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ABSTRACT 

Welfare measures in non-market are biased when they are nonlinear functions of parameter 

maximum likelihood estimates and when the sample size is small. This paper compares the 

performances of the delta method, jackknife, and bootstrap to correct this bias. The 

performance of the approaches is compared using Monte Carlo simulation for models including 

Poisson, logit, probit, and misspecified probit. The results indicate that the delta method and 

jackknife can correct the bias of welfare measures for the models listed in small samples. They 

have similar expected bias as well as mean square error in the single parameter case. With 

distributional misspecification, the delta method outperforms the jackknife. The bootstrap 

result has more expected bias, but also the smallest mean square error, especially when the 

sample size is large enough.  

  



2 
 

 1. INTRODUCTION 

1.1 Background 

      Welfare measures based on observed behavior or stated preferences are rarely estimated in 

a straightforward fashion.  Haab and McConnell (2002) have summarized this as "The need for 

statistical inference and econometrics arises because individual actions, whether behavior that 

is observed in quasi-market settings or responses to hypothetical questions, almost never 

reveal precisely the economic value that a researcher wishes to measure."  

      Bias of welfare measures can arise at the data collection stage (i.e. hypothetical bias) or the 

model estimation stage. Although the former bias source has been extensively discussed, there 

is far less attention about statistical methods of bias correction during and after parameter 

estimation in non-market valuation. Welfare measures are typically biased because they are 

calculated as non-linear function of estimated parameters. Besides, when the sample size is 

small, even a consistent parameter estimate can be biased. Unlike the hypothetical bias being 

conceptual, this statistical bias can be rigorously identified and corrected through statistical 

techniques.  

1.2 Motivation and Major Objectives 

      Several bias correction estimators have been proposed for welfare measures using the delta 

method, jackknife, bootstrap and distributional-free nonparametric method. In practice,  the 

delta method is the most commonly used bias correction method, but the reliability of these 

methods has not been validated and compared. The delta method can be difficult to apply in 
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that the statistical differentials (for univariate), or variance-covariance matrix (for multivariate) 

specifications are not readily available. And for many large and complicated models of the type 

encountered in non-market valuation, the bootstrap is not a feasible alternative. Thus it should 

be in the practitioner’s interest to see if the jackknife can be a reliable alternative for the delta 

method.  

      Most of the statistical literature in this field compares the asymptotic properties of bias 

correction estimators for simple statistics like sample mean or correlation coefficient with these 

bias correction methods (Efron,1977,1981,1983; Parr,1983; Chow, 1985; Withers, 2013, 2014), 

which cannot be directly applied to models used in non-market valuation, especially for small 

sample estimation. Only a few studies compared these methods for welfare measures in non-

market valuation (Cooper, 1994; Langford, 1998; Bliemer, 2013). These studies used Monte 

Carlo simulation to show the small sample performance of bias correction methods, but they 

only used limited models with little variation of circumstances, which can hardly represent 

versatile cases in practice with different model specifications, sample sizes, and possible 

distributional misspecification. Besides, in these studies the Monte Carlo simulation results 

have not been linked to the asymptotic properties of these bias correction methods, and no 

mathematic explanations for the simulation results were proposed, although there is extensive 

theoretical literature about resampling methods. 

      We compare the performance of these bias correction methods for welfare measures in 

non-market valuation using Monte Carlo simulation with variations of sample size, model 

specification, and distributional assumption. The conclusions of this study can provide some 

rules of thumb for the practitioner to select the optimal bias correction method. 
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2. LITERATURE REVIEW 

2.1 Bias Correction Method 

      In CV models the welfare measures are often obtained by nonlinear transformation of 

estimated parameters, which are known to be biased due to nonlinearity. Also, as summarized 

by Chen (2012), the maximum likelihood parameter estimates can be biased in finite samples. A 

problem of interest is to reduce the bias as well as MSE of such estimators. The most common 

way is to apply Taylor’s series expansion to analytically derive bias at the O(n-1) corrected 

estimator, namely the Delta method. Oehlert (1992) gave a review about the Delta method and 

concluded that the Taylor series approximation for expected value of the function is consistent 

provided that the underlying sequences of random variables have enough bounded moments.  

      Alternatively, resampling procedures like jackknife and bootstrap can also remove the O(n-1) 

bias, which entails a negligible increase in variance as shown by Quenouille (1956), or even 

decreases the variance as shown by Durbin (1959). Besides, Efron (1979) showed that the 

jackknife is a linear approximation for the bootstrap. The “delete-one” jackknife was extended 

by Jaeckel (1972) to the infinitesimal jackknife, and by Gray (1975) and Sharot (1976) to the 

generalized jackknife. Gray (1975) and Efron (1979) pointed out that the bias and variance 

expressions suggested by the infinitesimal jackknife transform equivalently to the Delta 

method, and the Delta method is a limiting case of a generalized jackknife. Kim (1998) derived 

conditions under which bias corrected estimates for smooth function and non-smooth function 

statistics with the jackknife and bootstrap method lead to increase in MSE in terms of second-

order asymptotic superiority, which can be extended to regression models. Withers (2013) 
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assessed through a simulation study the performance of the Delta method bias corrected 

estimators for odds ratio in the Binomial (n, θ), including the maximum likelihood estimator, 

the delta estimators up to the third order. Bias and MSE of the four estimators are computed in 

10,000 simulations. The steps are repeated for sample size 1,2, … ,100, and θ = 0.3, 0.5, 0.7, 0.9. 

Results showed that the delta method could reduce both bias and MSE in multinomial odds 

ratio estimation, and the results are consistent under the different value of θ. 

2.2 Comparison of Bias Correction Methods 

      Efron (1981) used bootstrap, jackknife and infinitesimal jackknife and other nonparametric 

methods in a Monte Carlo experiment for calculating the correlation coefficient. The point 

estimates, variances, and MSEs are compared. The simulation results showed that jackknife has 

less bias than the delta method; the bootstrap generally performs the best among all methods 

at the cost of less computational efficiency.  

Parr (1983) showed that the Delta method, jackknife, and bootstrap coincide at least to the 

first order term, and the absence of skewness leads to the second-order coincidence of the 

jackknife and delta methods. 

Shein-Chunq Chow (1985) studied the Delta method, jackknife and bootstrap estimators for 

nonlinear functions of local parameters and derived asymptotic expansions of the mean 

squared error up to the third order. There is no consistent relationship among these estimators; 

the performance depends on the underlying distribution and particular form of the nonlinear 

function. A least MSE estimator was proposed and compared with these three estimators, in 

simulations for several commonly used nonlinear functions, logx, 1/x, and √𝑥 of sample mean 



6 
 

estimates, and distributions including gamma, Poisson, and lognormal, with sample size n=10 

and n=20. A total of 1000 runs were made for each combination. This study provides a direct 

basis for our study, but the sample size is too small for any non-market valuation practice, and 

only a nonlinear function of a single parameter estimate was studied. So we will extend to 

nonlinear functions of more than one estimated parameter, and increase the simulation sample 

size range, as well as functional forms, according to the importance and usage frequency in 

non-market valuation practice. 

The comparison of these methods in the field of non-market valuation was firstly studied by 

Cooper (1994). A Monte Carlo simulation technique is used to assess the reliability of the 

Krinsky and Robb, jackknife, bootstrap, and the Cameron confidence interval routines as 

applied to the logit regression model with simulated sample size N=100, N=500 and N=1000. 

The simulated data sets are created using both the logistic and Weibull distributions. Thus the 

robustness of these methods under misspecification of skewed distribution can be tested. Bias, 

standard deviation, and frequency of inclusion of true mean in the estimated confidence 

interval were used as comparison criterions. All methods produced similar results with a larger 

sample, but for N=1000 and logistic distribution, bootstrap performs the best. An analytical 

approach like the Cameron method performs the best when N=100, but tends to underestimate 

the standard deviation. Under falsified Weibull distribution, all methods perform worse than 

when the logistic is the true underlying distribution, but the jackknife performs the best when 

N=500 and N=1000. 

Langford (1998) compared bootstrap and delta method bias corrected estimations of WTP 

median in a logit model and showed that with bid level effect included (for random-effect 
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model), the bootstrap result is more skewed and with more kurtosis than the Delta method 

results, and the variances of two results are also significantly different. 

Withers (2014) compared the computational efficiency of bias reduction estimators using 

the delta method, jackknife, and bootstrap. It is shown that the pth order delta estimator 

requires ~n calculations, the pth order “drop-one-observation” jackknife estimator requires ~n 

calculations if p = 1 and ~np-1 calculations if p ≥ 2, the pth order “drop-m-observation” jackknife 

estimator requires ~nms+1 calculations or ~nms calculations if s = p - 1 > 0; and bootstrap is 

second order and requires ~n2 calculations. 

3. METHOD 

3.1 Bias of welfare measures from parameter estimation and nonlinear transformation 

      In the process of obtaining welfare measures in non-market valuation practices, the findings 

can be biased for several reasons. Firstly, parameter estimation bias, namely the estimation 

results of underlying parameters are biased due to the insufficient sample size. This type of bias 

can be alleviated by applying the jackknife method.  In non-market valuation practice, this 

source of bias is entangled with other sources of bias, which complicates the analysis of the 

performance of bias correction methods. That is a reason why we tend to rely on simulation 

results instead of an analytical approach when comparing bias correction methods. 

      Secondly, non-linear transformation bias, namely the welfare measures obtained by 

unbiased parameter estimation can still be biased because the welfare measure is usually 

calculated as a non-linear function of the estimated parameters, and it is well-known that the 
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expected value of a non-linear function of unbiased parameter estimates is itself generally 

biased. Welfare measures in non-market valuation are usually derived with a nonlinear function 

of parameters. If 𝜷 is a vector of k parameters, under maximum likelihood estimation 

 �̂�  ⩪ 𝑁(𝜽, 𝑉(𝜽)) (1) 

where ⩪ means approximately distributed as, V(𝛉)is the variance-covariance matrix.  Assume 

welfare measure 𝑊 = ℎ(𝜽), for which the usually estimator is �̂� = ℎ(�̂�). Here �̂� usually takes 

the form of sample mean �̅�. When h is a nonlinear function, the function of parameter 

estimates ℎ(�̂�) will be biased estimate for WTP. If h is a convex function, then 𝐸 (ℎ(�̂�)) >

𝐸(ℎ(𝜽)̂); if h is a concave function, then 𝐸 (ℎ(�̂�)) < 𝐸(ℎ(𝜽)̂). With sample size increasing, the 

expected bias will decrease, but will always have the same sign. 

      Thirdly, distributional misspecification bias, namely the data generating process assumed by 

the statistical model can be different from the economic model specified. When applying 

random utility models, we derive the model specification by taking up a distribution of the 

random part of the utility or corresponding probability distribution. For instance, the logit 

model with logistic probability distribution is obtained by assuming that each random part of 

utility is independent, identically distributed extreme value, namely Gumbel and type I extreme 

value distribution; while a probit model is used with normal distribution specified.  

      Common probability distributions are the normal, logistic, log-logistic, Weibull and 

exponential (Kerr, 2000). With real-world datasets, the difficulty is that the underlying true 

distribution cannot be revealed even if we compare results with different possible distributional 

specifications. However, simulated data can be generated by setting up a distribution, and by 
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comparing results under “true” and alternative models for the influence of distributional 

misspecification. The effects of skewness or kurtosis from the “true” distribution can be driving 

the bias in different ways. 

      We will illustrate these sources of bias with frequently used models in non-market valuation 

practice as examples, including Poisson and negative binomial for travel cost models and binary 

probit and logit for random utility models. We will also consider more complicated models 

including double bounded models, random effect models, and scaled or drifted distributional 

specifications as suggested by Kerr (2000).  We will show in simulations how large and 

significant the bias can be with different combinations of sources of bias as well as under 

different sample size. 

      These different sources of bias may become the major driving factors for different models at 

various sample sizes. Basically the parameter estimation bias is prominent when sample size is 

small, and it can also complement the nonlinear transformation bias at first order. As shown in 

(33), when the sample size is large enough to neglect the parameter estimation bias, the 

nonlinear transformation bias becomes the primary source of bias. The asymptotic result can 

be seen as the case when sample size approaches infinity, and the consistent parameter 

estimation has zero bias. Although in practice we care more about small sample results than 

asymptotic results, the asymptotic result can help explain the dynamics of these driving factors. 

3.2 Bias Correction Methods for Parameter Nonlinear Transformation 
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3.2.1 Analytical Bias Correction Method for Maximum Likelihood Parameter Estimation 

The maximum likelihood parameter estimation bias can be corrected by computing the bias of 

parameter estimate at first or higher order, and then subtracting the bias from the original 

estimate.  Here we give several examples of correcting the bias of the ML estimator �̂�. 

      For a logit model, assume 𝑃𝑟(𝑦 = 1) = 𝜋, with which a set of covariates 𝐗 is associated. 

And the log odds ratio is a linear function of 𝑿, specified as 𝑿′𝜷. To estimate �̂�, we need to 

solve the equation  

 𝜕𝑙(𝜷)

𝜕𝛽𝑟
≝ 𝑔(𝛽𝑟) = ∑(𝑦𝑖 − �̂�𝑖) 𝑿𝒊𝒓 = 0 (2) 

where 𝑙(𝜷) is the log-likelihood function, and 𝑔(𝛽𝑟) is the score function. In matrix notation 

𝝅 = (1 + 𝑒−𝑿′𝜷)−1, and 𝑔(𝜷) = 𝑿′(𝑦 − �̂�). The fisher information F(𝜷) = 𝑿′𝑾𝑿, where 𝑾 =

𝑑𝑖𝑎𝑔(�̂�(1 − �̂�)). Then �̂� is obtained by applying the iterative Newton-Raphson method:  

 𝜷𝒕+𝟏 = 𝜷𝒕 + 𝐹(𝜷𝒕) −1 𝑔(𝜷) (3) 

where 𝛽𝑡 is the estimate at t-th stage. This step is repeated until convergence criterion is 

reached. This method is called iterative maximum likelihood estimates. 

      Firth (1993) suggested that the bias of MLE can be reduced by modifying the score function 

(41) as  

 𝑔𝑓(𝛽𝑟) = ∑((𝑦𝑖 − �̂�𝑖) + ℎ𝑖(0.5 − �̂�𝑖))𝑿𝒊𝒓 (4) 

where ℎ𝑖  is the i-th diagonal element of the matrix 𝐇 = 𝑊
1

2𝑋(𝑋′𝑊𝑋)−1𝑋′𝑊
1

2. Then use 𝑔𝑓(𝛽𝑟) 

for the iterative Newton-Raphson method.  
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      Cordeiro (1991) proposed a bias correction estimator for the generalize linear model 

 𝜷 =  �̂� − (𝑿′𝑾𝑿)−𝟏𝑿′𝑾𝝃 (5) 

For logit model 𝝃 = 𝑑𝑖𝑎𝑔[𝑿(𝑿′𝑾𝑿)−𝟏𝑿′](�̂� − 0.5).  

3.2.2 Delta Method 

      The Delta method can correct the nonlinear transformation bias by approximating the 

nonlinear function with a Taylor series. When the function h has continuous second derivatives, 

by taking a second order Taylor series approximation of ℎ(�̂�) from (1), we get 

 
ℎ(�̂�) ≅ ℎ(𝜽) + ∑ 𝐸[(𝜃𝑖 − 𝜃𝑖)]

𝜕ℎ(𝜽)

𝜕𝜃𝑖

𝑘

𝑖=1
+

1

2
∑ 𝑉𝑖𝑗(�̂�)

𝜕2ℎ(𝜽)

𝜕𝜃𝑖𝜕𝜃𝑗

𝑘

𝑖,𝑗=1
 (6) 

Taking expectations of both sides, we get a bias corrected estimator 

 
�̂�𝐷 ≅ E[ℎ(�̂�)] − ∑ 𝐸[(𝜃𝑖 − 𝜃𝑖)]

𝜕ℎ(𝜽)̂

𝜕𝜃𝑖

𝑘

𝑖=1
−

1

2
∑ 𝑉𝑖𝑗(�̂�)

𝜕2ℎ(�̂�)

𝜕𝜃𝑖𝜕𝜃𝑗

𝑘

𝑖,𝑗=1
 (7) 

This first-order approximation is usually referred to as the delta method. Although equation 

(34) can be evaluated at every data point, typically interest is focused on the sample mean 

h(�̅�). The delta method can eliminate the 1/n bias leading term from the nonlinear function 

(Miller, 1964). 

      If 𝜃𝑖  is treated as an unbiased estimator of 𝜃𝑖, then the first order term in (34) can be 

eliminated, then we get the most commonly used version of delta method estimator. For small 

samples, the first order bias is prominent, which weakens the performance of delta method if 

this term is omitted. For certain models, the bias of 𝜃𝑖has been derived, so that a more precise 

result can be attained. 
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3.2.3 Jackknife 

      The basic idea behind the jackknife bias corrected estimators lies in recomputing the 

statistic of interest using all but one of the observations. Suppose �̂� is estimated from a dataset 

𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛. And welfare measure �̂� = ℎ(�̂�), denote 

 �̂�−𝑖 = ℎ(�̂�−𝒊) (8) 

Where �̂�−𝒊 is estimated with all but 𝑖𝑡ℎ observation 𝑋𝑖 for 𝑖 = 1,2, … , n. Denote the 𝑖𝑡ℎ pseudo-

value by �̂�𝑖 = 𝑛�̂� − (𝑛 − 1) �̂�−𝑖. Then the jackknife bias corrected estimator is 

 
�̂�𝐽 =

1

𝑛
∑ �̂�𝑖

𝑛

𝑖=1
= 𝑛 ℎ(�̂�) −

𝑛 − 1

𝑛
∑ ℎ(�̂�−𝒊)

𝑛

𝑖=1
 (9) 

The Jackknife can also be defined as a form of weighted observations. If we attach a weight to 

each observation, then leaving one observation out is the same as giving an observation a 

weight of zero. Instead of doing that for ordinary jackknife, we give the observation only a 

slightly less weight than the others, and then we get the infinitesimal jackknife. We assign 

weights 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 to observations 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 respectively. Then �̂� can be written 

as a function of 2*n variables 𝑇( 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛; 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 ), since all observations 

have equal weight of 1/n, we get 

 
�̂� = 𝑇( 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛;

1

𝑛
, … ,

1

𝑛
 ) (10) 

For  �̂�−𝑖, the weight of 𝑋𝑖 becomes 0, and all other observations have same weight, so we have 

 
�̂�−𝑖 = 𝑇( 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛;

1

𝑛 − 1
, … ,

1

𝑛 − 1
, 0,

1

𝑛 − 1
, … ,

1

𝑛 − 1
  ) (11) 

To simplify the algebra, we extend the definition of 𝑇 as follows. If 𝐺 is any probability 

distribution for which 𝑇 is defined, and 𝑐 is a positive constant, then we let 𝑇(𝑐𝐺) =
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𝑇(𝐺).Thus, if we are considering discrete distributions with possible values 𝑋𝑖, i=1, …, n. we can 

assign to each 𝑋𝑖 the weight 𝑤𝑖 without requiring that ∑ 𝑤𝑖
𝑛
𝑖=1 = 1.  

      If we reduce 𝑤𝑖 by 𝜖 and let 𝜖 → 0. We have 

 
�̂�−𝑖(𝜖) = 𝑇( 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛;

1

𝑛
, … ,

1

𝑛
,
1

𝑛
− 𝜖,

1

𝑛
, … ,

1

𝑛
  ) (12) 

Let �̂�𝑖 =
𝜕𝑇

𝜕𝑤𝑖
, �̂�𝑖𝑖 =

𝜕2𝑇

𝜕𝑤𝑖
2, since 𝑇(𝑐𝐺) = 𝑇(𝐺), it can be proved that 

1

𝑛
∑ �̂�𝑖 = 0. We can form 

the Taylor series expansion 

  
�̂�−𝑖(𝜖) − �̂� = 𝑇 ( 

1

𝑛
, … ,

1

𝑛
− 𝜖, … ,

1

𝑛
  ) − 𝑇 ( 

1

𝑛
, … ,

1

𝑛
  ) = −𝜖�̂�𝑖 +

𝜖2

2
�̂�𝑖𝑖 − ⋯ (13) 

Suppose �̂�(∙)(𝜖) =
1

𝑛
∑ �̂�−𝑖(𝜖), we can define a bias estimate �̂�(𝜖) by 

  𝑛2𝜖2�̂�(𝜖) = 𝑛(1 − 𝜖)(�̂�(∙)(𝜖) − �̂�) (14) 

Letting 𝜖 → 0, we have  

  
�̂�(0) =

1

2𝑛2
∑ �̂�𝑖𝑖 (15) 

Finally, we get the infinitesimal jackknife estimate  

  
�̂�𝐼𝐽 = �̂� − �̂�(0) = �̂� −

1

2𝑛2
∑ �̂�𝑖𝑖 (16) 

which is exactly the result of applying delta method to �̂�(Gray,1975). 

      The usage of jackknife can be extended to many aspects of estimation. Kézdi (2002) 

proposes a jackknife minimum distance estimator designed to reduce the finite-sample bias of 

the optimal minimum distance estimator. Lee (2012) showed that the jackknife maximum 
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likelihood estimator is consistent, and the jackknife estimate of the log likelihood is 

asymptotically unbiased.  

3.2.4 Bootstrap 

      An alternative resampling method, the bootstrap procedure can also be used for bias 

correction in welfare measures with nonlinear transformation. The procedures are as follows: 

      Step 1. Construct the empirical probability distribution �̂� of each dataset with 𝑛 

observations by putting probability mass  𝑛−1 on each observation 𝑋𝑖. 

      Step 2. Draw a random sample of size 𝑛 from �̂� as 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, … , 𝑋𝑛

∗  ~ �̂�, and get  �̂�∗ =

f(�̅�∗), where �̅�∗ =
1

𝑛
∑ 𝑋𝑖

∗𝑛
𝑖=1 . 

      Step 3. Repeat step 2 with a large number T times, get �̂�𝟏
∗ , �̂�𝟐

∗ , �̂�𝟑
∗ , … , �̂�𝑻

∗ . With �̂� = ℎ(�̂�), 

get �̂�1
∗, �̂�2

∗, �̂�3
∗, … , �̂�𝐵

∗. Then we get the estimate of bias 

 
𝑏𝑖𝑎�̂�(�̂�) =

1

𝑇
∑ (�̂�𝑡

∗ − �̂�)
𝑇

𝑡=1
 (17) 

So the bootstrap bias-corrected estimator is 

 
�̂�𝐵 = 2�̂� −

1

𝑇
∑ �̂�𝑡

∗
𝑇

𝑡=1
 (18) 

The Bootstrap can take different forms by various schemes of the random drawing, here for 

simplicity, we only consider the most commonly used method. 

3.3 Comparison of bias correction methods through Monte Carlo simulation 
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      Monte Carlo Simulation analysis is started by assuming a distribution, which can be the true 

underlying distribution of the model to be estimated or a wrong distribution. The reason for the 

distributional divergence is to assess the bias under distributional misspecification. Then a large 

number S simulated datasets are created based on the assumed distribution. With each 

simulated dataset, �̂�𝐷 , �̂�𝐽 and �̂�𝐵 are calculated. With these S estimators based on the 

simulated distribution of �̂�, expected bias, variance, mean square error, confidence intervals 

can be calculated and compared for �̂�𝐷 , �̂�𝐽 and �̂�𝐵. 

      Simulations need to be run under a wide range of variations to represent the possible 

alternative cases. We believe the key variations include: model specification/function form; 

sample size; distributional assumption. 

      Firstly, different bias correction methods may have optimal performance with different 

model specifications. For instance, the welfare measures may be nonlinear functions of one 

parameter, multiple parameters, or estimated parameters with observed values. We will start 

with commonly used models like logit, probit, and Poisson; and extend to more advanced ones 

like double bounded probit and the Box-Cox model. 

      Secondly, different bias correction methods may perform best under different sample size. 

For instance, as the sample size in each repetition increases, the variance of estimates in each 

repetition gets smaller, and the nonlinear transformation becomes closer to linear when it 

happens within a narrower interval so that the nonlinear transformation bias becomes smaller 

when sample size increases.  On the other hand, the delta method requires sample size to be 

above a certain threshold to produce a robust result. However, for the jackknife, the 
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performance has no such correlation to sample size. The simulation will be done under sample 

sizes of 50,100,200 and 400. 

      Thirdly, under distributional misspecification, the welfare measure will be further biased, for 

which different bias correction methods may show varying levels of robustness. The 

misspecification may be about skewness as in Weibull /logistic, or kurtosis as in normal/logistic. 

Besides, several nonparametric/semi-nonparametric methods can be alternative solutions for 

distributional misspecification, although they are in general less efficient than MLE. 

4 SIMULATION RESULT 

      In this section, a Monte Carlo simulation technique is applied to compare the performances 

of the delta method, jackknife, and bootstrap. Simulated datasets are generated with 

underlying model assumed and true parameters set. And then we use the true or misspecified 

model to estimate the parameters. Each model was then estimated by applying each of the bias 

correction methods, and the results are compared in terms of expected bias as well as MSE. 

The models used include Poisson, logit, misspecified probit, and double bound probit. 

4.1 Poisson 

      The travel cost model of recreational demand can take the form of a Poisson specification 

 𝜆 = 𝑒𝛽0+𝛽1𝑥 (19) 

with 𝜆 representing the number of trips to a recreation site and the variable 𝑥 representing 

travel costs. If we assume 𝛽0 = 2, 𝛽1 = 0.25, and x being a positive valued uniform variable 
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with mean 4 and minimum 1.5. Then −1 𝛽1⁄  is the per-trip consumer surplus, the true value of 

which under the population model should be 4. 

      The model is simulated 1,000 times for each estimation. Then the 1000 outcomes are 

treated as a new sample with 1,000 observations, with which the mean, mean of bias, standard 

deviation, and MSE are calculated. For standard deviation we use the one calculated over 1,000 

simulations, instead of the average of the 1,000 standard deviations computed in each 

simulation; because what we are interested is the precision and reliability of the bias estimates, 

instead of the precise estimates of standard deviation. 

 Using (34), we derive the delta method estimator as 

 
�̂�𝐷 ≅ −

1

𝛽1
+

𝑉(𝛽1)

𝛽1
3  (20) 

For the bootstrap in each simulation we use a sample with the same size as the original one, so 

that it can remain at a comparable computational efficiency level as another method. The 

estimates without any bias correction procedure are summarized in “original” row. 

      Here the point estimate results (with true value being 4) is listed in TABLE 1, and standard 

deviation and MSE results are listed in TABLE 2. The “original” bias declines when sample size 

increases. The nonlinear transformation always caused the estimates to be biased upwards 

because of the convexity of the function −
1

𝛽1
 with 𝛽1 being negative. 

      The delta method and jackknife both decrease bias as well as a standard deviation with 

sample size level 50~1000, and they have very close results at all sample size levels. A 

converging trend can be observed for the bias to shift from downwards to upwards when 
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sample size increases over 100. The jackknife has smaller bias roughly with sample size from 

70~100; while the delta method has less bias roughly with sample size above 200. The reason 

for the superiority of delta method at larger sample size may be that the primary source of bias 

is the bias of 𝛽1̂ when sample size is small; when sample size is large enough, the bias of 𝛽1̂ 

become negligible compared to the second order expansion of �̂�𝐷 as calculated in (50). When 

the standard deviation from these two methods are compared, consistent results cannot be 

reached at different sample size; so it cannot with the MSE. Thus by the standard of MSE, the 

delta method and the jackknife can be seen similar to each other for the Poisson model when 

sample size is below 1000. 

      The reason for the delta method and jackknife to have similar performance may be that the 

delta method is equivalent to infinitesimal jackknife, which is a smoothed version of the 

ordinary leave-one-out jackknife. The gap between the delta method and the jackknife can be 

seen more clearly when the sample size is large enough. In spite of this difference, when the 

precision requirement is not so high, or when the delta method is not convenient to apply due 

to a complex second derivative, the jackknife can be an acceptable alternative for delta method 

for Poisson model. 

      The bias of the bootstrap result is larger than the original result at sample size 50,70, and 

1000. And when the sample size is sufficiently large, the bootstrap estimate has the smallest 

MSE, but still more substantial bias. One advantage of the bootstrap is that even for small 

sample estimation, we can always improve the precision of the bootstrap by increasing of 

random draws in each simulation. And it is noticeable that the sign of bias is always upward.  
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TABLE 1 

MONTE CARLO ANALYSIS COMPARING SEVERAL METHODS FOR POINT ESTIMATE OF WELFARE 

MEASURE FOR POISSON MODEL 

Sample size 50 70 100 200 400 1000 

Original 4.224 4.185 4.137 4.080 4.048 4.013 

Delta 3.840 3.964 3.994 4.016 4.017 4.001 

Jackknife 3.830 3.967 3.999 4.019 4.019 4.002 

Bootstrap 4.270 4.185 4.083 4.051 4.015 4.015 
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TABLE 2 

MONTE CARLO ANALYSIS COMPARING SEVERAL METHODS FOR VARIANCE & MEAN SQUARE 

ERROR OF WELFARE MEASURE FOR POISSON MODEL 

Sample size 50 70 100 200 400 1000 

STD.DEV       

Original 1.355 0.938 0.781 0.512 0.354 0.215 

Delta 0.858 0.762 0.692 0.488 0.346 0.214 

Jackknife 0.870 0.764 0.693 0.487 0.346 0.214 

Bootstrap 1.316 1.080 0.722 0.513 0.337 0.212 

MSE       

Original 1.8860 0.9142 0.6284 0.2688 0.1272 0.04651 

Delta 0.7613 0.5820 0.4795 0.2381 0.1198 0.04558 

Jackknife 0.7859 0.5842 0.4800 0.2380 0.1199 0.04560 

Bootstrap 1.8048 1.1999 0.5283 0.2654 0.1139 0.04508 
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4.2 Logit 

      A binary model is assumed with a binary choice variable y representing whether to accept 

the bid, with x representing conditioning variables, and A representing the bid amount offered. 

By assuming the latent unobserved WTP as either logistic or Weibull, we can get the true data 

generating process specified as, respectively 

 
𝑃𝑟𝑜𝑏(𝑦 = 1) =

1

1 + 𝑒𝛽0+𝛽1𝑥+𝛽2𝐴
 (21) 

 𝑃𝑟𝑜𝑏(𝑦 = 1) = 𝑒−𝑒𝛽0+𝛽1𝑥+𝛽2𝐴
 (22) 

If we assume logistic distribution as in (46), the expected WTP is 

 
𝐸(𝑊𝑇𝑃|𝑥) =

𝛽0 + 𝛽1�̅�

−𝛽2
 (23) 

where �̅� is the sample mean of 𝑥. If we assume WTP is non-negative, then  

 
𝐸(𝑊𝑇𝑃|𝑥) =

ln(1 + 𝑒𝛽0+𝛽1�̅�)

−𝛽2
 (24) 

If we assume Weibull distribution as in (55), the expected WTP is 

 
𝐸(𝑊𝑇𝑃|𝑥) = ∫ [1 − 𝑒𝑒𝛽0+𝛽1+𝛽2𝐴

]𝑑𝐴
∞

0

 (25) 

For Monte Carlo, we generate simulated data using both (54) (55), and fit the data using 

the logit model, so the estimates for the Weibull dataset can be assumed as a distributional 

misspecification case. We assume 𝛽0 = 1.4136, 𝛽1 = −0.008561, and 𝛽2 = 0.00372. 

Consumption variable 𝑥 is generated with random drawing from a normal distribution with 

mean 95.78 and standard deviation 119.226. A is generated by a repeating sequence (2.5, 5, 10, 
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20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200, 250, 300, 400, 500, 700). The dependent 

variable 𝑦 is generated by estimating 𝑃𝑖 = 𝑃𝑟𝑜�̂�(𝑦𝑖 = 1) for each observation with (54) and 

(55), and using a Bernoulli distribution with parameter 𝑃𝑖  to generate a “1 or 0” response. 

Following these procedures, for logistic and Weibull distribution, the true 𝐸(𝑊𝑇𝑃) are $206.74 

and $274.22. For non-negative WTP restriction model with logistic distribution, 𝐸(𝑊𝑇𝑃)is 

$225.12. Because x is randomly generated, for every simulation we plug the �̅� calculated from 

the generated x into (56) (57) (58) to get the distribution of true WTP for each sample size. 

      For simulated datasets, we choose sample sizes of 40, 80, 100, 200, 400 to ensure an equal 

number of each bid amount is included for each sample size. For each sample size, the WTP 

estimate is derived with direct nonlinear parameter transformation, delta method, and 

jackknifing. For each analysis, 1,000 simulations are conducted to obtain 1,000 point estimates 

of WTP forming up the simulated distribution, of which the mean, expected bias, standard 

deviation, MSE are reported. 

      For each sample size, there is a separate true mean because although the 𝛽𝑖, 𝑖 = 1,2,3 do 

not change with sample size, x changes for each random draw at different sample size. Thus for 

each sample size the expected �̅� is calculated as the true mean, and then the bias for each 

method at each sample size is calculated by �̂�𝑖 − �̅�, 𝑖 = 𝐷, 𝐽, 𝐵. 

      From (30), the delta method estimator is 

 
�̂�𝐷 ≅

𝛽0̂ + 𝛽1̂�̅�

−𝛽2̂

−
𝐶𝑜𝑣(𝛽0̂, 𝛽2̂) + 𝐶𝑜𝑣(𝛽1̂, 𝛽2̂)�̅�

𝛽2̂
2 +

(𝛽0̂ + 𝛽1̂�̅�) ∗ 𝑉(𝛽2̂)

𝛽2̂
3  (26) 
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TABLE 3 

MONTE CARLO ANALYSIS COMPARING SEVERAL METHODS FOR POINT ESTIMATE OF WELFARE 

MEASURE FOR LOGIT MODEL 

Sample size 40 80 100 200 400 1000 

MEAN       

True 206.736 206.932 206.694 206.916 206.721 206.766 

Original 213.014 207.411 208.778 208.326 206.723 207.160 

Delta 199.452 202.043 204.464 206.215 205.687 206.744 

Jackknife 204.879 206.682 208.212 208.133 206.643 207.129 

Bootstrap 207.993 207.413 207.609 207.308 207.314 206.489 

BIAS       

Original 6.278 0.479 2.084 1.411 0.002 0.394 

Delta -7.284 -4.889 -2.230 -0.701 -1.035 -0.022 

Jackknife -1.857 -0.249 1.518 1.217 -0.079 0.363 

Bootstrap 1.258 0.481 0.916 0.392 0.592 -0.277 

Note: true values are different for each sample size due to randomly drew variable x. 
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TABLE 4 

MONTE CARLO ANALYSIS COMPARING SEVERAL METHODS FOR VARIANCE & MEAN SQUARE 

ERROR OF WELFARE MEASURE FOR LOGIT MODEL 

Sample size 40 80 100 200 400 1000 

STD.DEV       

Original 66.723 39.652 36.732 24.388 16.674 10.536 

Delta 57.756 37.852 35.364 23.971 16.537 10.502 

Jackknife 101.144 38.684 35.948 24.178 16.612 10.521 

Bootstrap 58.159 38.548 35.118 23.715 16.733 11.075 

MSE       

Original 4491.311 1572.489 1353.598 596.766 278.026 111.162 

Delta 3388.809 1456.645 1255.567 575.081 274.536 110.296 

Jackknife 10233.516 1496.499 1294.593 586.045 275.955 110.829 

Bootstrap 3384.098 1486.141 1234.144 562.536 280.346 122.722 
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4.3 Misspecified Probit 

      To test the robustness of bias correction methods to distributional misspecification, we 

randomly generated the data using logistic assumptions, but estimate the data using a probit 

model, The simulation and bias correction procedures are essentially the same as what were 

done with the logit in the last section, except the misspecification, and we only used the delta 

method and jackknife for bias correction. 

      As is shown in the simulation result the misspecification results in inconsistent estimation. 

Even at the sample size of 1000, there is still systematic bias after any bias correction. However, 

in general, the delta method is more robust to this misspecification. And for jackknife, in one 

simulation the estimate is so severely biased that it has a tremendous effect on the average 

value. In a future study, we will use different misspecification with multiple scales of deviation 

of skewness and kurtosis to compare the performances of bias correction methods. 
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TABLE 5 

MONTE CARLO ANALYSIS COMPARING SEVERAL METHODS FOR POINT ESTIMATE OF WELFARE 

MEASURE FOR MISSPECIFIED PROBIT MODEL 

Sample size 40 80 100 200 400 1000 

MEAN       

True 206.733 206.931 206.696 206.916 206.718 206.766 

Original 213.882 209.031 210.868 210.781 209.668 210.251 

Delta 200.735 204.085 206.919 208.861 208.732 209.876 

Jackknife 
207.356 

(210.231) 
209.606 211.472 211.197 209.938 210.374 

BIAS       

Original 7.149 2.100 4.172 3.865 2.950 3.485 

Delta -5.998 -2.846 0.224 1.945 2.014 3.110 

Jackknife 
0.620 

(3.496) 
2.674 4.779 4.282 3.217 3.609 

Note: the value in the parenthesis under jackknife is the value calculated after eliminating one 

extreme estimate. 

  



27 
 

TABLE 6 

MONTE CARLO ANALYSIS COMPARING SEVERAL METHODS FOR VARIANCE & MSE OF WELFARE 

MEASURE FOR MISSPECIFIED PROBIT MODEL 

Sample size 40 80 100 200 400 1000 

STD.DEV             

Original 66.728 39.513 36.844 24.480 16.803 10.542 

Delta 58.260 37.815 35.565 24.096 16.680 10.511 

Jackknife 106.997 

(56.52) 

38.719 36.277 24.327 16.768 10.538 

MSE 
      

Original 4503.703 1565.662 1374.910 614.211 291.052 123.279 

Delta 3430.171 1438.069 1264.893 584.424 282.263 120.159 

Jackknife 11448.739 

(3206.719) 

1506.292 1338.851 610.140 291.522 124.077 

Note: the value in the parenthesis under jackknife is the value calculated after eliminating one 

extreme estimate. 
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5 CONCLUSION 

      The delta method, jackknife and bootstrap can effectively correct the bias of welfare 

measures caused by nonlinear transformation in small samples (less than 400). When sample 

size is too small, the bias of parameters is ineligible and uncertain, which can disturb and 

weaken the bias correction method. When sample size is large enough (over 1000), the results 

converge to the asymptotic situation, which almost eliminates both the parameter estimation 

bias and nonlinear transformation bias, but not the systematic misspecification bias.  

     The delta method generally performs best in the sense that it usually has the smallest 

expected bias and MSE among these three, although the delta method and jackknife have 

similar performance for Poisson model. With distributional misspecification, the delta method 

can still effectively correct the bias, but the jackknife method cannot. When the model is 

correctly specified, jackknife can work as a substitute for the delta method given that it is very 

easy to apply and computationally inexpensive. Bootstrap performs the best when the sample 

is sufficiently large (more than 1,000), which is consistent with asymptotic result. 
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