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Infectious diseases of livestock have consistently threatened global agriculture directly through
decreased production and indirectly through market responses and disruptions to trade flows. The
possibility of zoonosis (transmission from animals to humans) compounds the costs of infectious disease
events for many diseases (Sumner, Bervejillo, and Jarvis 2006). The modern era of production has
witnessed a dramatic intensification of production and increased international connectivity, particularly
within U.S. production systems (MacDonald and McBride, 2009; Perrings et al., 2009). These changes
have greatly raised yields and consumer welfare, respectively, but have also increased the probability of
introduction and the economic consequences of an infectious disease introduction. Government
agencies face the challenge of balancing mitigation efforts with their costs while considering producers’
roles in monitoring and control efforts. In the presence of elevated disease prevalence and government
intervention, producers generally make rational production adjustments rather than altruistic choices.
Because rational, self-interested actors typically ignore negative externalities (e.g. disease transmission),
economists have explored cases where individual responses dampen the effect of central animal disease
mitigation efforts and thus exacerbate the risks of infection (e.g. Wilen, Bicknell, and Howitt, 1999 and
Gramig and Horan, 2011). We instead measure behavior that complements public policy by mitigating
the economic consequences of large-scale control strategies. Specifically, this paper measures changes
in storage—a former of temporal arbitrage—in response to infectious disease outbreaks and the
ensuing export restrictions.

While numerous economic studies have examined the interplay between public and private actors’
responses to infectious disease, export restrictions have received relatively less attention. A notable
exception includes Marsh, Wahl, and Suyambulingam (2005), who explore disease-related trade
restrictions through a game theory framework. From the perspective of the U.S., foreign importers may
choose to ban or restrict exports from the U.S. of specific animal products after the verification of an
infectious disease among livestock or even wildlife. While a sovereign nation determines any trade
response on a case-by-case basis, diseases that appear on the International Organization for Animal
Health’s (OIE) notifiable disease list typically trigger import restrictions. The U.S. and foreign
governments—rather than producers—determine the nature and extent of any trade restriction.
Producers, in turn, respond to the decreased international demand. In addition to decreasing prices and
altering production choices, storage may be used to arbitrage goods into the future when producers
expect market conditions to improve.

We specifically examine the impact of the 2004 and 2014 — 2015 outbreaks of Highly Pathogenic Avian
Influenza (HPAI) on cold storage decisions by producers. HPAI introduction occurs through myriad
pathways. Scientists suspect that the 2004 event was caused by a mutation of a Low Pathogenic Avian
Influenza (LPAI) strain (Lee et al., 2005). Wild waterfowl introduced two distinct strains of HPAI, which
they carried from Canada during their southern migration. HPAI transmission to domesticated animals
then resulted from numerous vectors, including fomites,* fecal matter, and aerosols. Both of the HPAI
outbreaks caused relatively few animal losses but did result in significant trade restrictions.?

! Fomites are inanimate objects capable of carrying a pathogen between locations.

2 An outbreak of Exotic Newcastle Disease (END) also occurred in California in 2002 — 2003. This outbreak led to
the depopulation of 3.16 million birds to control the disease. This outbreak, however, was largely confined to
backyard flocks, and the production and trade consequences were minimal.



We combine industry-level, time-series data on storage volumes, retail prices, production, exports, and
trade restrictions to test for responses among these indicators, and then to estimate the role of dynamic
arbitrage in responses to HPAI. Our approach allows for the identification of changes in storage
attributable to these export restrictions—and presumably expectations of future increases in prices—
that cannot be explained by changes in contemporaneous prices. We extend our approach to include
other related but endogenous factors.

The national scale of our study makes a clean causal identification between policy changes and producer
behavior challenging compared to simulations characterizing the interplay between disease prevalence
and biosecurity investment. On the other hand, this empirical study requires fewer assumptions and
uses data aggregated over unobservable heterogeneity among producers. Our approach extends a line
of research that has examined behavioral responses to human disease outbreak and subsequent
centralized control efforts. For example, Towers and Chowell (2012) explore the effect weekends have
on interpersonal disease transmission. Springborn et al. (2015) characterize the role of social avoidance
during an outbreak of swine flu, using television viewership to proxy for time spent at home. To the best
of our knowledge, no study has such approach has been employed to study animal disease outbreaks.

Data

We combine publicly available data on U.S. poultry production, prices, trade, and storage to facilitate
our estimation approaches. Data are first used to individually test for correlation between HPAI
outbreaks and changes in economic indicators. These tests ensure that the observed changes align with
our expectations and that the data support the assumptions embedded in our structural approaches.
The structural models—a vector autoregression (VAR) and vector error correction model (VECM)—uses
the data to estimate parameters that characterize the mechanisms behind producers’ storage response,
to isolate the impact of the trade restriction on storage.

This study uses only publicly available data from federal agencies. The intervals of the time-series vary
by indicator due to differences in historical data collection techniques as well as individual agency’s data
products. While some indicators are available as far back as January 1917, all data were available
beginning in January 2000. The release of new data varies across agencies, and we, therefore, opt to
omit observations after 2016. The empirical sections do not use data outside of this span, but we note
when these data are available in each product subsection.

Outbreaks

The U.S. Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service (APHIS)
provides information regarding the 2004 and 2014 — 2015 outbreaks. APHIS (2004) notes that a single
HPAI event occurred in 2004, causing 6,600 chickens to be depopulated. APHIS (2016) provides time-
series data on the number and type of birds affected by two strains of HPAI between December 2014
and June of 2015. This outbreaks together resulted in approximately 5.9 million broilers deaths from
infection or depopulation.® We represent the animal losses for all three sectors below in figure 1.

3 For context, 9.2 billion broiler chickens were placed into production during 2016.



Figure 1. Cumulative losses of poultry during the 2014 — 2015 outbreak of Highly Pathogenic Avian
Influenza by production type.
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A single case of HPAI occurred in a turkey flock in February 2016. APHIS quickly isolated the infected
birds, and the disease did not spread to other facilities or wild animals.* We exclude this event because
of its limited impact on trade. The outbreak occurred away from concentrated broiler production and no
new national-level trade bans resulted from it.

International trade responses to these events typically follow OIE guidelines, which recommend export
restriction for six months after a confirmed case of HPAI. The ability of wild waterfowl to act as a
reservoir for the disease encumbered perfect identification of eradication. Actual trade restrictions
varied in length. As an initial specification, we opt to include every month when one or more cases of
HPAI occurred and for the six months following the last observation.

Storage

The National Agricultural Statistics Service (NASS) provides monthly broiler cold storage volume
estimates through their Quickstats database. Because storage levels vary during any month, NASS opts
to represent storage levels at the end of the month.

4 Unlike the other cases of HPAI in 2004 and 2014 — 2015, this case of HPAI arose from a mutation in a strain of
Low Pathogenic Avian Influenza (LPAI). Because of the rapid eradication, the new strain did not infect wild birds or
other domesticated birds.



NASS provides over a century of monthly data, beginning in January 1917. The earliest observations only
include a few product types (whole hens and young birds). Over this span, NASS introduced more finely
disaggregated data based on the product type in cold storage. We represent aggregate storage across all
of the product groups for the whole time horizon and product level storage from January 1917 until
Month 2017 in figure 2.

Figure 2. Monthly broiler meat cold storage from January 2017 — March 2017
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Long periods of stationarity interrupted by punctuated changes mark this time-series. Changes in record
keeping practices likely caused the changes in cold storage that occurred at the beginning of 1940.
NASS’s database expanded from including only hens and young whole birds to also include a catchall
“other” category as well as whole birds not counted as hens and or young birds. The rapid expansion of
storage during the 1980s and particularly in the 1990s coincided with a corresponding expansion in
production, which we explore in the next section.

Production

In addition to storage information, NASS’s Quickstats data provides broiler production data. Their data
include the value and the volume of production. NASS does not disaggregate to the product level—likely
due to the consistent proportions of meat yielded from a slaughtered bird. The monthly data span from
January 1960 through February 2017. We present the full time-series for production® in figure 3.

5 The extremely high correlation between production and value—coupled with the use of price rather than value in
our estimation approaches—Iled to the omission of value.



Figure 3. Monthly production of broiler meat, January 1960 — February 2017
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Broiler production experienced gradual and consistent growth over this period. The two
discontinuities—in 1980 and 2008 —respectively represent a change in data management and a shift in
demand resulting from the great recession. Broiler meat production also exhibits pronounced
seasonality.

Prices

Monthly nominal prices on a variety of broiler meat types are available through ERS’s suite of data
products: whole broilers, breast meat, leg quarters, thigh meat, and an aggregate of all broiler meat
types. The complete time-series spans from January 2000 until January 2017. We represent the
complete set of data in figure 4, which highlights the aggregate price (denoted “all”) used during
estimation.



Figure 4. Prices for broiler meat by type and month, January 2000 — January 2017
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The all price category represents the price of broiler meat in the empirical sections. The last few years of
the series exhibits substantially greater variance and a downward trend, which early part of the series
does not express. These changes are likely in response to several macroeconomic shifts as well as the
2014 — 2015 HPAI outbreak. This series also exhibits significant seasonality.

Exports

The Global Agricultural Trade System (GATS) allows users to query a vast database of spatially explicit
time-series data on storage volumes and values. The database encodes products using the Harmonized
System (HS). The coding system provides shorter HS codes for broader product categories and longer
codes for specific items. Because of the lack of product-specific data for other economic indicators, we
select a broader category of broiler meat. We also opt to aggregate spatially across trading partners and
across U.S. regions.

The GATS database includes monthly observations beginning in 1967. While we only use the subset of
data after 1999 in our estimation, we include the full series in figure 5.



Figure 5. Monthly exports of broiler meat, January 1967 —December 2016
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These data do not have discontinuities similar to those observed in NASS’s data. Shifts in
macroeconomic factors and disease events likely drive periods of rapid growth or contraction.

Testing individual indicators for changes during and after the outbreak

We test for changes in key economic indicators. In the absence of confounding events, we would expect
that non-negative changes in production and non-positive changes in exports lead to non-positive
changes in price and non-negative changes in storage. The empirical evidence from the previous section
indicates that an exogenous international demand shift in response to HPAI alters the economic
conditions and stimulates increased storage.

To disentangle the effect of HPAI outbreaks from long-term trends and seasonality, we use an
autoregressive model that allows the average value to change under an outbreak of HPAI (as shown in
equation 1). Restricting the time-series to observations between January 2000 and December 2016
ensures uniform time-spans across economic indicators. We model trade restrictions as occurring for all
months when HPAI occurred and for the six months following each of the outbreaks.®

We model the evolution of each of the economic indicators, y;, as an autoregressive process of the
previous 12 periods and the presence of HPAI or an associated trade restriction, 1yp4;. Removing

6 The OIE recommends that trade restrictions be left in place for six months following a detection. The ability of
HPAI to infected wild birds—which thus act as a reservoir—introduces subjectivity into the implementation of
these OIE guidelines.



seasonality and taking the first difference of the data yields our converted data, denoted Ay;;. For each
product we can generally represent this process as

12
Ayir =00+ ) 03yt 1+0i131ypar(t) + & (1)
=1

where g;; is the error term. Not all lags are included for each models. Instead, we test for the optimal lag
structure.

The Akaike Information Criterion (AIC)” and Bayesian information criterion (BIC) determine the relative
model performance.® These ICs differ in their penalties for including addition parameters. Using the BIC
favors parsimony, which typically manifests in the inclusion of fewer lags. Minimizing these ICs
determines the included lags. We do not find cases where the optimal lag structure depends on the IC,
but these measures do lead to different interpretations of the time window.

Autoregressive models depend on an assumption of stationarity. Poultry markets exhibit significant
seasonality, and some of the indicators experienced positive growth. We detrended the data by first
subtracting monthly averages, and then by taking the first differences. Application of Dickey-Fuller
stationarity test to each of the modified time-series indicates that each series is stationary, yielding
negligible test statistics, excluding the need for a more advanced approach (e.g. inclusion of a moving
average).

Storage

The storage responses to the HPAI outbreaks represent the primary indicator of interest within this
study. Storage remains consistent—but highly variable—throughout our time-span. Figure 6 represents
our seasonally adjusted, first differenced aggregate storage volumes over the span of interest. Storage
increased during the outbreak windows—as shown by the positive values during the outbreak window—
but did not reach unprecedented levels. This moderate response indicates that storage responds
positively to disease and a variety of physical and economic factors beyond disease.

7 The AIC is defined as twice the difference between the number of included parameters, k, and the maximized
value of the log-likelihood function, In(L): AIC = 2k — 21n(L).

8 The BIC is defined as the difference between the number of included parameters times the natural log of the
number of observations, n, and the maximized value of the log-likelihood function: BIC = In(n) k — 2In(L).



Figure 6. Seasonally adjusted, first differenced cold storage of broiler meat, January 2000 — December

2016
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Our ICs identify identical optimal lag structures—Ilags at three, five, and twelve months. We define
Model 1 as our baseline model that excludes an outbreak window. Model 2 includes an outbreak
window. The lag structures of these models are determined using the ICs and happen to be the same

regardless of the inclusion of the outbreak window. Table 1 shows these results.

Table 1. Parameter estimates and information criteria for optimal cold storage models 1 and 2.

Trade restriction

L3

L5

L12

Constant

AIC
BIC

(1)
Storage

0.22%*x
(0.68)
-0.17%**
(0.067)
-0.17%*
(0.067)
0.36
(4.13)
2118.93
2131.99

*n < 0.1, **p < 0.05, ***p < 0.01
(Standard errors in parentheses)

(2)
Storage
75.34%***
(23.62)
0.99***
(0.082)
-0.33*%x*
(0.083)
-0.12%%*
(0.049)
-12.58*
(7.24)
2113.97
2130.28



The parameter estimates captured in Table 1 indicate a positive and statistically significant effect of the
HPAI outbreaks on storage. The ICs also both indicate that including the outbreak window improves
model performance. This agreement indicates a statistically significant change in storage, but also that
major disease events likely played a major role in storage decisions.

Production

Poultry production has generally grown since the 1960’s. Neither of the recent outbreaks of HPAI
reversed this growth. The first outbreak affected only a single facility, resulting in the loss of only 7,000
birds—primarily due to depopulation. The second much larger outbreak affected just under 6 million
broiler chickens (out of the 50,400,000 birds affected). Figure 7 shows deseasonalized, first differenced
poultry production between 2000 and 2016 and the outbreak windows.

Figure 7. Seasonally adjusted, first differenced production of broiler meat, January 2000 — December
2016
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Figure 7 does not readily indicate a decrease in production in response to HPAI, but the high variability
of the series could obscure HPAI’s effect. To test for decreases in production during the HPAI outbreak,
we test a range of lag structures for equation (1). The optimal lag structure includes lags at one, two,
and twelve months. Table 2 provides parameter estimates and IC values.



Table 2. Parameter estimates and information criteria for optimal production models 1 and 2.

(1) (2)
Production Production

Trade restriction - 58.71
(79.99)

L1 -1.01%** -1.01%***
(0.046) (0.046)

L2 -0.61%** -0.61***
(0.057) (0.057)

L12 0.19*** 0.19%***
(0.047) (0.047)

Constant 42.97* 36.92*
(24.51) (25.82)

AIC 2,804.53 2,805.99

BIC 2,817.58 2,822.31

*p < 0.1, **p < 0.05, ***p < 0.01
(Standard errors in parentheses)

We observe an increase in production during the outbreak windows that is statistically insignificant. The
positive but statistically insignificant increase provides evidence that production was not decreasing
during the outbreak window. The ICs also indicate that the model that excludes the outbreak window
performs better. These results suggest that the HPAI did not significantly impact broiler production, and
the production may have grown slightly during the outbreaks.

Prices

With increases in production, which increases supply, and decreases in exports, which effectively
reduces aggregate demand, we would expect prices to decline. Concurrent macroeconomic events with
the HPAI outbreak, however, could have led to unexpected changes (i.e. increase) in price. We must,
therefore, test for price decreases (or at least not price increases).



Figure 8. Seasonally adjusted, first differenced aggregate prices of broiler meat, January 2000 —

December 2016
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Interestingly, during the 2004 outbreak, the price increased while exports declined and production
remained constant. The substantial decline in prices during the 2014 — 2015 outbreak more closely
adheres to expectations. We test for a change in price attributable to the outbreaks in Table 3.

Table 3. Parameter estimates and information criteria for optimal production models 1 and 2.

(1)
Price
Trade restriction -
L1 0.23***
(0.066)
L3 -0.19***
(0.069)
L12 0.23***
(0.071)
Constant 0.09
(0.21)
AIC 966.52
BIC 979.55

*p < 0.1, **p < 0.05, ***p < 0.01
(Standard errors in parentheses)

(2)
Price
-0.92
(0.70)

0.22***
(0.066)
-0.19***
(0.069)
0.23***
(0.071)
0.18
(0.22)
966.80
983.09



The negative estimated impact of the HPAI windows on price meets expectations. The opposing price
movements during and after the two HPAI outbreaks may have contributed to a statistically insignificant
relationship between the HPAI outbreak and price. The difference in ICs between Models 1 and 2
indicate that we should have a slight preference for excluding the outbreak window, which suggests that
HPAI was not a significant determinant of prices during 2000 — 2016.

Exports

A downward shift in exports predictably result from an HPAl—or any other OIE reportable disease—
event. Simultaneous major macroeconomic shifts make a causal identification out of reach (for more
information see Ramos, 2016). Setting aside causal inference, we observe a visible decline in exports
following each of the outbreaks in figure 5 that are made less obvious during the data transformation
process represented in figure 9.

Figure 9. Seasonally adjusted, first differenced exports of broiler meat, January 2000 — December 2016
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Figure 5 indicates low exports during both outbreaks, followed by periods of recovery, which figure 9
also shows to a much lesser extent. To test for statistically significant declines during this period, we
follow a similar approach as our tests for changes in production. We again use both the AIC and BIC to
determine our optimal number lag structure—one, three, and 12 months.



Table 3. Parameter estimates and information criteria for optimal export models 1 and 2.

(1) (2)
Exports Exports
Trade restriction - -4,842.25
(5,005.63)
L1 -0.52%** -0.53%**
(0.065) (0.065)
L3 -0.35%** -0.35%**
(0.065) (0.065)
L12 0.11* 0.11%*
(0.060) (0.060)
Constant 331.29 841.65
(1,526.78) (1,611.86)
AIC 4,353.54 4,354.61
BIC 4,366.55 4,370.87

*p < 0.1, **p < 0.05, ***p < 0.01
(Standard errors in parentheses)

Our results indicate a statistically insignificant decline in exports during the outbreak window. Both ICs
provide weak evidence that the model that excludes the outbreak window performs better. This result
suggests potential problems in our choice for outbreak window.

Combining indicators within vector autoregressions

The univariate techniques provide suggestive evidence that storage increased in response to HPAI, while
the changes in the other indicators met expectations. By unifying the indicators in a multivariate
analysis, we can evaluate their interdependencies, and more clearly identify the relationship of interest.
We begin by extending our autoregressive approach into a vector autoregression. This approach is
extended one step further through an error correction modification. The results of both approaches
indicate a significant effect of HPAI on storage.

Sims (1980) first introduced the vector autoregressive model (VAR) in levels, which is designed to
evaluate dynamic responses of variables to exogenous shocks that are important sources of economic
fluctuations (Kennedy, 2003). The general model follows from converting the observations y in equation
1 as vectors and accounting for correlation among the variables and serial-correlation in the error term.

Livestock price series often exhibit non-stationary error terms and may follow long-run
interrelationships with other livestock price series. When such cointegration is present, first differences
are used to achieve stationarity, but an error correction term is included in the model that captures the
long-run equilibrium position directly. The introduction of an error correction term added to a VAR
results in a vector error correction model (VECM) as first suggested by Engle and Granger (1987). It
should be noted that Phillips and Durlauf (1986) argued that if data are both non-stationary and
cointegrated differencing is not necessary, meaning a VAR could be used. Based on the Johansen’s
cointegrated vector autoregression model with k lags (Johansen, 1988), the data generating process of
Y;—an n-by-1 vector of price series—can be modeled as a VECM with k — 1 lags:
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Where AY; is an n-by-1 vector of first-order difference of prices, Y;_; is the vector of lagged own
commodity prices, II is the n-by-n cointegration rank matrix, I" is an n-by-n matrix of parameters on the
lagged price differences, D; is a matrix of dummy variables to represent seasonal or cyclic trends, and e
is a n-by-1 vector of error terms (Liitkepohl, 2004). Detailed descriptions of VECM models can be found
in Kennedy (2003) and Liitkepohl (2004).

In our application, we specify k = 13 and omit D.

VAR

The VAR approach yields estimates that describe the relationships between each endogenous variable
and lags of itself and the other variables. We use the first differenced and adjusted data described in the
univariate analyses. Table 5 reports the parameter estimates only for storage, given the optimal lag
structure of one, two, and twelve months. We suppress other estimates for brevity.

Table 5. Parameter estimates and information criteria for optimal VAR models 1 and 2—storage only.
(1) (2)

Storage Storage
Trade restriction - 36.57***
(14.10)
Storage
L1 0.13%* 0.11
(0.075) (0.074)
L2 0.021 -0.017
(0.073) (0.073)
L12 -0.20*** -0.19***
(0.071) (0.07)
Prices
L1 -2.19 -1.98
(1.40) (1.38)
L2 2.90** 3.05%*
(1.42) (1.40)
L12 -1.24 -1.23
(1.42) (1.40)
Exports
L1 -7.4e-5 -4.1e-5
(2.0e-4) (1.9e-4)
L2 2.3e-4 2.6e-4
(1.9e-4) (1.8e-4)
L12 -2.0e-4 -1.7e-4
(1.8e-4) (1.7e-4)
Production
L1 0.016* 0.016*
(0.0085) (0.0083)
L2 0.13 0.13
(0.010) (0.010)
L12 0.012 0.012
(0.0083) (0.0081)
Constant -0.20* -4.07*

(4.19) (4.38)



AIC 10,180.18 10,180.08
BIC 10,349.3 10,362.21
*n < 0.1, **p < 0.05, ***p < 0.01
(Standard errors in parentheses)

Within this framework, the HPAI window has a statistically significant effect on storage. The magnitude
of this effect, however, is smaller than yielded by the univariate analysis. This change may partially be
explained by the significant relationship between storage and lagged prices, which declined during the
outbreak.

The coefficient obtained from this approach provides stronger evidence that there was a significant
storage response to HPAI. One explanation for this effect is that producers held onto their products
expecting improved market conditions in the future.

VECM

The VECM approach differs from the VAR in several important ways. First, we do not seasonally adjust

the data ex-ante. Instead, we include monthly fixed-effects. Second, we cannot define the lag structure
beyond the number of included lags. To identify the optimal number of lags, we again use our AIC and

BIC. The AIC is monotonically decreasing in the number of lags up to 24 lags. We, therefore, opt to use

the model that is identified as optimal using the BIC, which identified 19 lagged differences as optimal.

Because of the large number of lags, we only report the parameter on trade restrictions and the ICS

Table 6. Parameter estimates and information criteria for optimal VECM models 1 and 2—storage only.
(1) (2)

Storage Storage
Trade restriction - 38.7158***
(18.80)
AIC 9,784.444 9,771.961
BIC 10,927.02 10,927.38

*p < 0.1, ¥*p < 0.05, ***p < 0.01
(Standard errors in parentheses)

The parameter estimate of the effect of trade restrictions on storage is very similar—both in magnitude
and statistical significance—to those of the VAR. At the same time, the AIC provides evidence that the
model that includes storage is preferred. The change in BIC is negligible and does not suggest that either
model is preferred.

Conclusion

Our univariate analysis allows us to rule out counterintuitive changes in our series before proceeding
into our structural approaches—VAR and VECM. The point estimates derived from each of these
univariate tests aligned with our intuition. During and after the HPAI event, storage increased,
production remained constant, prices fell, and exports declined.

Our structural model allowed for measurement of the effect of HPAI while accounting for the influence
of other economic factors (i.e. production, price, and export volume). This measurable effect indicates



that producers indeed increase their storage in response to a disease event, and not just related
changes in prices. We are unable to identify the producers’ motivations, but storage is frequently used
to temporally arbitrage to future periods with improved economic conditions or due to unforeseen
frictions (i.e. challenges in finding a buyer).

The widespread and highlight infectious nature of HPAI has presented challenges to modern poultry
production. The recent outbreaks throughout the world indicate that HPAI will continue to present
challenges for agencies charged with animal disease control. An understanding of producers’ responses
to regulation improves estimation of losses and may contribute to improved public policy.
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