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Cattle, Cutouts, and the Drop: How much information is in disaggregated cattle prices? 
William F. Hahn1 

United States Department of Agriculture 
Economic Research Service 

Abstract: I estimate and test a vector autoregression (VAR) model for 12 cattle prices and 3 beef 
packer prices to see (1) if some or all of these cattle prices can be averaged without affecting 
forecasts and (2) exactly how similar these cattle prices are.  I demonstrate that prices do not 
have to similar to be averaged.  

There are 6 steer-heifer pairs in this data set.  These 6 pairs are the terms that can be averaged 
with the least effect on the forecasts. While 3 of these pairs are statistically insignificant and in 
theory could be averaged, 3 are not and should not be averaged.   

All 15 prices are cointegrated with a single root equal to 1.  This tends to make cattle prices 
“stick together” over the long run.  All 3 of the prices that can be averaged have statistically 
significant differences in their shortrun and longrun behaviors.  I find some similarities in other 
groups of prices. 
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Summary and Introduction 
The first goal of this research was to see if reported cattle prices could be averaged without loss 
of information to the market.  Over the years, a smaller and smaller proportion of cattle have 
been sold through auctions or are priced by packer-feeder negotiation.  A common alternative 
pricing method involves using a formula on some reported auction or negotiated price. People 
are now concerned that the small proportion of negotiated prices makes them less reflective of 
market conditions and more vulnerable to manipulation by packers. See Mathews et al (2015) for 
a discussion of these issues.   

A number of analysts have proposed solutions for the thinning of negotiated cattle markets.  One 
that Koontz (2015) proposed was the averaging of cattle prices: that the USDA might want to 
aggregate its reports. The USDA would report fewer average prices but with more cattle in each 
of the reported averages.  I test a set of negotiated cattle prices to see if some types of averaging 
these prices is appropriate.2   

In Mathews et al, we compared cattle prices under a range of pricing methods and found that 
they looked remarkably similar. I also test to see exactly how similar negotiated cattle prices are.  
To test both of these types of hypotheses I estimate and test a vector autoregression (VAR) 
model.  It turns out that there is a mathematical difference between “I can average these two 
prices without affecting my forecasts” and “These two prices’ forecasts are pretty much the 
same.” 

                                                 
1 The views expressed in this paper are the author’s and do not represent those of the Economic Research Service or 
the U.S.  Department of Agriculture. To contact the author email him at whahn@ers.usda.gov.  
 
2 The weekly cattle price data is from the weekly 5-area cattle report and is already a set of national averages.  
Koontz analyzed a series of regional reports. 
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The VAR is an expansion of the one found in Mathews et al.  The one here uses 12 negotiated 
fed cattle prices and 3 prices for beef-packer outputs.  (The fed cattle are purchased by beef 
packers.) The VAR I estimated for Mathews et al had 1 of the 12 cattle prices in it. 

I looked at a range of cattle-price averaging approaches. Cattle price averaging will impose 
linear restrictions on the VAR.  The 6 least statistically significant averages involve averaging 
steer-heifer pairs.  Three of the six pairs are statistically insignificant—meaning that for 3 of 
these 6 pairs cannot be averaged without affecting forecasts.  It appears that generically 
averaging cattle prices is not a great idea. 

I also looked at a range of tests for cattle price similarities.  The most extreme version of 
“similarity” makes a pair of price forecasts the same.  This most extreme type was rejected for all 
cattle-price pairs.  I did find some less extreme versions of price similarities when I tested the 
cointegration relationships between the cattle prices.   

Some “Issues” with the General Approach 
I am working with national average weekly data: it is already fairly aggregated, and, more 
importantly, consistently reported.  Koontz’ analysis focused on regional prices.  This could 
make it somewhat less likely that I am going to find averaging valuable.  However, as noted 
above, negotiated cattle sales are a declining part of the market.  If the decline continues, even 
these weekly averages could become spottily-reported.  It would be useful to examine averaging 
before we have problems. 

My general approach is to build a forecasting model, specifically a VAR. Price averaging and 
similarities imply restrictions on the VAR coefficients.  I test these restrictions.  The basic 
assumption underlying this approach is that the value of this data is in forecasting.  This 
approach ignores other potential uses of the data.  As I note in the summary I find that I can 
average 3 of the 6 steer-heifer pairs.  However, steers and heifers in each of these pairs show 
some statistically significant differences that averaging covers up. 

Data 
In Mathews et al I used a vector autoregression (VAR) with weekly data. I related 1 cattle price 
and 3 packer prices; I expand on this approach by including 11 additional cattle prices.   

The cattle prices used in this report come from the AMS report “(LM CT 105)5 Area Weekly 
Weighted Average Direct Slaughter Cattle”.  All the cattle’s’ prices in this report are negotiated 
between the packer and the producer.  I use 6 of the Dressed Delivered prices and 6 of the live-
weight FOB prices.  (These are the most consistently reported series in this report.)   

“Dressed” cattle are priced based on the weights of their carcasses as they enter the carcass 
cooler.  Live-weight cattle are weighed when they are alive.  The packer arranges and pays for 
the shipping of FOB (free on board) cattle. The feedlot arranges and pays for the shipping of 
delivered cattle.  The report also has live-delivered and dressed FOB cattle prices. Relatively few 
cattle are sold these two ways.   

USDA AMS separates these cattle prices by sex: prices are reported for both steers and heifers.  
They also separate the reports into 4 different grade levels:  0-35% Choice, 35-65% Choice,   65-
80% Choice, and over 80% Choice.  Choice is the second-highest USDA cattle/beef grade and it 
is the most common grade for grainfed steers and heifers. In recent years around 70% of the 
steers and heifers that are graded are Choice.  Most of the rest of the cattle in these lots will 
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grade Select, the 3rd-highest grade.  The highest grade is Prime; around 4-6.5% of steers and 
heifers will that are graded are Prime.   

Few lots of cattle grade 0-35% Choice, so USDA AMS seldom has prices to report in this range.  
The 12 cattle prices I use in this report come from 2 types of pricing (Live FOB and Dressed 
Delivered) by 2 sexes (heifers and steers) and 3 grade level (35-65% Choice,   65-80% Choice, 
and over 80% Choice.)  In Mathews et al, I just used the Live, FOB Steer, 35-65% Choice.   

I also use the weekly Choice and Select cutouts from the AMS report (LM_XB459) “National 
Weekly Boxed Beef Cutout and Boxed Beef Cuts - Negotiated Sales.” The Choice and Select 
cutouts are carcass-weighted prices for the Choice and Select beef cuts sold by packers.  The last 
variable in the model is the weekly steer, FOB Central U.S. By-Product Drop Value (Steer) from 
the Weekly National Carlot Meat Report. All the data in this study except for the Drop3 value 
can be download from USDA AMS MPR Data Mart site.  The weekly data runs from the first 
week in April 2001 to the last week of 2016.  The first 3 weeks of October 2013 are missing due 
to the Sequester.   

I will use abbreviated names to refer to the 15 endogenous variables that I analyzed.  These can 
be found in Table 1.  In Mathews et al, I analyzed SLF35, Choice, Select, and Drop.  USDA ERS 
uses SLF35, Choice, and Drop in its calculation of Choice beef values and price spreads.  

Table 1—endogenous variable key 
cattle prices 

name Sex Marketing type grade range 
HDD35 Heifers dressed delivered 35-65% Choice 
HDD65 Heifers dressed delivered 65-80% Choice 
HDD80 Heifers dressed delivered 80%+ Choice 
HLF35 Heifers live, FOB 35-65% Choice 
HLF65 Heifers live, FOB 65-80% Choice 
HLF80 Heifers live, FOB 80%+ Choice 
SDD35 Steers dressed delivered 35-65% Choice 
SDD65 Steers dressed delivered 65-80% Choice 
SDD80 Steers dressed delivered 80%+ Choice 
SLF35 Steers live, FOB 35-65% Choice 
SLF65 Steers live, FOB 65-80% Choice 
SLF80 Steers live, FOB 80%+ Choice 

packer prices 
Choice Choice cutout 
Select Select cutout 
Drop FOB central U.S. by-product drop value (steer) 

 

                                                 
3 USDA ERS collects the weekly drop value to calculate the price spreads for Choice beef. I have it going back 
before 2000 on my hard drive.   
 

https://www.ams.usda.gov/mnreports/lm_xb459.txt
https://www.ams.usda.gov/mnreports/lswwklyblue.pdf
https://mpr.datamart.ams.usda.gov/
https://www.ers.usda.gov/data-products/meat-price-spreads.aspx


Figure 1 shows how the data evolves over time. Rather than show all 12 cattle prices, Figure 1 
has the simple average of all the dressed delivered and live FOB cattle.  It also shows, the 
Choice, Select, and Drop values.   

Figure 1—selected times series of the data used in the VAR 

 
Note all prices in dollars per hundred pounds 

Dressed delivered cattle prices are always higher than the live FOB cattle prices.  Fed steers and 
heifers have carcass-to-live yields or dressing percentages ranging 60-65%.  Dressed cattle are 
priced on a carcass-weight basis and consequently have a higher price.  You will note that the 
average dressed delivered price tracks the two cutouts closely. It is sometimes a bit higher, 
sometimes a bit lower.  Packers sell both meat and byproducts and there is a piece of beef 
packing folklore that meat sales cover the costs of the animal and that the byproducts cover 
packing costs and profits.   

As noted above, Choice is a higher grade than Select.  Figure 1 shows that Choice cutout is 
almost always higher than the Select cutout.  In this data set, the Select cutout is higher than 
Choice only once: for the week ending March 28, 2009 when the Select cutout is 13 cents higher 
than Choice.   

Figure 2 shows all 6 prices for the dressed delivered cattle.  Figure 2 is a scatter plot where I 
have graphed the cattle prices against a sort of weighted average price for all 12 cattle and the 2 
cutouts.  When I made this average, I multiplied the 6 dressed delivered cattle prices and 2 
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cutouts by a carcass yield factor of 0.63 to transfer the carcass prices to an approximate live-
weight basis.  Figures 3, 4, and 5 are scatter plots for the 6 live FOB cattle, 2 cutouts, and the 
drop values.   

Figure 2—dressed-delivered cattle prices plotted against the live-weight average price of 
the 12 cattle and 2 cutouts 

 
Notes All prices in dollars per hundred pounds. The average values are the averages of the live FOB 
cattle prices, the dressed delivered cattle prices time 0.63, and the two cutouts also times 0.63. 0.63 is 
the USDA ERS standard yield used to calculate beef price spreads.  See Table 1 for the cattle name 
abbreviations.   

In Mathews et al I found that the prices were cointegrated.  All the prices are statically non-
stationary but have a tendency to move with one another.  Basically what I found is that there is a 
single, common “thing” that made all 4 prices unstable.  The scatter plots provide evidence of the 
cointegration of this data.  Figure 1 shows that the data used in this analysis varies widely over 
time.  Figures 2, 3, 4, and 5 show how closely the data tends to stick together.  The relationships 
between the cattle prices and the averages are particularly tight.   

The highest price in either the dressed, delivered or live FOB class varies over time.  The most 
important factor differentiating Choice from Select grade beef is marbling, small flecks of fat in 
the meat.  Feeding cattle to produce more marbling tends to produce more subcutaneous fat that 
needs to be trimmed off the beef cuts. Subcutaneous fat is less valuable than meat.  Higher 
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grading cattle will have more valuable meat; the higher meat value may be offset by higher level 
of fat in their carcasses.   

Figure 3—live FOB cattle prices plotted against the live-weight average price of the 12 
cattle and 2 cutouts 

 
Notes All prices in dollars per hundred pounds. The average values are the averages of the live FOB 
cattle prices, the dressed delivered cattle prices time 0.63, and the two cutouts also times 0.63. 0.63 is 
the USDA ERS standard yield used to calculate beef price spreads.  See Table 1 for the cattle name 
abbreviations.    
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Figure 4—Choice and Select cutouts plotted against the live-weight average price of the 12 
cattle and 2 cutouts 

 
Notes All prices in dollars per hundred pounds. The average values are the averages of the live FOB 
cattle prices, the dressed delivered cattle prices time 0.63, and the two cutouts also times 0.63. 0.63 is 
the USDA ERS standard yield used to calculate beef price spreads.  See Table 1 for the cattle name 
abbreviations.    
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Figure 5—Drop value plotted against the live-weight average price of the 12 cattle and 2 
cutouts 

 
Notes All prices in dollars per hundred pounds. The average values are the averages of the live FOB 
cattle prices, the dressed delivered cattle prices time 0.63, and the two cutouts also times 0.63. 0.63 is 
the USDA ERS standard yield used to calculate beef price spreads.  See Table 1 for the cattle name 
abbreviations.   

The VAR 
The model that I estimated can be written: 

(1) 𝑌𝑌𝑡𝑡 = 𝑉𝑉1𝑌𝑌𝑡𝑡−1 + 𝐶𝐶𝑋𝑋𝑡𝑡 + 𝐸𝐸𝑡𝑡, or 

(2) 𝑦𝑦𝑖𝑖𝑡𝑡 = ∑ 𝑣𝑣𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑡𝑡−1 + ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑡𝑡 

(1) is the vector version of the VAR, (2) a scalar version.  I switch between versions based on 
which is more convenient.  In (1) Yt is a [15 by 1] column vector of prices for the period 
numbered t; Yt-1 is that vector’s value in the previous week.  I write individual elements of the 
endogenous-viable vector as yit. The subscript “i” refers to a specific price.  In my estimation 
program, the endogenous variable sets are defined using the names in Table 1. 

The term V1 is a [15 by 15] matrix of coefficients that I have to estimate. I will denote individual 
elements of this matrix with the symbol vij. The “i” subscript is for the equation determining the 
ith endogenous variable. The “j” subscript refers to the jth lagged price. 
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C is a matrix of coefficients that I estimate, and Xt a vector of exogenous variables.  The 
exogenous variables in the model are listed in Table 2.  Finally Et is a vector of error terms with 
a mean of 0. I assume that is independently and identically distributed over time.  (I allow the 
error terms to have cross-equation covariance.) 

Table 2—exogenous variable key 
names Explanation 

X0 Intercept 
seasonal variables 

COS1 SIN1 Cosine and sine terms making 1 revolution per year assuming (52+1.25/7) 
weeks per year. Week 0 is week ending Jan. 7, 2006/week starting Jan. 1, 
2006. 

COS2 SIN2 cosine and sine terms making 2 revolutions 
COS3 SIN3 cosine and sine terms making 3 revolutions 
COS4 SIN4 cosine and sine terms making 4 revolutions 
COS5 SIN5 cosine and sine terms making 5 revolutions 
COS6 SIN6 cosine and sine terms making 6 revolutions 

disease outbreak effects 
BSE1 dummy for the week the U.S. Government announced the first U.S. case of 

BSE (week ending Dec. 27, 2003) 
BSE2 dummy for the week after the BSE announcement 
BSE3 dummy for 2 weeks after the BSE announcement 

Notes: The cells with yellow highlighting were dropped in the early phases of model development as they 
were statistically insignificant for the VAR as a whole. 
 
The VAR that I specified in (1) has only 1 lag in it.  This makes it consistent with the model that 
I ran in Mathews et al.  I started with a 6-lag model and tested it in the preliminary phases of this 
study.  The 2nd-6th lags were statistically insignificant.   

I started with more exogenous variables than I ended up using.  In the preliminary phase of 
model development I also tested the exogenous.  I started with 16 and ended up dropping 5 of 
them.  See Table 2. 

I use cosines and sines to get seasonal variation in the VAR.  When people estimate monthly or 
quarterly models, they typically use dummy variables.  The problem with weekly data is that 
there are not an even number of weeks in a year. “Regular” years have 365 days—52 weeks and 
1 day. Leap years have 366 days.  Years have 4 quarters or 12 months exactly, so dummy 
variables work perfectly in this case.  One may use sines and cosines to put seasonal variation in 
quarterly and monthly data too.  See Doran and Quilkey (1972).  I used this same approach to 
imposing seasonality in Mathews et al. 

Averaging constraints for the VAR 
Suppose that we could use a simple average of some or all the cattle prices in our forecasting 
model.  Let j′ be a subset of the lagged cattle prices that I may average. There are n′≤12 cattle 
prices in this subset.  The lagged wholesale prices and “unaveraged” cattle prices are in set i′.  If 
I can average prices then I may rewrite (2) as: 



(3) 𝑦𝑦𝑖𝑖𝑡𝑡 = ∑ 𝑣𝑣𝑖𝑖𝑖𝑖′𝑦𝑦𝑖𝑖′𝑡𝑡−1 + 𝑑𝑑𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖′𝑡𝑡−1/𝑛𝑛′𝑖𝑖′ + ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖′ + 𝑒𝑒𝑖𝑖𝑡𝑡 

Rather than explicitly average some of the lagged cattle prices, I could impose a linear constraint 
on some of the elements of the v coefficients as: 

(4) 𝑣𝑣𝑖𝑖𝑖𝑖′ = 𝑑𝑑𝑖𝑖
𝑛𝑛′

 ∀𝑖𝑖, 𝑗𝑗′ 

Equation (4) also implies that: 

(5)  𝑣𝑣𝑖𝑖𝑖𝑖1 = 𝑣𝑣𝑖𝑖𝑖𝑖2∀𝑖𝑖,𝑎𝑎𝑛𝑛𝑑𝑑 𝑗𝑗1, 𝑗𝑗2 ∈ 𝑗𝑗′ 

Equation (5) is the basic form that I used to impose averaging on the VAR.  One may expand 
upon (5) by including more than one averaging subset. 

Similarity constraints for the VAR 
I test and impose price similarity using different levels of similarity.  The most extreme will be 
that the forecast for price 1 and price 2 are the same. This will be true if: 

(6) 𝑣𝑣1𝑖𝑖 = 𝑣𝑣2𝑖𝑖 ∀𝑗𝑗 and  

(7) 𝑐𝑐1𝑖𝑖 = 𝑐𝑐2𝑖𝑖 ∀𝑘𝑘 
Equations (6) and (7) imply that the only difference between price 1 and price 2 in period t is 
their error term.  Note that we can impose (6) or (7) without imposing the averaging constraint, 
(5).  I believe that the constraint on the VAR coefficients is the most important set of constraints 
for imposing price similarities.  If (6) holds and (7) is true for all but the intercepts, then one of 
the two prices will end to be higher than the other.  We may also allow the seasonal patterns to 
differ.  My use of sines and cosines for the seasonal pattern insures that the seasonal pattern 
(roughly) averages to 0 over the course of a year.  If (6) holds in general, and (7) holds for the 
intercepts but not the seasonal pattern, then price 1 and price 2 will be roughly the same over the 
course of a year, albeit with a different seasonal pattern. 

Specific Solution and Cointegration Similarities 
A less restrictive version of similarity allows the price forecasts to differ in statistically 
significant ways but allows the two prices to tend toward being similar.  I start with the idea of a 
“specific solution.”  I take this idea from Baumol (1970).  The intercept and seasonal variables 
are simple functions of time.  The intercept is always 1.  It turns out that the sines and cosines are 
first order functions of time too.  What this means, for example, is that if you know COS1 and 
SIN1 for period “t” you can calculate their values for t+1, even if you do not know what “t” is.4   

The intercepts and seasonal variables drive the current forecasts for the prices.  Because last 
week’s prices drive this week’s prices in the VAR, last week’s exogenous variables drive this 
week’s prices too.  The intercept and seasonal variables will induce a pattern in the prices.  I can 
find specific solutions for the intercepts and seasonal variables by finding a set of coefficients A 
such that: 

(8) 𝐴𝐴𝑋𝑋𝑡𝑡𝑠𝑠 = 𝑉𝑉1𝐴𝐴𝑋𝑋𝑡𝑡−1𝑠𝑠 + 𝐶𝐶𝑋𝑋𝑡𝑡𝑠𝑠 

                                                 
4 I found that SIN4 and SIN5 and excluded them from the VAR. However, I need their values to “forecast” next 
period’s COS4 and COS5 respectively.  These two terms show up in the specific solutions even though they are 
excluded for the VAR. 



Equation (8) uses the matrix form of the model.  I use the term Xs
t because I use only a subset of 

the exogenous that excludes the BSE coefficients.  We can generate the intercepts and seasonal 
variables using a non-stochastic first-order process: 

(9) 𝑋𝑋𝑡𝑡𝑠𝑠 = 𝑉𝑉𝑥𝑥𝑋𝑋𝑡𝑡−1𝑠𝑠  
We substitute (9) into (8): 

(10) 𝐴𝐴𝑉𝑉𝑥𝑥𝑋𝑋𝑡𝑡−1𝑠𝑠 = 𝑉𝑉1𝐴𝐴𝑋𝑋𝑡𝑡−1𝑠𝑠 + 𝐶𝐶𝑉𝑉𝑥𝑥𝑋𝑋𝑡𝑡−1𝑠𝑠  

Equation (10) has to work for all possible values of Xs
t so the restriction I imposed in the 

estimation program is: 

(11) 𝐴𝐴𝑉𝑉𝑥𝑥 = 𝑉𝑉1𝐴𝐴 + 𝐶𝐶𝑉𝑉𝑥𝑥 
The coefficients for Vx are known; V1 and A are estimated.  The specific solution in (11) 
represents a type of equilibrium relationship among the prices; the prices adjust over time toward 
𝐶𝐶𝑋𝑋𝑡𝑡𝑠𝑠.  If a pair of prices have the same C coefficients their averages over time will tend to be the 
same.  We can test for and impose this type of similarity on the VAR by imposing restrictions on 
the C.   

There are, however, cases where solutions for C need to be modified.  Things get more 
complicated when Vx and V1 share a common root.  This is where cointegration comes into play.  
In Mathews et al I found that 4 of these prices share a root equal to 1; that is they are 
cointegrated.  The intercept also has a root equal to 1. In these cases the most general solutions 
for (11) will include a time trend that is driven by the intercept-coefficient (cix0) estimates.   

Dicky and Fuller (1979) demonstrated that the test distribution for roots=1 in autoregression 
(AR) models varies depending on whether or not the model has an intercept.  A non-0 intercept 
in an AR induces a trend in the data and makes the unit root test asymptotically normal. Putting 
an estimated intercept in an AR that does not actually need one changes the distribution of the 
unit root test.  In their 1981 paper, they derived the distributions for intercepts and trends in AR 
models with roots equal to 1. 

Sims, Stock, and Watson (1990) demonstrated that intercepts and trends in VAR models with 
roots equal to 1 could have non-normal asymptotic distributions.  Johansen (1988, 1991) derived 
the test distributions for roots equal to 1 in the VAR.  In his 1991 article, Johansen addressed the 
issue of intercepts and noted that while intercepts could induce non-stochastic trends in 
cointegrated data, there are cases where they will not.  He noted how one could restrict what is 
essentially the specific solution for the intercept so that estimated VAR had non-0 estimates but 
no trends.  One of the things that I tested in the development of the VAR is whether or not the 
intercepts induce trends in the data.   

My approach to dealing with cointegration 
This paper uses a unique approach to dealing with cointegration.  Analysts generally deal with 
cointegration/roots equal to 1 by transforming a VAR into its error-correction, EC, form and 
approach pioneered by Engle and Granger (1987).  Engle and Granger developed a 2-stage 
method for estimating the EC form.  Johansen (1999) showed how the EC form could be 
estimated in a single step.  His unit-root tests are a likelihood-ratio type test; one tests for roots 
equal to 1 by comparing the likelihood of an unrestricted model to one with roots imposed on it. 



Baumol showed that the roots of a VAR or AR are the Eigen values of lagged endogenous 
variable matrix.  Sims, Stock, and Watson used this approach in their analysis of the cointegrated 
VAR.  My approach imposes roots equal to 1 on the VAR by imposing Eigen vector(s) on the 
VAR.  The first example of my approach can be found in Taha and Hahn (2014).  This is also the 
approach that I used in Mathews et al. 

I could have used an EC for this approach; the problem with the EC form is that it would be 
more difficult to impose the averaging constraints on it.  The typical symbol for an Eigen value is 
λ—in my case I want λ to be 1.  If the VAR has an Eigen value equal to 1, then there exists a 
vector, I call it U such that: 

(12) 𝑉𝑉1𝑈𝑈 = 𝑈𝑈 
Equation (12) is trivially true if U is a vector of 0s.  I need some type of arbitrary restriction on 
the U to keep it from being 0.  In many mathematical applications, people impose a length of 1 
on the Eigen vector.  However, following my procedures in Taha and Hahn and Mathews et al, I 
normalized the U by fixing one of its elements to 1, specifically HDD35.   

Error-Correction Models Versus the Eigen-Vector approach 
Engle and Granger developed the idea of cointegration before Dicky and Fuller developed the 
distribution for the root=1 test.  Data with a root equal to 1 is not stationary; differencing the data 
makes it stationary.   

Engle and Granger noted that sometimes different, non-stationary variables seemed to moving 
together. They called data “cointegrated” when some linear combination of two or more 
variables was stationary when the variables themselves were not.5 The scatter plots, figures 2, 3, 
4 and 5, show evidence of cointegration in these 15 prices.   

For data like ours, which shares a common root=1, we can eliminate the unit root from yit using 
yjt and some weight αij. While 𝑦𝑦𝑖𝑖𝑡𝑡 and 𝑦𝑦𝑖𝑖𝑡𝑡 need to be differenced to be made stable, 𝑦𝑦𝑖𝑖𝑡𝑡 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑡𝑡 
is stationary.  Engle and Granger showed that you could estimate the αij using ordinary least 
squares.  This was the first stage of the error-correction form.  In the second stage, they would 
take the lagged, estimated first-stage error and estimate a model like: 

(13) ∆𝑌𝑌𝑡𝑡 = ΘU�𝑡𝑡−1 + ∑ 𝐵𝐵𝑙𝑙𝑙𝑙 ∆𝑌𝑌𝑡𝑡−𝑙𝑙 + 𝐸𝐸𝑡𝑡, where 𝑢𝑢�𝑖𝑖,𝑡𝑡−1 =  𝑦𝑦𝑖𝑖𝑡𝑡 − 𝛼𝛼�𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑡𝑡 ∀𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑗𝑗  

Johansen demonstrated that one could estimate the θ and α in a single step.  Imposing a single, 
shared root equal to 1 on the EC form can be seen as restricting lagged price level terms6; adding 
more roots equal to 1 imposes more restrictions on the VAR. 

Sims, Stock, and Watson used all the Eigen and Jordan vectors in the VAR to explore the 
properties of the estimates of the cointegrated VAR.  Based on their results, it is possible to show 

                                                 
5 Technically, they defined cointegration as a case where each of y1, y2.. need to be differenced K times to be made 
stationary, but the exists some  linear combinations α1y1+α2y2...  with non-0 α  that needs to be differenced strictly 
less than K times to be made stable.   
 
6 The lagged errors are functions of the lagged levels of the endogenous variables.  If you have N endogenous 
variables, there are N2 coefficients in lagged price level matrix.  With 1 root=1, you can create N-1 lagged “error” 
terms and N-1 α. There are N(N-1) θ in that error correction form, so 1 root=1 is a 1 degree of freedom restriction.  
Imposing K≤N Eigen vectors for 1 on a VAR imposes K2 restrictions. 
 



that if I were to estimate this model in error correction form, and use HDD35 to create the U, that 
α1j = uj, where uj is the jth price’s element in U. Here I explicitly make HDD35 the first price.   

The unit root has the same effect on two cattle prices (i and j) if ui=uj. I can test pairs of cattle 
coefficients to see if they have a common u.  The specific solutions effects are going to matter 
too. A pair of prices with the same u and specific solutions is going to tend to adjust toward the 
same value over time.   

Tests and results 
You will recall that I tested lag-lengths and exogenous variables in the preliminary stages of 
model development. Sims, Stock, and Watson and Johansen (1991) both demonstrated that most 
of the coefficients estimates in a cointegrated VAR were asymptotically normally distributed, 
with the possible exceptions of intercepts, trends, etc.  (Unit root tests can have non-normal 
distributions.)  Johansen specifically recommended testing for lag-lengths prior to testing for unit 
roots as these tests are asymptotically normal if the VAR or AR has stable roots.   

I ran parallel tests in the next phase.  I ran VAR were I tested for unit-roots and non-trending 
intercepts. I also ran VAR with averaging restrictions.  Finally, I looked at imposing the “cattle 
prices are largely the same” either equations (6) or (6) and (7).   

I then put together the insignificant unit-root, intercept, and averaging restrictions and tested 
cointegration and specific solutions similarities.  All my tests are likelihood-ratio tests. 

1—Unit root and intercept testing 
The likelihood ratio test for imposing a single root=1 on the VAR 0.93.  If the unit root test were 
normally distributed, this 1 degree of freedom, chi-square term would have an alpha of 33.4%; it 
is not significant at the 5% level.  The test would be asymptotically chi-square if the intercept 
introduces a trend. If I impose a non-trending intercept on this model, the (1 degree-of-freedom) 
tests is 0.35 and has a chi-square 55.5%, also insignificant.7 

Since I have that non-trending intercept, neither the unit root nor intercept tests are likely to be 
normal/chi-square.  The Dicky and Fuller’s unit root and intercept tests are fatter tailed than 
normal when they are not normal, so I will consider the tests insignificant.8 

2—Price averaging tests 
I decided to test for price averaging using what I thought were logical groups.  For example, 
maybe we could average over all the dressed delivered cattle, or all the live FOB cattle.  
(Because the dressed cattle and live cattle are weighed at different points in the production I did 
not average over their prices—at least for the preliminary analysis.)  Table 3 outlines the cattle-

                                                 
7 I estimated the specific solution’s intercept terms assuming no trend. In VAR without unit roots, the specific 
solution estimates are not restrictive.  In models with roots=1, the intercepts are not identified.  Johansen showed 
that you need as many arbitrary restrictions as roots=1.  I tried several different arbitrary restrictions and they all 
produced the same test statistic.  I settled on making Select’s specific solution intercept 0.  Later I found that making 
the byproduct intercept 0 also was statistically insignificant and improved convergence of the estimates.   
 
8 The likelihood-ratio test for adding 2 roots equal to 1 in the unrestricted VAR was 18.36. Johansen (1988) 
estimated that the 5% value of this test was 12.0.  His calculations were for a VAR without intercepts.  The worse-
case scenario here is a model where I estimate intercepts when I do not need them.  Using 1,000 Monte-Carlo 
analysis I found that 18.36 has an “alpha” 1.4%; 14 of the Monte-Carlo tests exceeded the actual one.  The odds of 
14 or fewer tests in 1,000 at or above the 5% level is less than 1e-9. 



price groups that I averaged. I have these cattle price groups sorted from least to most 
statistically significant.  The 6 least significant groups average over steer-heifer pairs.  Three of 
the six pairs have tests under the 5% value.   

Table 3—cattle-price averaging tests 

narrative index 

Test degrees of 
freedom 

chi-
square 
alpha 

HLF65=SLF65 LF65 18.00 15 26.24% 
HLF80=SLF80 LF80 19.72 15 18.29% 
HDD80=SDD80 DD80 23.23 15 7.93% 
HDD65=SDD65 DD65 26.56 15 3.25% 
HLF35=SLF35 LF35 32.96 15 0.47% 
HDD35=SDD35 DD35 38.44 15 0.08% 
all the DD heifers are the same HDD 64.50 30 0.03% 
all the DD Steers  are the same SDD 70.72 30 0.00% 
all the LF heifers are the same HLF 89.49 30 0.00% 
all the LF Steers  are the same SLF 99.71 30 0.00% 
all the Dressed-Delivered cattle are the 
same Dress 194.31 75 0.00% 
all the live, FOB cattle are the same LIVE 556.81 75 0.00% 

Note: For cattle price index names see Table 1. 

Table 4 shows what happens when I put the steer-heifer pair restrictions together.  The 3 pairs 
that are insignificant at the 5% level “work” together.  I found that I could average HLF56 & 
SLF65, HLF80 & SLF80, and HDD80 & SDD80.   

In the next phase of testing, I checked to see if I could impose the steer-heifer pairs on subsets of 
the equations.  First I looked at adding the significant steer-heifer pairs to the cattle-price 
equations.  All these are rejected.  The least significant pair to add to the cattle equations matches 
HDD65 & SDD65.  The tests statistic for this 26.32, and has an alpha level with 12 degrees of 
freedom of 0.97%.   

I can impose additional cattle-price restrictions of the 3 equations for packer outputs: Choice, 
Select, and Drop.  I could impose the remaining 3 heifer-steer pairs on these equations. In fact, 
making all the live-FOB cattle average together works for the packer-output-price equations.  
Adding the 3 additional pairs and making all the live-FOB cattle average imposes 15 restrictions 
on the packer-price equations of the VAR. This test statistic is 17.65 and has an alpha level of 
28.13%.   

3—Testing for extreme price similarity 
In this 3rd set of tests, I started again with the unconstrained VAR and imposed the “price 
forecasts are largely the same” restrictions, (6) and (7) above.  Equation (6) requires two prices 
to have the same VAR or vij coefficients, (7) matches up the exogenous variable coefficients. For 
this set of tests I looked at restricting pairs of coefficients.  I tested 15 pairs of dressed delivered 
cattle and 15 of the live, FOB cattle pairs.  When I impose (6) and (7) all the tests are extremely 
significant—their alpha are 0 to 4 places or 0.00%.  If I just impose (6), restrict the VAR but 



allow for differences in the intercepts and seasonality, my least significant test is 28.81 for the 
HLF35-SLF35 pair.  This test statistic has a 15-degree-of-freedom, chi-square alpha level of 
1.70%. 

Table 4—putting together the steer-heifer pair averaging 

  cumulative test3 15 DF step tests4 

Index1 Step2 

Test degrees 
of 

freedom 

alpha Test alpha 

LF65 1 18.00 15 26.24%     
LF80 2 36.94 30 17.89% 18.94 21.67% 
DD80 3 59.82 45 6.86% 22.88 8.66% 
DD65 4 88.69 60 0.94% 28.87 1.67% 
LF35 5 121.98 75 0.05% 33.29 0.43% 
DD35 6 164.56 90 0.00% 42.58 0.02% 

Notes 
1 For index definitions see Table 3. 
2 I programed the computer to do a double loop over the pairs of prices.  It checked all the pairs, selected 
the least significant, and then rechecked the remaining pairs.  The step shows when each pair entered. 
3 The cumulative test tests the model against the free model with no pair restrictions. The test become 
significant with the 4th pair.   
4 The step test tests the added pair.   

4—Imposing similarities in the cointegration and specific solutions 
In the last phases of model testing, I impose similarities in the cointegration and specific 
solutions.  I started with a VAR that incorporated the insignificant restrictions from part 1 and 2.  
Restricting the elements of U and specific solution’s intercepts are all single degree off freedom 
restrictions.  Recall that I identified U by making HDD35’s coefficient equal to 1.  HDD35 is a 
carcass weight price.  USDA ERS uses 0.63 as its carcass yield when calculating the farm value 
of Choice cattle from SLF35.  I also tested making the SLF35 and the other live, FOB cattle’s U 
equal to 0.63.   

For these single-degree-of-freedom restrictions, I programmed a large double loop.  I had the 
software test all my 1- degree-of-freedom restrictions by themselves, and keep the smallest of the 
tests.  In the next loop, I imposed the least significant restriction, and tested the remaining ones 
and so on.  Table 5 shows the results of these sets of tests.  I ended up imposing 14 single 
degrees of freedom restrictions on the VAR. 

I have assumed that the chi-square distribution is relevant in Table 5. If I am interpreting him 
correctly, Johansen in his 1991 article noted that the cointegration relationships are 
asymptotically normal.  I am not sure how the specific solution intercepts should be distributed. 
If either the U or intercepts in the C are not normally distributed, my use of a chi-square 



distribution is going to lead me to over-reject true hypotheses.  The procedure I used in Table 5 
is likely on the conservative side.9 

Table 5—single degree of freedom tests for making cointegration and specific solution 
intercepts the same1 

    

cumulative test versus 
model with averaging and 

root = 1 

1 DF step tests 

Type2 
First 
price 

Second 
price step 

Test degrees 
of 

freedom 

alpha Test alpha 

SSX0 HLF65 SLF80 1 0.01             1  94.36% 0.01  94.36% 
UFX SDD35   2 0.03             2  98.75% 0.02  88.74% 
US SDD65 SDD80 3 0.06             3  99.58% 0.04  84.46% 
SSX0 HDD35 HDD80 4 0.46             4  97.75% 0.39  53.02% 
UFX HDD80   5 0.64             5  98.62% 0.18  67.12% 
US Choice Select 6 1.83             6  93.50% 1.19  27.56% 
UFX HLF35   7 2.90             7  89.38% 1.08  29.93% 
US HLF65 HLF80 8 3.65             8  88.69% 0.75  38.62% 
SSX0 HLF80 SLF65 9 4.43             9  88.09% 0.78  37.85% 
SSX0 HDD35 SDD35 10 7.76           10  65.20% 3.33  6.79% 
US HDD65 SDD65 11 11.01           11  44.21% 3.25  7.13% 
SSX0 HDD65 SDD65 12 13.47           12  33.58% 2.46  11.71% 
US SLF35 SLF80 13 16.86           13  20.56% 3.39  6.54% 
UFX SLF35   14 20.35           14  11.95% 3.48  6.20% 
SSX0 HDD65 SDD80 15 28.85           15  1.68% 8.50  0.35% 
US HLF65 SLF65 16 42.93           16  0.03% 14.08  0.02% 
SSX0 HLF35 SLF35 17 59.19           17  0.00% 16.26  0.01% 
SSX0 Choice Select 18 64.34           18  0.00% 5.15  2.33% 
SSX0 HLF65 HLF80 19 68.47           19  0.00% 4.13  4.22% 
SSX0 HLF35 HLF65 20 81.09           20  0.00% 12.62  0.04% 
UFX HLF65   21 93.57           21  0.00% 12.48  0.04% 
UFX HDD65   23 101.94           23  0.00% 8.37  0.38% 

Notes 
1In many cases, restrictions became redundant. Imposing a restriction on one pair would impose the 
same restriction on other.  The table shows only 1 of these restrictions. 
Cells with yellows highlighting are statistically significant 
2 Type of restrictions are: 
UFX makes live cattle's U 0.63 & dressed cattle’s 1.00 
SSX0 matches the specific solution intercepts  
US   matches the U by pairs 

                                                 
9 On the other hand, there is that whole “post-test estimator” issue. My testing of everything but the kitchen sink 
approach would be considered dubious at best by some statistical purists.   



 

I used a slightly different procedure when testing for matching seasonality.  I first checked all 
pairs of dressed delivered, and all pairs of live FOB cattle for common seasonality.  (I also tested 
the two cutouts for a common seasonal pattern.)  I had 6 pairs of cattle prices that had 
statistically insignificantly different seasonal variables.  I then did my double-loop “thing” with 
this restricted set.  Table 6 shows these pairs and how the looped procedure came out.  

Table 6—testing the 6 pairs with insignificantly different seasonality 

   

cumulative test versus  
previous model 

first 
price1 

second 
price Step 

Test degrees 
of 
freedom 

alpha 

HLF35 SLF35 1 14.13 10 16.70% 
HDD65 HDD80 2 28.97 20 8.84% 
HDD65 SDD352 3 42.10 30 7.02% 
HDD80 SDD352 3 42.10 30 7.02% 
SDD65 SDD80 4 58.75 40 2.81% 

Notes 
1 For price index names see Table 1. 
2 Given that HDD65 and HDD80 entered in the second step, making SDD35 equal to either makes it 
equal to both. 
Cells with yellows highlighting are statistically significant at the 5% level. 
 
Table 7 uses color coding to show price commonalities.  The two most common prices are 
HDD80 and SDD35. They have the same U and the same values for all their specific solutions.  
One of the interesting results in Table 7 none of the pairs of prices that I found we can average 
over have either the U or specific solutions in common.   

  



Table 7—graphical representation of the cattle price similarities 
endogenous 
variable1 

unit-root Eigen 
vector Intercept seasonal 

HDD35      
HDD80       
SDD35       
HDD65       
SDD65       
SDD80      
HLF65      
HLF80      
HLF35      
SLF35      
SLF80      
SLF65     
Choice     
Select     
Drop    

color key 
3 of the DD cattle have 1 in U_VEC and same intercept. 2 have the same 
seasonal pattern, which is shared with HDD65 
other 3 DD cattle with common U_VEC, 2 of these have a common intercept, 
2 others common seasonal pattern 
Choice = Select in U_VEC 
2 LF cattle match in U_VEC 
3 LF cattle have U_VEC fixed to 0.63, 2 share a common seasonal pattern 
2 LF cattle with same intercepts but different U_VEC and seasonal 
2 more LF cattle with same intercepts but different U_VEC and seasonal 

1 For price index names see Table 1.  



Figure 6—2016 seasonal pattern for dressed, delivered cattle

 
See Table 1 for the cattle name abbreviations.  All prices in dollars per hundred pounds. 
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Figure 7—2016 seasonal pattern for live, FOB cattle 

 
See Table 1 for the cattle name abbreviations.  All prices in dollars per hundred pounds. 
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Figure 8—2016 seasonal pattern for carcass cutouts 

 
All prices in dollars per hundred pounds. 
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Figure 9—2016 seasonal pattern for drop value 

 
Drop value in dollars per hundred pounds of live steer. 

 

Selected Estimates 
Table 8 shows the estimates for the elements of U.  These terms show the effect of the unit root 
on the endogenous variables.  I have normalized U so that HDD35, SSD35, & HDD80 are fixed 
to 1.  A $1 per hundred weight change in the unit root changes these 3 prices by $1/CWT.  The 
other 3 dressed delivered cattle, HDD65, SDD65, & SDD80, have the same u: 0.9983.  A 
$1/CWT increase in the unit root increases HDD65, SDD65, & SDD80 by $0.9983/CWT.  The 
difference between 0.9983 and 1 is small for all practical purposes.  It is, however, statistically 
significant.  

Three of the live, FOB cattle have their u fixed to 0.63. The other live, FOB cattle have a higher 
value for their u: 0.6317 and 0.6321, like the dressed cattle, live cattle prices’ unit root effect 
differ from other live cattle’s’ unit root effect only in the 3rd decimal place.  These small 
differences are statistically significant.  I found that Choice and Select had the same u; its 
estimate is 0.9081.   
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Table 8—unit root Eigen vector estimates and summary statistics 
  Z statistics3 

Endogenous variable1 
Estimate2 tested 

against 
Z 

HDD35, SSD35, 
HDD80 1     
HDD65, SDD65, 
SDD80 0.9983 1.00 -2.52 
HLF35, SLF35, SLF80 0.63     
HLF65, HLF80 0.6317 0.63 4.58 
SLF65 0.6321 0.63 3.87 
Choice, Select 0.9081 1.00 -5.12 
Drop 0.0606 0.00 46.55 

 
1 For price index names see Table 1. 
2 Numbers in bold text were fixed to that value and have a standard deviation of 0. 
3 Standard deviations and Z statistics based on 10,000 Monte-Carlo iterations of the model estimates.  
 
Table 9—specific solutions for the intercepts 

Endogenous variable1 

Estimate2 Z 
statistic3 
versus 0 

HDD35, SSD35, HDD80 -$12.859 -4.31 
HDD65, SDD65 -$12.477 -4.22 
SDD80 -$12.417 -4.19 
HLF35 -$7.913 -4.20 
SLF35 -$7.962 -4.23 
HLF65, SLF80 -$8.332 -4.43 
HLF80, SLF65 -8.5434 -4.55 
Choice $7.552 9.32 
Select 0   
Drop 0   

1 For price index names see Table 1. 
2 Numbers in bold text were fixed to that value and have a standard deviation of 0. 
3 Standard deviations and Z statistics based on 10,000 Monte-Carlo iterations of the model estimates. 
Table 9 shows the specific solutions for the intercepts.  I set Select’s intercept to 0 to identify 
these coefficients.  Given that Select’s coefficient is 0, the drop coefficient was also 
insignificantly different from 0 and I imposed that restriction too.  All the cattle-price terms are 
negative, Choice’s is positive.  It makes more sense to compare the intercepts across groups. For 
example, both Choice and Select have the same unit root effect or u.  That means the unit root 
has the same effect on both.  Choice’s intercept estimate ~$7.55 implies that the Choice cutout 
will over the course of a year average about $7.55 over the Select cutout. I found that Choice and 
Select have different seasonal patterns and this implies that the “typical” Choice-Select premium 
is going to vary over the course of a year. 



The unit-root effects for the 6 dressed delivered cattle are close in value, as they are for the 6 
live, FOB cattle.  The intercept differences show sort of a baseline difference in the cattle prices.  
The dressed, delivered cattle have a baseline price range of $0.44/CWT; the live FOB range is 
$0.58/CWT.   

Interpreting the specific solution estimates for the seasonal variables is not straight-forward.  
Figures 6, 7, 8, and 9 show the seasonal patterns implied by the cosine and sine terms’ specific 
solutions for the last 53 weeks in my data set.  

Readers who are interested in the rest of the VAR parameter estimates can contact me and I will 
email you a spreadsheet with the rest of the model estimates and Z statistics in it. 

Figure 6—2016 seasonal pattern for dressed, delivered cattle 

 
See Table 1 for the cattle name abbreviations.  All prices in dollars per hundred pounds. 
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Figure 7—2016 seasonal pattern for live, FOB cattle 

 
See Table 1 for the cattle name abbreviations.  All prices in dollars per hundred pounds. 
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Figure 8—2016 seasonal pattern for carcass cutouts 

 
All prices in dollars per hundred pounds. 
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Figure 9—2016 seasonal pattern for drop value 

 
Drop value in dollars per hundred pounds of live steer. 

Conclusions 
My primary goal in estimating this model was to see if averaging cattle price for cattle price 
reporting is a good idea or not.  I will conclude that it is not a great idea for these prices.  One of 
the problems I noted with the idea of averaging is that it does limit the amount of information 
available to the market.  I find that I can average 3 steer-heifer pairs.  There are important 
differences between heifers and steers for all these pairs.  Each has slightly different reactions to 
changes in the over-all market level as measured by the “unit root.” Each has a different seasonal 
pattern and each pair has a different intercept, implying a more or less consistent 
premium/discount for one relative to the other.  Price averaging covers up these differences.   

I knew going in that price averaging could cause us to lose this type of information.  I just find 
that price averaging does not hurt forecasting.  Forecasting is not the only use for this data.  An 
even bigger problem is the fact that I do not come up with a “generic” averaging procedure.  I 
cannot average over all steer-heifer pairs, only half of them.  Two of the pairs I can average over 
are live FOB, the other is dressed delivered.   
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