5.04*

Constant 0.84*** 0.89*** -0.33 
    

Inefficiency Variance Estimates, u   
   

Own Field -0.45*** -0.44***  
Years Operating Field 0.09** 0.08*  
Field is Insured  1.54*** 1.40***  
Constant  -1.57*** -1.38*** -0.29 
    

Noise Variance Estimates,  v   
   

Yield Map Adoption -0.91   
Soil Map Adoption -0.46   
Own Field  0.42*** 0.51***  
Years Operating Field -0.04 -0.01  
Field is Insured  -0.04 -0.11  
Generalized Residual, Yield Maps 0.43***   
Generalized Residual, Soil Maps 0.41   
Constant -1.90*** -2.28*** -2.05***

    

Noise Variance, 
2ˆ
v

    0.75*

Inefficiency Variance, 
2ˆ
u

    0.13***

Returns to Scale 0.89*** 0.88*** 0.88***

Median Efficiency 0.80 0.80 0.81 
Efficiency, 95% Confidence Interval (Means) [0.50, 0.97] [0.50, 0.96] [0.50, 0.97] 
Log-likelihood -970.0 -978.1 -1000.8 
N 1,639 1,639 1,639 

Note: To ease computational burden, we divide the ‘years operating field’ by 10 in specifications (1) and (2). We 
test the null hypothesis of constant returns to scale using a two-sided Wald test. Models (1) and (2) did not converge 
using the ‘rent field for free variable.’ Significance is denoted as ***p<0.01, **p<0.05 and *p<0.10. 
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 Table 5. Average Marginal Effects on Mean and Variance of Inefficiency 
 
 Yield Map 

Adoption 
Soil Map 
Adoption 

Own 
Field 

Years 
Operating Field 

Mean Inefficiency, 
i

E u       

General Heteroscedasticity Model (1) -1.60* 1.56** 0.001 -0.36***

Reduced Heteroscedasticity Model (2) -1.82** 1.64*** 0.001 -0.33**

Homoscedasticity Model (3) -1.73** 1.55*  -0.07*** -0.0009 
     

Variance of Inefficiency, 2

,u i
      

General Heteroscedasticity Model (1) -0.43 0.46* 0.004 -0.17***

Reduced Heteroscedasticity Model (2) -0.55* 0.53** 0.004 -0.16**

Homoscedasticity Model (3) -0.78** 0.70** -0.03** -0.0004 

Note: Marginal effects are calculated using standard formulas (e.g., Kumbhakar et al., 2015) and 
then averaged across the 1,639 field observations. Standard errors are calculated as the standard 
deviation of the average marginal effects across B = 1,000 bootstrapped samples. Each of the 1,000 
datasets are sampled randomly with replacement. Significance is denoted as ***p<0.01, **p<0.05, 
and *p<0.10. 
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Appendix  

 
Let the expected utility maximization problem for a representative farmer be: 

(A.11) 1 2

1 2

1 1 2 2 1 2
, {0,1}, {0,1}
max E E 1

                         . . exp ,

v

f f v v nm nm
x R T T

T Tb c

f v

U u PY p x p x p T p T u d T e T

s t Y ax x d e

  

where  and  are binary choices.       

Assuming that E exp 1 , the first order condition for variable input use is: 

(A.12) 
1 2E

0.

T Tb c

f v

v

v v

cPax x d ed
p

dx x
  

Solving equation (A.12) for x implies that: 

(A.13) 1 2

1

1
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Substituting equation (A.13) into the production function, we have: 

(A.14) 1 2

1

1
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c c

T Tb

f

v

P
Y ax d e c

p
  

Substituting equations (A.13) and (A.14) into the expected utility function implies that the 

maximization problem can be expressed as: 

(A.15)   
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Therefore, a farmer uses precision agriculture technology T1 if: 

(A.16)   
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We choose to model a such that 0

1

i

N
a

i

i

a a A , where a0 is a constant, ai are parameters, and Ai are 

exogenous variables. Therefore, equation (A.16) can be reparametrized as:  
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Similarly, the condition for the use of precision agriculture technology T2 can be expressed as: 
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(A.18)     
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We restrict equations (A.17) and (A.18) to positive values by exponentiating 2 nm
p we  

and 1 .
nm

p wd  We express 
nm

wd   and 
nm

we  as linear combinations of variables correlated with 

the farmer’s non-monetary factors associated with adopting the precision agriculture technology. 

Thus, the conditions for adoption are: 

(A.19)     
1 2 22 1
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and, 

(A.20)     2
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where 1

nm
 and 2

nm
 are vectors of parameters, and 

nm
x is a vector of variables that are highly 

correlated with non-monetary factors influencing technology adoption decisions.  

 


