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ABsrRACT

Integratlon of Dynamlc Programmlng and Slmulatzon
o Models to Value Lead Time of Informatlon
Forecastlng Systems :

Issues‘perteiningbtodlead time of informeﬁion rorecesrlng:systems are
‘presented. A methodologlcal procedure is developed which values lead
time. The procedure utlllzes dynamlc programmlng and 51mulatlon models.
“An application of thlS epproach,to,corn productlon-lndlcates lead tlme is

important in'climatevforecastingdand corn production.



; Integration of Dynamic Programming and Simulation Models

to Value Lead Time of Information Forecasting Systems

lnformation forecasfing systems are characteriZed*by many dimensions.
‘The usefulness of these dimenSions ultimately determines the expected
value of the information system to a decision maker. One of these
'dimensions-is the‘timeliness of the'forecast.. For example, conSider a
_production process in which input X is only applied in the current time
period and final output is determined by an interaction between a
stochastic event 6 and X which occurs in some future time period.
‘LKnowledge of 6 in the'current period allows the decision maker to select
the,optimal‘level‘of X~to‘apply. An information:sstem_uhich provides )
‘perfect knowledge of 6 in the current period is in all likelihdod‘more
Valuablevfhan a sYstem which,provides.the same'informationvin a fime
’ period between the current‘period»and’the time period_When the interaction
occurs. The‘firsf.informafion system is potentially more valuable because
the decision maker can use thepinfornation to select thé_level of X which
is optimal,given 0. The_dimension,of‘timeliness illustrated in this
~example is referred to as'lead time and is defined as tne-time:interval'
between fheHrelease of a.forecast_and}the‘beginningbof the period in which
, theistochastic event being forecasted occurs.
| Lead time is_a dimension whichvis important}in‘a'variety'of
forecasting'SYStems and decision making situationsrb Easterling surveyed'
subscribers of the NOAA Climate Analy5is Center s whwuh/y and Seasona/
| Weather Out/ook Respondents of this survey were grouped into users and
nonusers of the climate‘forecastsf Discriminant analysis was,applied to

identify variables that differentiated the two'populations,'users and



nonusers. The need for lead time was found to be the most important
factor differentieting nonusers of climete forecasts from users.

(Nonusers required greater lead time than currently offered by the NOAA
system.) The respondents were from a wide variety of industries including
- agriculture, energy, government and education, consfruction,
transportation, business services, recreation, and commuhications.

| Another finding by Easterling was thaﬁ industry type was not a significant
discriminating factor, suggesting that a wide variety of industries place
a value on lead time of climete forecasts. Although Easterling's results
are for climate forecasting, it is easy to visualize the importance of
lead time in other forecasting syefems, e.g.’ price forecasting (market
conditions) in which production decisions are made in advance of the
actual selling period.

The present study considers the valuation of lead time from a
decision theoretic approach. A methodological procedure to value lead
time which utilizes the output from a dynamic programming decision model
and a simu;ation model is developed. Finally, an example which utilizes

the procedure is briefly presented.

LEAD TIME VALUAT/ON

| Decision theoretic approach to valuing information provides the basis
for the methodology developed to value lead time. In this approach |
information can be defined as a message which alters probabilistic
perceptions of random events. Under the decision theoretic framework,
information has value only when the altered probabilities change the
optimal decisions of the decision maker (over the prior or less

information scenario). The altered optimal decisions are the observable



,effects of'using the nev information.ﬂ Therefore, modeling the deCiSion :
making process and obserVing changes in the obJective function caused by
changes in the optimal deCiSions as information varies prOVides one {
‘effective means to value information. ” - |
’ Under the deciSion theoretic approach, a necessary condition for |
' forecasts of stochastic events to have value to a deCision maker is that
| therepmust be an interaction between»management controlled factors ‘and the
’stochastic"event. The extent'of this interaction determines the inherentn
’flexibility of the decision:process with;respecttto information. "For
forecasts to have value:to abdecision maker, the deCision process must
possess-the flexibility to vary the management decision‘pertaining to
input usage in response to varving forecasts. | o
Invorder to valuevlead time,fthe decision maker's objective functionb
and;prior knowledge of the stochastic events must be ascertained, Also,
‘it is necessarynto specify what the:decision maker's beliefs,are.about the
probability of receiving all the possible'fOrecasts prior to‘receivingra
particular forecast. That is;rthe‘decision maker must haveja belief
(probability distribution) about what the forecast Will contain prior to
receiving a specific forecast. For ease}of exposition and manipulationiof.
probability distributions, it;is assumed in this study that: (1) the
decision;maker'sgobjective7is to‘maximize-enpected net returns, and'(Z)
the decision maker's prior knowledge of the stochastic event and beliet
about anyﬁfuture forecast'is the historical probability distribution
(p.d.f.) of this event. | - -
vFinally,”any,procedure'which(values lead time must incorporate'not

only the effect of the new information on the optimal management



decisions,‘but also the effect on the objective function on’the time
period when the information is received.‘ Therefore, lead time is only
pertinent in dynamic stochastic decision making'settings. A dynamic
decision setting is defined as a process in which input decisiens are made
and implemented at different points in time than when‘the‘final product is
realized. |
Valuation Methodo/ogy

Given the above assumptions the expected value of any information
system is given by : |

V= [ max [ u(é,X) p(8|k) A0 p(k) dk - max J u(6,X) p(9) 4@ (1)
X - X

were u(é,X) represeﬁts the decision makers utility functioﬁ, 6 a
stochastic event which can take on various values, X the management
decision set, p(elk) the probability of 6 occurring given forecast k, p(k)
the probability:of receiving foreeast k and p(6) the historical'p.d.f. of
6. The gain from information is the difference betﬁeen the expected
utility when the infefmation,is used optimaliy'and the expected utility of
the best decision that would be made.withéut the additional information.

A dynamic stochastic‘decisioh process is needed for‘lead time to be a
relevant forecast parameter.‘vﬁynamic programming (DP) is‘chosen as the
technique to evaluate ﬁhe degision.process for three reasons. First, DP
is a powerfﬁl analytical and computational method for handling stochastic
multi-period deeision proceeses (Burt). Secondly, DP gives the optimal
decision and expected value for all possible states of the decision
érocess for each decision point in time as a by product of sblving the
decision problem. Finally, DP is a problem-solving appfoach or strategy

rather than a specific mathematical technique. ‘Therefore the scope of



potential applications is quite broad. Before proceedlng to the valﬁation
‘methodology, a short dlgIESSlon on DP is provided. | a

In order to ‘be cast rnto a DP framework, a multl-perlod process must
be divided into time intervals or stages, Wlth a maaagement dec1510n being
made at each stage. At'the different stages of the process, state »
variables are uaed to describe the state or'cprrent statos’of the process;
‘Markovian relationships; or transition equations, deterministically or |
propabilistically givepthe state of the process inbthe"next etage given
the current state, exogenous-factors, and the decision alternative
{chooseh. Uaually, DP algorithms solve the decisiondprocess backwards,
‘_that’is the algorithm starts at the final perlod oflthe,decisioa problem
and proceeds to the firSt period of the deciSion horizonr This leads to a
backward-numberiag of the stages, i.e. stage one is the last stage orv
v terminal'period, the nekt to the last stagevis,stage two etc{ With this
numbering scheme,‘which will be used throughout this diécuseion, the
~ beginning period of an N-stage decision process is stage N.

Whenkdetermining the optimal decisions, a DP algorithm examines each
possiblerstate variable combination (state of.the syetem).at each stage.
The expected‘paYoff from the current stage to stage one is calculated for
each state variable combination for each managementvdecision. Therefore,
the expected payoff for following the optimal maﬁagement strategy from the
:current stage to stage one for every poSsible state of the system at each
stage 15 calculated by Bellman s Prrncrple of Optlmallty (Nemhauser) with
a single computer run of the declson model. These expected payoffs for
each possible state of the system‘are required to calculate the expected.

value of lead time of forecasts. DP allows for theSe expected paYoffs to



be calcﬁléted,with a single decision model solution, whereas other
_ etfioient optimizatiOn techniquos do not.ekplicitly perfofm these
colculétions, » | o

As an é#ample of lead time,valuation methodologyboonsider the value
of obtaining forecoét k fof stago N-i (stage wiﬁh interéction between a
stochastic event‘e and a management input applied earlieffin the
production‘process),at,the beginning’of‘the decision proCeés (stage N)
vérsus obtaining the‘forecasﬁvat stage N-j, whore j<i. It will be assumed
for generality that the decioion process is subjecf to stochastic events
at every stage; The probabilitf.of”the various stochastic evonts will be
set at the;é historical levels (prior knowledge)iénd the forecast will be
concerned only with foreoésting 6 at stage N-i. vAlso, it ié assumed that
the forecasﬁé are exogeno@s to the deCioion_proceés, i.e; the decision:
maker's actions do not_affect.the orobability of receiving a‘forecést.

The oxpectéd valuevof'obtaining forecast k ét stége N is given by

Zy(k) = max | w(6,X) p(0|k) do ' N €

where w(e;x) repreSénts the not rétufns or ﬁtility at the Qarious stages
in the DP decision model from stage N to stage one (tho entire deoision
process). Then zN(k) is the expected value of the deciéion prooess given
that the exogenous forecést is received in stageAN.riAsvnoted above, wheﬁ
determiniﬁovZN(k) the expec;ed net retufﬁs for every possible stoté in

: stage N—j‘(denoted os a vector'Wij) éreidétermihed‘ ~Therefore, vector
WN-j contains thekexpocted netkretufnsifrom foliowing‘an optimai decision
policy from stage-N-j to stége one for each of the poésible States at |
stage N-j. - ﬁ

To determine the expected net returns when the forecast iS'recéived

.-
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in stage‘N—j-réquires the deéision process. to be simulated from stage N to
stage N-j using optimal policy based on'historical or prior probabilities,
X*H, and histofical'probabilifies for the stochasti: eveﬁtS‘in stages N to
- N-j. The optimal policy, X*y, is defined as the optimal management
decision for each‘stage aﬁd state derived’ﬁrom the-bP decision quel when
- using histo:ical probabilities for all stochastic events. Recall it is
assumed that the hiétorical p.d.f. for 6 is the best proxy for any
fbrecast and the stochastic eéenté for the remaining stageé are also set
at their hisforical levels. .Therefore, X*y is used aé the decision policy
to simulate the process to N-j.

In simulating the decision process forward, the probability of being
in each state at each stégé can be determined. Theﬁe probability vectors
(denoted as PRy_,(X*p), 1=d,'l;'...,j) are used to obtain the expected net
returns given the forecast is obtained in stage N-j% The prdbébility of
being in any state is a function of the optimal policy used to simulate
the process and the historical prohabilities of 4. The‘expected net
returns given that fbrecaét k is received in stage N-j is given by

On-3(k) = PRN-j(x*H.> * Wy ‘*-E; PRy-¢ (X*g) + CX*py-y (3)
where PRN_j(x*H) . WN-j gives the expected neﬁ returﬁs from stage N-j to
stage one, C(X*y)y_, is the immediate net returns for each optimal
decision at stage N-Z, and - denotes the dot (inner) pfoduct between the
Various probability»and monetary vectors such that a singlé monetary value
is obtained (assuming only one posSibie‘state ét stage‘N. If more than
one initial state is to be considered, the procedure is adjﬁsted such that
one monetary value is obtained for ‘each inital state.) The expected net

‘returns of receiving the forecast in stage N versus N-j ié



Further clarifi:ation of equation (3) is useful at this point. WN—j
. is the vector of expected net returns of being in a given state in stage
N-j. Because these values are obtained from the DP model, the components

of Wy_s are the optimal net returns for only the N-j remaining stages and

j
'do noﬁ inélude‘the'net returns of decisions and events taken in stages N
to N-j+l. Because WN?j does not include stages Nvto‘N—j +1, since WN- 3 is
cbmputed using backward§ recursion, thg immediate net returns from
decisions in Stagés prior to'N-j must be added to wN-j; The vectors
C(X*y)y-, add these net returns. The pfobability vectors.éRN_l(x*H) (£ =
'0,1,;..,j) are-iﬁcluded because stochastic events occur at all stages and
the exact state is not known, only the probability of being in each state.
"It should be noted that I PRy_ ,(X*y) = 1.0 forveach £ where the summation
is over all possible states that may occur at a particular stage. |

The approach outlined above can be generalized so that it is not
restricted to valuing forecasts received solely in stage N. In general,
the value of lead time from reéeivihg the forecast in stége n-j instead of

stage n is given by

E(V) = Qp(K) = Qpg(k). T (5)

The values Qn(k)vand Qn;j(k)ﬁare given by
N-n-1
- Qn(k) = PRn(Xl) '.Wn + IEO (PRN-I(Xl) .IC(XI)N-}() (6)
and
_ N-(n=j)-1
Qn—j(k) = PR‘n—j(XZ) . Wn-j + 4’50 (PRN—I(XZ) ’ C (XZ)N'I) (7)

where X, and X, denote the appropriate decision policies with which to
simulate the decision process, and the other notation is as defined

earlier.



Forecast k is only one pOSSlble forecast that could arise from the

information system. The expected value of lead time of the information

- system is » | | |
BEOV) = (g0 - Qug0) pOO & @)
E(E(V,)) = I(Qn:(k) - Qp_y(k)) p(k) dk S e

for equations (4) and (5), respectively. A term which:corresponds todthe
second term in equation (1) does not have to be calculated. This termvis
. subtracted from both the z and Q terms in equation (8) or is subtracted

'from both Q terms,in equation (9), therefore cancels_itself out in these

equations.

‘LEADT IME VALUAT/ ON EXAMPLE
The above methodology has been applied to a corn production model for

east-central IllinOis (Mjelde). This model has eight stages of
production; fall beforevplanting, early spring, late spring, early summer,
midsummer, late summer, early harvest and late‘harvest. At each stage oft‘
production the decision maker‘determines the optimal input‘usage. In this‘
model, inputs under the decision maker's control are seed density at
planting, hybrid to be planted, when to plant, when and atvwhat level to
‘~apply nitrogen and when to harvest. The model specifies stochastic
climatic conditions»betueen each of the eight stages of‘production,

| The expected Value of'receiving forecastsyof.early summer climatic.
conditions«at fall,'early spring or late spring are cOmputed on a per acre
basis. Early summer is a stage that contains a direct interaction between
climatic conditions and applied nitrogen (Hollinger and.hoeft). In this

example there are only three possible perfect forecasts, good, fair, and
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'Qoofaclimatic conditionsvwith':espect to érowing COnditions.  A‘perfectb
forecast ia'defined as a‘fo:acast in»whiéh:the forecasted climatic |
~ condition occurs with»prabability 1.0 and thebremainihg‘twd.:gndiiions
-occur with probabiliﬁy 0-0.v | | . o |

Table 1 presents the net :eturhs and'probabiliﬁies/of receiving,each
forecast, alohg with-the'expactad valuea. _The expecfad vaiﬁea shpw that
perfect knowledgerf the'eafly summer climatic conditions raceived in the
fall or early springvis'wbrth approaimately}three dollars more than when:
receivad in lata spfing. Tha difference in expected valﬁes is explained
by the Variations ;n the optimai applied nitrogen levels‘giVen‘thé
Tdiffereat perfect forecasts. When using either onlyvpfior knowledge or
~ when the forecast is received in the fall, the optimal;fall decision is‘to
apply no nitrogen. fhe fact_that the optimal decisionbaoes not chanée is
‘reflected.in the low expected value of leadvtime for fall versus éarly-
spring. When using anly prior knowledée, 267 1lbs/acre bf nitrogen afe
applied in early spring. The same level of nitrqéen is applied fof,
predictions pf'good early summef ;limatic aonditions'received in the fall
or early spring. Thisris rafleéted in the low vaiue of the good foracast
for good ciimatic conditions in Iable 1. For fcrecasfs of fair (poor)
received ;n the/fallior early spring 150 (50) 1lbs/acre of nitrogaa ara
 applied in_eafly spring.

Thé decrease in axpected value of not knowing the early'summer
climatic cgnditions until‘late spring results becauaeafhevoptimai decision
policy without’the fofecast rabommands too much nitrogen if fair or poor.
climatic conditions aCCUr.v’Therefore, khowing the aarly summer climatic

conditions by early spring alters the decision policy when fair and poor
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perfect forecasts are received. This change in optimal policies is

reflected in the expected'values of each forecast in Table 1.

CONCLUS/ONS / |

- This study developed a methodological procedure.which utilizes a DP
‘and a simulation model to calculate the expected value of lead time.
Dynamic programming provides a flexible optimization strategy to
operationalize the érocedure. This flexibility allows the methodology to
be applied to a wide range of dynamic, .stochastic decisipn processeé.
Also, with aépfopriéte modifiéations of the procedure presentéd, the
'assumptions made for this study can be modified making the methodology
applicable to a widé variafion in the decision maker's prior knowledge,
acéuracy of forecasts, etc. |

Numerical results presented here indicate what an individual farmer

would be willing to pay per acre for perfect early summer férecasts
received in various production periods. Current élimatolcgicél forecast
are far from perfect and possess virtually ﬁo lead timé. Results computed
for imperfect forecésts (but ﬁot recérded here) indicate that there is a
tradeocff between the accuracy of forecasts and lead time.‘ Under certain
economic and forecast scenarios, a less accurate fgrecast.received earlier
in the production process may be of more value to the decision maker than:
a mére accurate forecast received later in tﬁe production prbcesé.
Tradeoffs such as the accuracy-lead time tradeoff should be taken into
account when designingbinformation sytems. The methodology presented here

allows such tradeoffs to be examined.



Table 1. Calculation of the Expected
Forecasts.

Value of

Lead Time Per Acre for Early Summer

Forecast Prob.l

Good 6/14

Fair '3/14

vPoor | 5/14

Expected
value3

Net Returns

Stage Received?

LSp

P ESp
309.59  309.55  309.55
267.09 267.06 264.51
212.92 212.89  205.94
265.96 265.92 262.90

Expected Value
of Lead Time

ESpvs.LSp

Fvs.ESp Fvs.LSp

.04 .04 .00
.03 2.68 2.55
.03 6.98 6.95
.04 3.06 3.02

1) Probability of receiving each forecast. These probabilities are the historical
probabilities of each climatic condition occurring because a perfect predictor
is valued (Mjelde). ’

2) Abbreviations: F is for fall, ESp for early spring and LSp for late spring.

3) Expected value of the information system which gives rise to the three
forecasts. Calculated as the sum of the net returns associated with each
forecast multiplied by the probability of receiving that forecast.
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