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ABSTRACT 

Integration of Dynamic Programming and Simulation 
Models to Value Lead Time of Information 

Forecasting Systems 

Issues pertaining to lead time of information forecasting systems are 

presented. A methodological procedure is developed which values lead 

time. The procedure utilizes dynamic programming and simulation models. 

An application of this approach to corn production indicates lead time is 

important in climate forecasting and corn production. 



Integration of Dynamic Programming and Simulation Models 

to Value Lead Time of Information Forecasting Systems 

Information forecasting systems are characterized by many dimensions. 

The usefulness of·these dimensions ultimately determines the expected 

value of the information system to a decision maker. One of these 

dimensions is the timeliness of the forecast. For example, consider a 

production process in which input X is only applied in the current time 

period and final output is determined by an interaction between a 

stochastic event e and X which occurs in some future time period • 

. Knowledge of e in the current period allows the decision maker to select 

the optimal level of X to· apply. An information system which provides 

perfect knowledge of e in the current period is in all likelihood more 

valuable than a system which provides the same information in a time 

period between the current period and the time period when the interaction 

occurs. The first informa1:ion system is potentially more valuable because 

the decision maker can use the information to select the level of X which 

is optimal.given e. The dimension. of timeliness illustrated in this 

example is referred to as lead time and is defined as the time interval 

between the release of a forecast and the beginning of the period in which 

the stochastic event being forecasted occurs. 

Lead time is a dimension which is important in a variety of 

forecasting systems and deciSion making situations. Easterling surveyed 

subscribers of the NOAA Climate AnalYSis Center's Monthly and Seasonal 

Weather Outlook. Respondents of this survey were grouped into users and 

nonusers of the climate fotecasts·.Discriminant analysis was applied to 

identify variables that differentiated the two populations, users and 
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nonusers. The need for lead time was found to be the most important 

factor differentiating nonusers of climate forecasts from users. 

(Nonusers required greater lead time than currently offered by the NOAA 

system.) The respondents were from a wide variety of industries including 

agriculture, energy, government and education, construction, 

transportation, business services, recreation, and communications. 

Another finding by Easterling was that industry type was not a significant 

discriminating factor, suggesting that a wide variety of industries place 

a value on lead time of climate forecasts. Although Easterling's results 

are for climate forecasting, it is easy to visualize the importance of 

lead time in other forecasting systems, e.g. price forecasting (market 

conditions) in which production decisions are made in advance of the 

actual selling period. 

The present study considers the valuation of lead time from a 

decision theoretic approach. A methodological procedure to value lead 

time which utilizes the output from a dynamic programming decision model 

and a simulation model is developed. Finally, an example which utilizes 

the procedure is briefly presented. 

LEAD TIME VALUATION 

Decision theoretic approach to valuing information provides the basis 

for the methodology developed to value lead time. In this approach 

information can be defined as a message which alters probabilistic 

perceptions of random events. Under the decision theoretic framework, 

information has value only when the altered probabilities change the 

optimal decisions of the decision maker (over the prior or less 

information scenario). The altered optimal decisions are the observable 
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effects of' using the new informa1;iQP~" Therefore,' modeling the decision, 

making process and observing changes in the objective func;:tion eausedby 

changes intheopt1mal decisions, as information varies provides one 

effective means to value information • 

. Under the decision theoretic approach, a necessary condition for'· 

forecasts of stochastic events to have value to a decision maker is that 
. . . . . 

. ' . 

there must be an interaction between management controlled factors 'and the 

stochastic event. The extent of this interaction determines the inh.erent 

flexibility o.f the decision process with respect to information. For 

forecasts·tohaveyalue to a decision maker, the decision process must 

.possessthe flexibility tq vary the management decision pertaining to 

input usage in response" to varying forecasts. 

In order to value lead time; the decision maker's Objective function 

and prior knowledge of the stochastic events must be ascertained. Also, 

it is necessary to specify what the decision maker's beliefs are about the 

probability of receiving all the possible forecasts prior to receiving a 

particular forecast • That is,· the. decision mak,er must have a belief 

(probability distribution) about what the forecast will contain prior to 
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receiving a specific forecast. For ease of exposition and manipulation of, 

probability distributions, it i.s assumed in this study that: (1) the 

dec.isionmaker 'sobjective '1s to maximize expected net returns ,and (2) 

the decision maker's. prior knowledge of ,the stochastic event and belief 

about any future forec,astis the historical probability distribution 

{p.d.f ~)Of this event. 

Finally, any procedure which values lead time must incorporate not 

only the effect of the new information on the optimal management . 



decisions; but alsothe.effect on the objective function on'the time 

period when the information. is received. Therefore, lead time is only 

pertinent in dynamic stochastic decision making settings. A dynamic 

decision setting:is defined as a process in which input decisions are made 

and iniplemented at different points in time than when the final product is 

realized. 

Valuation Methodology 

Given the above assumptions the expected value of any information 

system is given by 

v = J max I u(B,X) p(Blk) dB p(k) dk - max I u(B,X) p(B) dB . (1) 
X X 

were u(B,X) represents the decision makers utility function, B a 

stochastic event which can take on various values, X the management 

decision set, p(Bjk) the probability ofB occurring given forecast k, P(k) 

the probability of receiving forecast k and p(B) the historical p.d.f. of 

B. The gain from information is the difference.between the expected 

utility when the information is used optimally and the expected utility of 

the best decision that would be made without the additional information. 

A dynamic stochastic decision process is ·neededfor· lead time to be a 

relevant forecast parameter. Dynamic programming (OP) .is chosen as the 

technique to evaluate the dec::ision process for three reasons. First, DP. 

is a powerful analytical andc:omputational method for handling stochastic 

. multi-period decision processes (Burt). Secondly, OP gives t:he optimal 

decision and expected value f·or all possible . states of the decision 

process for each decision point' in time as a by product of solving the 
. ..:, . :,' . . 

. .' . . . . 

decision problem. Finally,OP is a problem-solving approach or strategy 

rather than a specific mathematical technique. Therefore the scope of 
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potential applications is quite broad. Before proceeding to the valuation 

methodology, a short digression on OP is provided. 

In order to be cast into a OP framework, a multi-period process must 

be divided into time intervals or stages, with a management decision being 

made at each stage. At the diff~rentstagesof the process, state 

variables are used to describe the state or current status of the process. 

Markovian relationships, or transition equations, determinis.tically or 

probabilistically give the state of the process in the next stage given 

the current state, exogenous factors, and the decision alternative 

choosen. Usually, OP algorithms solve the decision process backwards, 

that is the algorithm starts at the final period of the decision problem 

and proceeds to the first period of the decision horizon. This leads to a 

backward numbering of the stages, i.e. stage one is the last stage or 

terminal period, the next to the last stage is stage two etc. With this 

numbering scheme, which will be used throughout this discussion, the 

beginning period of an :N-stage decision process is stage :N. 

When determining the optimal deciSions, a OP algorithm examines each 

possible state variable combination (state of the system) at each stage. 

The expected payoff from the current stage to stage one is calculated for 

each state variable combination for each management decision. Therefore, 

the expected payoff for following the optimal management strategy from the 

current stage to stage one for every possible state of the system at each 

stage is calculated by Bellman's Principle of Optimality (Nemhauser) with 

a Single computer run of the decison model. These expected payoffs for 

each possible state of the system are required to calcU:.late the expected 

value of lead time of forecasts. OP allows for these expected payoffs to 
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be calculated with a single decision model solution, whereas other 

efficient optimization techniques do not explicitly perform these 

calculations. 

As an example of lead time valuation methodology consider the value 

of obtaining forecast k for stage N-i (stage with interaction between a 

stochastic event e and a management input applied earlier in the 

production process) at the beginning of the decision process (stage N) 

versus obtaining the forecast at stage N-j, where j<i. It will be assumed 

for generality that the decision process is subject to stochastic events 

at every stage. The probability of the various stochastic events will be 

set at there historical levels (prior knowledge) and the forecast will be 

concerned only with forecasting e at stage N-i. Also, it is assumed that 

the forecasts are exogenous to the decision process, i.e. the decision 

maker's actions do not affect the probability of receiving a forecast. 

The expected value of obtaining forecast k at stage N is given by 

ZN(k) = max f w(e,X) p(elk) de 
x 

(2) 

where w(e,X) represents the net returns or utility at the various stages 

in the DP decision model from stage N to stage one (the entire decision 

process). Then ~(k) is the expected value of the decision process given 

that the exogenous forecast is received in stage N. As noted above, when 

determining ZN(k) the expected net returns for every possible state in 

stage N-j (denoted as a vector WN- j ) are determined. Therefore, vector 

WN- j contains the expected net returns from following an optimal decision 

policy from stage N-jto stage one for each of the possible states at 

stage N-j. 

To determine the expected net returns when the forecast is received 
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in stage N-j requires the decision process to be simulated from stage N to 

stage N-j using optimal policy based on historical or prior probabilities, 

X*H' and historical probabilities for the stochastic events in stages N to 

N-j. The optimal policy, X*H' is defined as the optimal management 

decision for each stage and state derived from the DP decision model when 

using historical probabilities for all stochastic events. Recall it is 

assumed that the historical p.d.f. for e is the best proxy for any 

forecast and the stochastic events for the remaining stages are also set 

at their historical levels. Therefore, X*H is used as the decision policy 

to simulate the process to N-j. 

In simulating the decision process forward, the probability of being 

in each state at each stage can be determined. These probability vectors 

(denoted as PRN-.e<X*H),-t=O, 1, ••• , j) are used to obtain the expected net 

returns given the forecast is obtained in stage N-j. The probability of 

being in any state is a function of the optimal policy used to simulate 

the process and the historical probabilities of B. The expected net 

returns given that forecast k is received in stage N-j is given by 
'-1 

QN-j(k) = PRN-j(X*H) • WN- j + ~;O PRN--t (X*H) • C(X*H)N~-t (3) 

where PRN-j(X*H) • WN- j gives the expected net returns from stage N-j to 

stage one, C(X*H)N--t is the immediate net returns for each optimal 

decision at stage N--t, and • denotes the dot (inner) product between the 

various probability and monetary vectors such that a single monetary value 

is obtained (assuming only one possible state at stage N. If more than 

one initial state is to be considered, the procedure is adjusted such that 

one monetary value is obtained for each inital state.) The expected net 

returns of receiving the forecast in stage N versus N-j is 
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E(VL) = ZN(k) - QN-j(k). (4) 

Further clarification of equation (3) is useful at this point. WN-j 

is the vector of expected net returns of being in a given state in stage 

N-j. Because these values are obtained from the DPmodel, the components 

of WN- j are the optimal net returns for only the N-j remaining stages and 

do not include the net returns of decisions and events taken in stages N 

to N-j+1. Because WN- j does not include stages N to N-j +1, since WN- j is 

computed using backwards recursion, th~ immediate net returns from 

decisions in stages prior to N-j must be added to WN- j • The vectors 

C(X*H)N-..e add these net returns. The probability vectors PRN-,.e<X*H) (..( = 

O,l, ••• ,j) are included because stochastic events occur at all stages and 

the exact state is not known, only the probability of being in each state. 

"It should be noted that l: PRN-..e(X*H) = 1.0 for each ..e where the summation 

is over all possible states that may occur at a particular stage. 

The approach outlined above can be generalized so that it is not 

restricted to valuing forecasts received solely in stage N. In general, 

the value of lead time from receiving the forecast in stage n-j instead of 

stage n is given by 

E (V L) = Qn (k) - Qn _j (k). 

The values Qn(k) and Qn-j(k) are given by 
N-n-l 

, Qn (k) = PRn (Xl) . Wn + ..(;0 (PRN-..e(Xl ) ·C(Xl)N"';..e) 

and 

(5) 

(6) 

N-(n-j)-l 
Qn-j(k) = PRn-j(X2) • Wn- j + ..e~O (PRN-..(X2)· C (X2)N-..e) (7) 

where Xl and X2 denote the appropriate decision policies with which to 

simulate the decision process, and the other notation is as defined 

earlier. 
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Forecast k is only one possible forecast that could arise from the 

information system. The expected value of lead time of the information 

system is 

(8) 

or 

E(E(VL» = HQn (k) - Qn-j (k» p(k) dk . (9) 

for equations (4) and (5), respectively. A term which corresponds to the 

second term in equation (1) ~oes not have to be calculated. This term is 

subtracted from both the Z and Q terms in equation (8) or is subtracted 

from both Q terms in equation (9), therefore cancels itself out in these 

equations. 

LEADTIME VALUATION EXAMPLE 

The above methodology has been applied to a corn production model for 

east-central Illinois (Mje1de). This model has eight stages of 

production; fall before planting, early spring, late spring, early summer, 

midsummer, late summer, early harvest and late harvest. At each stage of 

production the decision maker determines the optimal input usage. In this 

model, inputs under the decision maker's control are seed density at 

planting, hybrid to be planted, when to plant, when and at what level to 

apply nitrogen and when to harvest. The model specifies stochastic 

climatic conditions betweer each of the eight stages of production. 

The expected value of'receiving forecasts of early summer climatic 
) 

conditions at fall, early spring or late spring are computed on a per acre 

basis. Early summer is a stage that contains a direct interaction between 

climatic conditions and applied nitrogen (Hollinger and Hoeft). In this 

example there are only three possible perfect forecasts, good, fair, and 
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poor climatic conditions with respect to growing conditions. A perfect 

forecast is defined as a forecast in which the forecasted climatic 

condition occurs with probability 1.0 and the remaining two conditions 

occur with probability 0.0. 
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Table I presents the net returns and probabilities of receiving each 

forecast, along with the expected values. The expected values show that 

perfect knowledge of the early summer climatic conditions received in the 

fall or early spring is worth approximately three dollars more than when 

received in late spring. The difference in expected values is explained 

by the variations in the optimal applied nitrogen levels given the 

different perfect forecasts. When using either only prior knowledge or 

when the forecast is received in the fall, the optimal fall decision is to 

apply no nitrogen. The fact that the optimal decision does not change is 

reflected in the low expected value of lead time for fall versus early 

spring. When using only prior knowledge, 267 lbs/acre of nitrogen ar.e 

applied in early spring. Thesarne level of nitrogen is applied for 

predictions of good early summer climatic conditions received in the fall 

or early spring. This is reflected in the low value of the good forecast 

for good climatic conditions in Table 1. For forecasts of fair (poor) 

received in the fall or early spring 150 (50) lbs/acre of nitrogen are 

applied in early spring. 

The decrease in expected value of not knowing the early summer 

climatic conditions until late spring results because the optimal decision 

policy without the forecast recommends too much nitrogen if fair or poor 

climatic conditions occur. Therefore, knowing the early summer climatic 

conditions by early spring alters the decision policy when fair and poor 



. perfect forecasts are received. This change iri optimal policies .is 

reflected in the expected values of each forecast in Table 1. 

CONCWSIONS 

This study developed a·metnodolQgical procedure which utilizes a Df 

and a simulation model to calculate the expected value. of lead time •. 

Dynamic programming provides a flexible optimization strategy to 

operationalize the procedure. This flexibility allows the methodology to 

be applied toa wide range of dynamic, stochastic decision processes. 

Also, with appropriate modifications of the. procedure presented, the 

. assumptions made for this study can be modified· making the methodology 

applicable to a wide variation in the decision maker's prior knowledge, . . 

accuracy of forecasts, etc. 

Numerical results presented here. indicate what an individual farmer 
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would be willing to pay per acre for perfect early sununer forecasts 

received in variousproductl.on periods. Current climatological forecast 

are far from perfect and possess v.irtually no lead time. Results computed 

for imperfect forecasts (but not recorded here) indicate that there is a 

tradeoff between the accuracy of forecasts and lead time. Under certain 

economic and forecast scenarios, a less accurate forecast received earlier 

in the ~roduction process may be of more value to the decision maker than 

a more accurate forecast received later in the prOduction process. 

'tradeoffs such as the accuracy-lead time tradeoff should be taken into 

account when deSigning information sytems. The methodology presented here 

allows such tradeoffs to be examined. 



Table 1. calculation of the Expected Value -of Lead Time Per Acre for Early Summer 
Forecasts. 

Forecast Prob. 1 Net Returns Expected Value 
Stage Received2 - of Lead Time 

F ESp LSp Fvs.ESp Fvs.LSp ESpvs.LSp 

Good 6/14 309.59 309.55 309.55 .04 .04 .00 

Fair 3/14 267.09 267.06 264.51 .03 2.68 2.55 

Poor _ 5/14 212.92 .212.89 205.94 .03 6.98 6.95 

Expected 

Va1ue3 265.96 265.92 262.90 .04 3.06 3.02 

1) Probability of rece~v1ng each forecast. These probabilities are the historical 
probabilities of each climatic condition occurring because a perfect predictor 
is valued (Mjelde). 

2) Abbreviations: F is for fall-, ESp for early spring and LSp for late spring. 

3) Expected value of the information system which gives rise to the three 
forecasts. Calculated as the sum of the net returns associated with each 
forecast multiplied by the probability of receiving that forecast. 
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