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Abstract: China is faced with the big challenge of maintaining a remarkable economic 

growth in an environmental friendly manner; that is why forecasting the turning point is of 

necessity. Traditional econometric approaches do not consider the spatial dependence that 

inevitably exists in the economic units, which probably risks misspecification and generating 

a biased estimation result. This paper firstly constructs Theil index to measure the intra-and 

inter regional inequality of CO2 emissions, we find that difference in emissions between 

regions is narrowed but gap within the Western China is sharply expanding. Then the Spatial 

Durbin model is employed to shape the relationship between mitigation and economic growth 

using the panel data of 29 provinces ranging from 1995 to 2011. Results show that the peak of 

per capita carbon dioxide emissions in China would be seen when GDP per capita reaches 

between $USD 21594 to 24737 (at 2000 constant price), much smaller when compared with 

the estimations of models which ignore the spatial dependence. This implies that territorial 

policy and industry transfer, on one hand would favor those underdeveloped regions with 

investment, technology and labors transfer; on the other hand enables developed regions more 

potential to mitigation, thus, chances are that China achieves the emissions peak of carbon 

dioxide earlier than conventional wisdom.  
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1. Introduction 

Climate change is one of the most critical and most daunting challenges facing policy makers 

in the 21 century on a global scale (Aldy et al., 2009). As the biggest CO2 emitter and energy 

consumer, China is pressed to mitigation from rounds of international deliberations. 

Obviously, Figure 1 shows that China has achieved an 8.6% and 6.5% increase in CO2 

emissions at national level and individual level during the past six decades, in other words, a 

turning point of emissions at neither level has occurred yet. It seems harder for a developing 

country to hold CO2 emissions in check while maintain a sustainable economic growth (Wei, 

2014). However, as China’s large contribution to the global emissions would have great 

impact on the achievement of a world 2-Celcius threshold, he has taken actions to participate 
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in the international mitigation club, though China has been free from any binding targets 

under the Kyoto Protocol. For example, the State Council in 2006 set the target of reducing 

China’s energy intensity by 20% during the Eleventh Five-Year Plan. Also in Copenhagen 

Conference, China was committed to reducing the 40―45% carbon intensity (carbon dioxide 

emissions per unit of GDP) by 2020 as compared with a 2005 baseline. Besides, most 

provinces are allocated with a specific mitigation target in order to fulfill the total target. By 

evaluating the performance of each participant during the Eleventh Five-Year Plan, we found 

that the Eastern China has done much better than the nationwide average level. Particularly, 

regions clustering around the Pearl River Delta Economic Zone and the Yangtze River Delta 

Economic Zone reduced their energy intensity by over 80 percent on time. Beijing and Tianjin 

even pulled their deadline one year ahead of schedule.  

 

 
Fig.1. China’s total CO2 emissions from 1949 to 2009 

 
In fact, provinces within each region are taking geographical as well as economic 

connections, in other words, the government of one particular place might adjust its 

regulations in response to policy changes in its neighboring regions. Specifically, the East 

China has a rapid economic growth and relatively advanced social development. Provinces 

that cluster in the east part are capable to exert a positive influence interactively by means of 

sharing or mimicking each other’s development patterns, which in turn promotes their local 

development. However, the Middle and West China is in the pace of development 

accompanied by large investment and energy consumption in infrastructure construction. 

Therefore, it is possible to say that provinces in the East China might be actively affected by 

the neighboring area, but provinces in the Middle and West China might have to compete for 

the resources.  

Additionally, spatial effects work interactively between regions (See Figure 2). According 
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to the Twelfth Five-Year Plan, the East China is still functioned as a leading role in driving the 

national economic growth but at same time has to undertake heavier mitigation targets, while 

more attention is paid to the northeast, the middle and west parts on revitalization and 

exploitation. In other words, it is more likely that initially the east region has transferred the 

industry embedded by investment, labor and technology to facilitate the construction of the 

western region; nevertheless at the same time unexpectedly exported carbon emissions as well. 

Years later, the underdeveloped area can in turn benefit from the spillover of the advanced 

technology for mitigation. Chances are that the underdeveloped regions are attempting to find 

a sustainable way to improve their development patterns with the help of those industrial 

provinces. 

 
Fig. 2 Spatial interactions between developed and underdeveloped regions 

 
Technically, it is important to figure out the peak emissions before we finally find out the 

best solution to balance the economic growth and the environmental degradation. A large 

body of literature used econometric approaches to make a forecast. However, the cross 

sections are assumed to be geographically independent according to the conventional 

econometric techniques, in other words, the interactions of economic units in space are not 

included in the model specification, yet the space can be physical or economic in nature (Lee 

and Yu, 2009). The geographical proximity, resource endowment, economic behavior, preference 

and policy relevance all make it necessary to consider the similarities among neighboring places, 

thus, as pointed out by Maddison (2006), spatial relationships with regard to environment 

issues arise most obviously as a consequence of countries’ strategic response to transboundary 

pollution flows. The spatial effects, in a way, help to promote the development of each region, 

for example, by constructing the economic zone, then how will spatial connections affect 

China’s mitigation process? Actually, it appears that researchers recently has started to pay 

closer attention to the effects on neighboring area when solving energy issues after Maddison 

(2006) explicitly empirically accounted for the Environmental Kuznets curve using spatial 

techniques. However, researches upon energy and environment in China have seldom utilized 
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spatial econometric tools to handle with spatial dependency. Under such circumstances, this 

paper presents an initial step to explore how regional interactions in space affect China’s 

mitigation targets and economic development. Concretely, the panel data of 29 provinces 

ranging from 1995 to 2011 are utilized to complete the estimation, with an attempt to track 

China’s carbon trajectory before reaching the emissions peak and also to search the mitigation 

pathway in a more rational manner. 

The setup of this article is as follows. Section 2 summarized the methods and main findings 

of previous CKC research. Section 3 describes the methodology and data sources in this study. 

Section 4 reports the results that are obtained using methods with and without spatial 

connections. Conclusions are discussed in Section 5. 

2. Literature Review 

Research on the relationship between environment and economics shows little sign of 

diminishing since Grossman and Kruger (1991) first proposed the Environmental Kuznets 

Curve (EKC). EKC is an empirical hypothesis, asserting that income would worsen the 

environmental degradation at the beginning of industrialization until reaching a point when 

the pollution reaches maximum level, and afterwards the environmental quality improves as 

income increases. Given numerous reviews on generalized EKC, we would not elaborate on 

the main findings. 

Recently, researchers have paid much closer attention to the relationship between carbon 

emissions and economic growth, mainly on two topics: exploring whether emission is 

compatible with income or forecasting when and how much for the world or a specific region 

to reach peak emissions. When it comes to the first topic, much literature suggests different 

outcomes occur as pollutants or countries vary in studies. Aldy (2005) defines the 

production-based and consumption-based CO2 emissions and then uses panel regression 

model based on the state-level information and clearly notes that states in the US do not 

follow the same form of curves. Dijkgraaf and Vollebergh (2005) challenge the existence of 

an overall EKC for carbon emissions (CKC) by analyzing OECD countries from 1960 to 1997. 

Richmond and Kaufmann (2005) combine panel unit root test and cointegration test of OECD 

countries as well as non-OECD countries and point out that there is little evidence of CKC for 

OECD countries and no evidence for non-OECD countries. Fu (2008) uses cointegration test 

on 44 countries in terms of production-based and consumption-based emissions and notes that 

either production- or consumption based CKC displays an inverted-U shape. Han and Lu 

(2009) first classify 165 countries into four groups according to their industrialization and 

income level and then discuss the emission-and-income relationship of each group. Results 

show that Countries with high industrialization and high income have an inverted U-shape 

CKC curve; Countries with low industrialization and low income as well as with low 
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industrialization and high income take an N-shape CKC curve; while emissions of countries 

with high industrialization and low income increase monotonously with income. In short, the 

shape of Environmental Kuznets Curve for carbon emissions varies greatly as different 

countries and pollutants are selected for research. 

As to the second topic, much literature forecasts the emissions and income that correspond 

to the turning point. Schmalensee, Stoker and Judson (1998) estimate peak emissions of 100 

countries based on panel data regression and scenario analysis. It is reported that peak 

emissions in the U.S.A occurred in 1970, the United Kingdom and Japan in 1973, Canada in 

1979. In Affhammer and Carson’s research targeted at China (2008), “downturn is highly 

unlikely until 2010 unless there are substantial changes”. They also forecast that China’s 

annual growth rate is within 11.05~11.88% from 2000 to 2010. Xu and Song (2010) use 

cointegration test and scenario analysis to forecast China’s emissions extended to the east, the 

middle and the west parts. According to their research, China will achieve peak emissions at 

2027 at the national level; East and Middle China both have an inverted-U shape curve and 

peak years of each province are matched; however, not any CKC shape occurs in the West 

China.  

In short, methods for researches on the relationship between carbon emissions and 

economic growth have extended from time series or cross-sectional estimation to wide use of 

panel data estimation which is believed to offer more modeling possibilities and increases 

estimation efficiency due to the inclusion of more variation and less collinearity among 

variables (Elhorst, 2003). As many researchers point out that parameters are not homogeneous 

over space but instead geographically vary, it is clear that omitting spatial variation might risk 

misspecification and generating the spurious estimation of parameters. In other words, panel 

data with spatial interaction is of great interest, as it enables researchers to take into account 

the dynamics and control for the unobservable heterogeneity (Anselin, 1988; Baltagi et al., 

2003, 2007; Elhorst, 2003; Kapoor et al., 2007; Yu et al., 2007, 2008). Recently, researchers 

attempt to apply spatial panel models (Anselin, 2009) to quite a few topics like house price, 

transportation research, agriculture economics and political election, to name a few and 

compare the results considering cross dependence with those of old methods. In particular, 

some existing studies discuss China’s energy issues in light of the spatial autocorrelation 

among provinces. This paper provides the initial step to further explore how provincial 

interactions affect the relationship between economic growth and carbon emissions in China 

by using spatial panel models.  

3. Methodology 

Recently, the spatial econometric literature has exhibited a growing interest in the 

specification and estimation based on spatial panels (Elhorst, 2012). Unlike the hypothesis of 
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conventional econometrical techniques that data set is geographically independent, spatial 

panel models take spatial connections into consideration, which is believed not likely to yield 

an inconsistent and biased estimation of parameters.  

Spatial data can be modelled in a variety of ways, among which three widely recognized 

forms are presented here. One model contains a spatially lagged dependent variable which is 

called spatial lag model. In this model, the value of the dependent variable observed at one 

particular location is jointly determined by the average value of the dependent variable of the 

neighborhoods. The spatial lag model in matrix form can be formulated as  

𝑌 = 𝜌𝑊𝑌 + 𝛽𝑋 + 𝛼 + 𝑒                          (1) 

where 𝑌 is a vector of the dependent variables for cross-sectional units, 𝑊 is the spatial 

weight matrix, 𝜌 is a scalar parameter, and 𝜌𝑊𝑌 denotes the interaction effects of the 

dependent variables 𝑌 at this location with the dependent variables of neighborhoods. 𝑋 is a 

matrix of all explanatory variables containing different forms and 𝛽 is a vector of fixed but 

unknown parameters. 𝛼  is a scalar parameter and 𝑒  represents an independently and 

identically distributed error term with zero means and variance 𝜎2. 

An alternative model incorporates spatial dependence in the error term which is called 

spatial error model. It can be explained that the “errors associated with any one observation 

are a spatially weighted average of the errors at nearby sites plus a random error component” 

(Maddison, 2006). This is more commonly used because it is consistent with a situation where 

“determinants of the dependent variable omitted from the model are spatially autocorrelated, 

and with a situation where unobserved shock follow a spatial pattern” (Elhorst, 2011). The 

spatial error model in matrix form is given by 

   𝑌 = 𝛼 + 𝛽𝑋 + 𝑒,   𝑒 = 𝜆𝑊𝑒 + 𝜇                       (2) 

where 𝜆 is a scalar parameter called the spatial autocorrelation coefficient. 

However, changes in dependent variables contribute to the spatial interactions in addition to 

the changes induced by the explanatory factors, therefore, LeSage and Pace (2009) 

recommend Spatial Durbin model in which the spatial lag model is augmented by the spatially 

weight value of independent variables. In our study, Spatial Durbin model can be formulated 

as, 

ln𝒆𝒊𝒕 = 𝜌� 𝜔𝑖𝑖

𝑁

𝑖=1
𝑒𝑖𝑡 + 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑙𝑛𝑦𝑖𝑡 + 𝛽2(𝑙𝑛𝑦𝑖𝑡)2 + 𝛽3(𝑙𝑛𝑦𝑖𝑡)3 + 𝜡𝒊𝒕𝜼 + 𝜆� 𝐱𝐢𝐭

𝑁

𝑖=1
𝜇𝑖𝑡

+ 𝜺𝒊𝒕 
(3) 

where 𝒆𝒊𝒕  is CO2 emissions per capita of province i at t year. Similarly, 

𝜌� 𝜔𝑖𝑖
𝑁
𝑖=1 𝑒𝑖𝑡  denotes the average weighted effects of emissions from the neighboring 

provinces on emissions from province i.  𝑦𝑖𝑡 is provincial per capita of GDP at 1978 constant 
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price. Here we use the logarithm of GDP per capita at province level, its square and 

particularly cubic value as the explanatory variable because some recent studies have started 

to take it as a more precise way to posit an EKC relationship. 𝜡𝒊𝒕 represents all the control 

variables, in our study, population density and industry composition are included. 

𝜆∑ xit𝑁
𝑖=1 𝜇𝑖𝑡 indicates the total interaction effects of national GDP per capita, population 

density and industry composition of province i along with those of the neighboring provinces 

on per-capita emissions from province i. Spatial Durbin model in effect can be simplified to 

either the spatial lag model or the spatial error model, which can be achieved by likelihood 

ratio (LR) test and Wald test. For theoretical derivation, please see (LeSage and Pace, 2009; 

Elhorst, 2012). 

Neither form of spatial regressions can be estimated by the ordinary least squares (OLS) 

method which would result in spurious estimations of parameters. Specifically, for spatial lag 

model, the OLS estimator disables the property of being unbiased and consistency hold by the 

response parameters. When estimating specification includes the spatial error, the OLS 

estimator of the response parameters remains unbiased, though, it is not any more confirmed 

with the property of efficiency. Therefore, it is suggested to use a variety of techniques to 

overcome these difficulties, for example, the maximum likelihood (ML) in the earlier time 

(Anselin, 1988; Anselin and Hudak, 1992), and recently two nonparametric covariance 

estimation techniques specifically general methods of moments (GMM) (Lee, 2007) and 

instrumental variables (IV). However, estimation results might be partially inconsistent 

because of number of observations (N) and length (T). Lee and Yu (2010) proposed two 

methods to correct for this bias and obtain the consistent results. You can get detailed 

information from their technical manuscripts. 

Elhorst (2003) pinned down three reasons why both types of above the models need to be 

considered. As both forms present its unique spatial extensions to the traditional panel data 

models, especially when “nonspatial model based on Lagrange multiplier (LM) or robust LM 

tests is rejected in favor of the spatial lag or the spatial error model, one should be careful to 

endorse one of these two models” (Elhorst, 2012). Generally, LM checks for a spatially 

lagged dependent variable and for spatial error autocorrelation, the robust LM tests check for 

a spatially lagged dependent variable in the local presence of spatial error autocorrelation and 

for spatial error autocorrelation in the local presence of a spatially lagged dependent variable 

(Elhorst, 2012). Therefore, theoretical reasoning along with diagnostic tests jointly works on 

the determination of which specification used in research. Figure 3 illustrates the framework 

of our research. To begin with, we conduct Moran’I test to check the spatial correlation 

between provinces and then we use Theil index to decompose the emissions inequality 

contributed by intra-regional as well as inter-regional effects. Next we impose LM as well as 

robust LM tests on the nonspatial models to identify the fixed effects forms whilst diagnose 
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spatial relationships. Then, we impose Wald and LR tests on the spatial models obtained by 

the first step. After that we decompose the results from the perspective of direct, indirect and 

total effects. Finally we calculate the turning points for GDP per capita by means of spatial 

and nonspatial models and compare them from the perspectives of policy, regional assistance 

and industry transfer. These programs of the specifications identification are realized by Matlab 

and provided by Paul Elhorst at his website www.reroningen.nl/elhorst. 

 

 
Fig. 3 Framework of study on how spatial interaction affects mitigation and development 

 
In this study, the logarithm of provincial emissions is regressed on the logarithm of 

provincial GDP per capita as the explanatory variables, and population density as well as 

industry composition as the control variables. Initially, we have tried several different 

variables and finally single out the above group that measuring the environment and 

industrialization level of one particular province. Specifically, we calculate CO2 emissions of 

29 provinces1 using the method proposed by Du (2010). The provincial data set of energy 

consumptions, GDP (1978 constant price), province area, population and added value by 

industry all comes from China Statistical Yearbook, China Energy Statistical Yearbook, 

Energy Balance Table, China Statistical Yearbook for Provinces, Comprehensive statistical data 

                                                             
1 Data on Sichuan Province and Chongqing City is emerged; Xizang Autonomous Region is excluded due to data 
inaccessibility 

http://www.reroningen.nl/elhorst
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and materials on 60 years of new China and other references. Then we emerge the data sets 

with a sum of 493 observations and obtain the per capita emissions measured by metric tons 

per person, the real GDP per capita measured at 1978 constant price, population density by 

persons per square kilometers and industry composition by percentage accordingly (see Table 

1). 

 
Table 1 Data descriptions 

Variable Definition Unit Mean SD Observations 

CO2 emissions  
per capita 

Provincial per capita of fossil fuel 
induced CO2 emissions 

Metric tons per 
person 4.52 3.10 493 

GDP per 
capita 

Deflating provincial nominal GDP 
using the province specific 
deflators with 1978 as the base 
year 

Yuan per 
person 4371.60 4070.39 493 

Population 
density 

The number of people per unit of 
area, usually quoted per square 
kilometer 

Persons per 
square 
kilometers 

402.33 536.70 493 

Industry 
composition 

Ratio of value added by industry 
over total value % 37.31 8.36 493 

 
The conventional EKC is augmented by the spatial weighted values, which indicates that 

how to construct the spatial matrix in a proper way becomes the key procedure. Given that 

some articles have elaborated on weighting methods (see Niebuhr and Annekatrin, 2000; 

Anselin, 2002; Garrett and Marsh, 2002; Madariaga and Poncet, 2007), this paper does not 

attempt to go over the basics. The most commonly used form is presented as the ROOK 

principle which indicates a contiguity matrix where  w𝑖𝑖 ∗= 12 if one region shares a 

common land border with another region, otherwise w𝑖𝑖 ∗= 0. This nevertheless easily misses 

some information in the case that the Canada and Mexico who are patently connected 

nevertheless are unrelated because they do not share the same land border. Usually, the weight 

matrix is row standardized for rows sum to unity and elements of the leading diagonal are 

valued zeroes. Moreover, we use other two methods to construct the weight matrix and the 

estimation results corresponding to each method can be provided upon your request. 

4. Results and analysis 

This section will be followed by a series of test and regression results. The generalized 

Moran’s test is firstly employed in order to see how regions cluster in terms of individual 

emissions, furthermore, to observe the spatial relationship before we formally decide to 

incorporate the spatially weight value into the model. And then the estimation results of 

nonspatial and spatial models are given and further analyzed. Next, total effects of 

explanatory variables on the provincial emissions are decomposed into direct and indirect 
                                                             
2 𝑤𝑖𝑖∗ is an element of the unstandardized weight matrix, 𝑤𝑖𝑖 is an element of the standardized weight matrix. 
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effects with regard to the corresponding turning points. Finally we compare our results under 

three weighting methods. 

4.1 Moran’s I test of spatial autocorrelation 

Moran’s test is used to check for the spatial autocorrelation. The generalized Moran’s I is 

measured within -1 to 1. If Moran’s I falls into the interval of 0 to 1, it means that one location 

is neighboring places that have the same situation with it; otherwise, opposing relationship 

occur for one place against its neighbors. Moran scatter plot is divided into four quadrants and 

it is used to illustrate the spatial dependence in a clear way. Units that fall into the first and 

third quadrants represent that they have a positive correlations with its neighboring places, 

which are called HH area and LL area respectively. Units that fall into the second and fourth 

quadrants are those who have a negative correlation with its neighbors, which are called LH 

and HL area accordingly. 
 
Table 2 Moran’s I test of provincial per capita emissions from 1995 to 2011 
Year Moran's I p-value Year Moran's I p-value 

1995 0.2022 0.001 2004 0.1280 0.010 

1996 0.1946 0.002 2005 0.1445 0.006 

1997 0.2124 0.001 2006 0.1365 0.007 

1998 0.1692 0.005 2007 0.1289 0.011 

1999 0.1732 0.004 2008 0.1124 0.013 

2000 0.1724 0.004 2009 0.0953 0.016 

2001 0.1849 0.003 2010 0.0882 0.024 

2002 0.1625 0.004 2011 0.0367 0.046 

2003 0.1387 0.007 
   

Source: author’s calculation 
 

It can be easily seen that, regions cluster in general because Moran’s I in all years are 

statistically significant. It means that province with high emissions is immediately 

neighboring one also with high emissions while province with low emissions is in close 

proximity to those of low emissions. It is obviously illustrated in Figure 4 that nine provinces 

are located in the HH quadrant and eleven provinces in the LL quadrant in 1995 while most 

provinces converge in the LH quadrant in 2011 This is in accordance with the situation where 

provinces clustering in the east area are in the fast pace of development followed by large 

amount of energy consumption while those in middle and west area have recently started to 

launch great projects of construction and even expansion. Imbalance of resource endowment 

among regions partly accounts for the spatial dependence in data as well. Interestingly, this 

spatial dependence has presented itself in a diminishing way, especially in 2011, decreased to 

0.0367. This is probably as a consequence of less dependence of policies that specific to one 

province upon neighboring places. On the other hand, fierce competition on resource 
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exploitation between regions would occur, especially after the announcement of the “Go West” 

campaign. 

 
Fig. 4 Scatter plots of Moran’s I in 1995 and 2011 

 
4.2 Emissions inequality between the East, Northeast, Middle and West China by 

Theil index 
Inequality in emissions occurred among regions as a result of differentiated developing stages 

and understanding the internal dynamics of carbon inequality within these regions has the 

potential to shape future mitigation policies (Clarke-Sather et.al, 2011). In this section, the 

regional carbon inequality is measured by Theil index which allows for the decomposition of 

inequality within regions as well as between regions. Theil index 𝑇𝑖 in our study can be 

calculated as follows. 

  𝑇𝐼 = �
𝐸𝑖
𝐸𝑁

𝑁

𝑖=1

× log�
𝐸𝑖

𝐸𝑁�
𝑃𝑖
𝑃𝑁�
� (4) 

where 𝐸𝑖 and 𝑃𝑖 represent the total emissions and population of province i, while 𝐸𝑁 and 

𝑃𝑁 represent the total emissions and population of all sample provinces. 

Next, we decompose the Theil index into two parts, namely Theil within region (𝑇𝑤) and 

between region (𝑇𝑏), which is given as 

  𝑇𝐼 =  𝑇𝑤 +  𝑇𝑏 (5) 

Theil within region equals the contribution by intra-regional provinces to the inequality, 

which is given as, 
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  𝑇𝑤 = �
𝐸𝑟
𝐸𝑁
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𝑟=1
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𝐸𝑖𝑟
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𝑁
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⎝
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⎛

𝐸𝑖𝑟
𝐸𝑟
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𝑃𝑖𝑟
𝑃𝑟
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⎠

⎟
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where 𝐸𝑟  and 𝑃𝑟  are the total emissions and population of four regions that the East, 

Northeast, Middle and West China. 𝑖𝑟 refers to those intra-regional sample provinces.  

Theil between regions equals the inter-regional contribution to emission inequality, 

which is given as, 

  𝑇𝑏 = �
𝐸𝑟
𝐸𝑁

4

𝑟=1

× log�
𝐸𝑟

𝐸𝑁�
𝑃𝑟

𝑃𝑁�
� (7) 

Here, we define that East China includes East China includes Municipality of Beijing, 

Municipality of Tianjin, Hebei Province, Municipality of Shanghai, Jiangsu Province, Zhejiang 

Province, Fujian Province, Shandong Province, Guangdong Province, Hainan Province; Northeast 

China includes Liaoning Province, Jilin Province and Heilongjiang Province; Middle China 

includes Shanxi Province, Anhui Province, Jiangxi Province, He'nan Province, Hubei Province, 

Hu'nan Province; West China includes Inner Mongolia, Guangxi Hui Autonomous Region, 

Sichuan Province, Municipality of Chongqing, Guizhou Province, Yun'nan Province, Shannxi 

Province, Gansu Province, Qinghai Province, Ningxia Province, Xinjiang Uygur Autonomous 

Region and Tibet. Given the data inaccessibility, we emerge the data sets of Sichuan and 

Chongqing, while Tibet is ignored. 

Figure 5 illustrates that the inequality at the national scale levels off during the past 17 

years. Differences in emissions between regions are narrowed whilst within region are 

expanded, which indicates that “convergence club” in a way is diminishing. Inequality of 

carbon emissions that contributed between regions only takes account for no more than 10 

percent in 2011. It is not surprising because, for one thing, leading provinces in the eastern 

area undertake an average of 18 percent reduction of carbon intensity in the baseline of 2010, 

heavier than the other three regions; for another, as China has launched the “Go West” 

campaign since 1998, the western area is allowed to construct infrastructure for agricultural 

production, energy, transportation. Moreover, the western area also holds responsible for 

undertaking the industry transfer from other regions or even abroad, like manufacture, or 

ventures in agroindustry or mineral exploitation. In addition, the middle region, a bridge 

connecting the east and west area, is ready to be revitalized according to the national strategy. 

Actually, spillover induced by the spatial dependence often exerts stronger effects on places 

nearby and then gradually extended to outskirts. For instance, Shanghai has played a leading 

role in facilitating the neighboring cities like Hangzhou, Suzhou and Nanjing in a way of 
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enhancing the tourism and attracting the investments. Nevertheless, the south part of Jiangsu 

is developed one step ahead of the north part thanks to being close to Shanghai and Zhejiang. 

Therefore, gap between regions will finally be diminishing by stage. 

 

 
Fig. 5 Components of Theil index of carbon inequality 

 
However, differences within regions are expanding due to the sharp increase of the 

contribution by Western China. The truth is intra-inequality of the other three regions is 

diminishing except the west area. In specific, the eastern region holds an average of 2.6 

percent decrease in contributing to the nationwide emission inequality during the past 17 

years and the middle region 1.9 percent. In fact, provinces in the east area have been 

clustering in small economic zone such as Beijing, Tianjin and some counties in Hebei as a 

group, while Pearl River Delta Economic Zone and the Yangtze River Delta Economic Zone 

are highly developed neck in neck, which can explain why provinces in the east area are 

slightly differentiated. Comparatively, as Chongqing, Sichuan and Guizhou are attracting 

more attention, components in the western area begin to highly differentiated, leading to an 8 

percent increase of contribution to inequality. On the basis of all results, we find that whether 

convergence or divergence within region or between regions would make a difference in 

China’s action, thus, we decide to take the spatial dependence into account in our study. 

 
4.3 Estimation results of nonspatial and Spatial Durbin models 
1) Results of nonspatial models 
Here we construct a model selection framework according to the estimation results. Table 3 

can be interpreted in following aspects. 

 
Table 3 Estimation results of CKC models by OLS (pooled OLS), spatial fixed effects, time-period 

effects, spatial and time-period effects 
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Determinants 

 (1) 

Pooled OLS 

 (2) 

Spatial fixed 

effects 

 (3) 

Time-period fixed 

effects 

 (4) 

Spatial and time-period 

fixed effects 

Intercept 
40.731*** 

(3.261) 
   

lny 
-13.021*** 

(-2.852) 

-6.615*** 

(-2.784) 

-6.386 

(-1.420) 

-3.333* 

(-1.733) 

(lny)2 
1.659*** 

(2.998) 

0.954*** 

(3.278) 

0.840 

(1.542) 

0.688*** 

(2.928 ) 

(lny)3 
-0.066*** 

(-2.983) 

-0.040*** 

(-3.409) 

-0.034 

(-1.536 ) 

-0.033*** 

(-3.493) 

lnpop 
-0.197*** 

(-11.800) 

-0.200 

(-1.148) 

-0.1614*** 

(-9.562) 

0.915*** 

(4.021) 

indadd 
0.012*** 

(5.602) 

0.015*** 

(7.122) 

0.014*** 

(6.588) 

0.013*** 

(7.421) 

R2 0.657 0.947 0.688 0.966 

σ2 0.127 0.020 0.115 0.013 

logL -187.674 270.842 -164.391 379.389 

D-W 1.941 1.284 2.042 1.890 

LM spatial lag 118.403*** 47.800*** 74.613*** 7.130*** 

LM spatial 

error 
93.203*** 73.751*** 72.076** 0.621 

Robust LM 

spatial lag 
28.409*** 0.057 6.366** 13.171** 

Robust LM 

spatial error 
10.412* 26.008*** 3.828** 6.662*** 

LR-test joint significance spatial fixed effects       1087.561***   (p=0.000) 

LR-test joint significance time-period fixed effects   217.095***   (p=0.000) 

Note: 1) t-values in parentheses 2)*, **, and *** indicate that the coefficient is significantly different from zero at 

the 10%, 5% and 1% significance level, respectively. 3) lny is the logarithm of provincial GDP per capita, lnpop is 

the logarithm of population density and indadd refers to industry composition; logL means the logarithm of 

likelihood, the larger it is, the better performance. 
 

It appears that the spatial and time-period fixed effects model (also known as two-way 

fixed effects) has a relatively good performance compared with the other three models, 

because the largest R-square, the largest logL and the least variance all fall into this model. 

Additionally, D-W around 1.9 shows little evidence of autocorrelation. The results of LR tests 

(1087.561, with 29 degrees of freedom) shows little possibility that the spatial fixed effects 

are jointly insignificant. Similarly, the hypothesis that the spatial fixed effects as well as the 

time-period fixed effects being jointly insignificant is also rejected according to the LR test 
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results (1087.561 with 29 degrees of freedom and 217.095 with 27 degrees of freedom). 

Among the four models, by both LM test and Robust LM test, the hypothesis of either no 

spatially lagged dependent variable or no spatially autocorrelated error term is mostly rejected 

at 10 percent, 5 percent as well as 1 percent significance, which provides the evidence of 

employing Spatial Durbin model as the specification. 

2) Results of Spatial Durbin model 
Next, we spell out some tests that incorporate spatial effects into the regression model. 

According to Table 4, Column 1 reports the results of nonspatial model with spatial and 

time-period fixed effects, while Column 2 and 3 are results of Spatial Durbin model 

without/with bias correction. Compared with the coefficient estimation using direct approach, 

differences are slight when bias is corrected; yet, the coefficient of the spatial lagged 

dependent variables (W*lnCO2) seems to be more sensitive to the corrected model. Generally, 

W*lnCO2 is negative, which means regions compete for the emission rights from the 

nationwide perspective. This is reasonable as currently the conventional resources like coal 

and oil are still competitive in China, provinces in the middle and west China are challenged 

with the worsened environment and low capability, leading to the fact that most regions with 

low emissions are, in a way, deprived of chances to exploit the resources that are expected for 

further development. 

The spatially lagged value of the independent variables presents itself in a way to observe 

how neighbors affect the local province. In particular, it can be seen in Table 4 that the 

coefficients of the spatial lagged population density are negative, which means that more 

residence in the neighboring provinces might result in the reduction of local carbon emissions. 

Similarly, industry in the neighborhood expands also allows for mitigation in the local region. 

It seems reasonable that emissions in the local region might decrease to a degree because 

more energy would be exploited in order to meet the growing demand by the neighbors 

induced by the extension of population and heavy industry. 

However, the estimation of the coefficients by is not invalid for any comparison or 

calculation of turning points, because they do not, like in a nonspatial model, represent the 

marginal effect of a change in the income or any other explanatory variables on carbon 

emissions. Here, the total effects of the income change on emissions are composed into direct 

and indirect effects. Table 4 lists all the results of a. model of the spatial and time-period fixed 

effects (two-way fixed effects) without spatial connections (See Model (1)); b. the coefficient 

estimates of all variables in the Spatial Durbin model of two-way fixed effects without/with 

bias correction (See Model (2) and (3)); c. the direct, indirect and total effects of the Spatial 

Durbin model of two-way fixed effects without/with bias correction (See Model (4) and (5)). 

Secondly, the reason why the income elasticity -4.696 in Model (2) is different from the 

direct effects -4.727 in Model (4) is due to the feedback effects. The feedback effects, 
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measured at 0.031, arise as a consequence of a two-way interaction that carbon emissions 

change as the economy of one particular area grows, impacts of local emissions changes then 

pass through neighbors in a successive way and finally back to the local area itself (Elhorst, 

2012). Both the spatially lagged independent variables, along with the spatially lagged 

dependent variable, account for the feedback effects, which inevitably happened yet cannot be 

visually seen. Nevertheless they are quite small in light of population density and industrial 

composition.  

Thirdly, the indirect effects tempt to measure the effects of per capita income and other 

factors on the carbon emissions of neighboring provinces and then back to the particular 

province, which are obvious but statistically insignificant. The indirect effects account for 

approximately 60 percent of the direct effects in case of the provincial per-capita income, in 

other words, if the local income changes, the change of neighboring provinces to the change 

of local province is in the proportion of more than 1 to 1.65. In view of population density and 

industrial composition, the direct effects are somewhat offset by the indirect effects. Therefore, 

only by adding direct and indirect effects together, can the real contribution be revealed when 

spatial relationship is included in models. 

.
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Table 4 Results of the non-spatial model and the Spatial Durbin model in direct, indirect and total effects 

 Nonspatial models Spatial Durbin model 

 Two-way fixed 
effects Two-way fixed effects Two-way fixed effects 

(bias-corrected) Two-way fixed effects Two-way fixed effects  
(bias-corrected) 

Effects -- Coefficient estimate Coefficient estimate Direct Indirect Total Direct Indirect Total 

lny -3.333* 
(-1.733) 

-4.696
* 

(-2.198) 
-4.664

* 
(-2.080) 

-4.727** 
(-2.191) 

-2.851 
(-0.665) 

-7.578* 
(-1.970) 

-4.629** 
(-2.050) 

-3.307 
(-0.702) 

-7.936* 
(-1.797) 

(lny)2 0.688*** 
(2.928 ) 

0.843
*** 

(3.2333) 
0.840

*** 
(3.072) 

0.849*** 
(3.200) 

0.249 
(0.477) 

1.098** 
(2.398) 

0.836*** 
(3.034) 

0.305 
(0.533) 

1.141** 
(2.172) 

(lny)3 -0.033*** 
(-3.493) 

-0.040
*** 

(-3.760) 
-0.040

*** 

(-3.576) 
-0.040*** 
(-3.704) 

-0.009 
(-0.409) 

-0.049** 
(-2.619) 

-0.040*** 
(-3.533) 

-0.011 
(-0.471) 

-0.051** 
(-2.367) 

lnpop 0.915*** 
(4.021) 

0.689
*** 

(2.940) 
0.692

*** 

(2.814) 
0.688*** 
(2.959) 

-0.273 
(-0.589) 

0.415 
(0.812) 

0.687** 
(2.750) 

-0.250 
(-0.481) 

0.437 
(0.768) 

indadd 0.013*** 
(7.421) 

0.012
*** 

(6.795) 
0.012

*** 

(6.519) 
0.012*** 
(6.991) 

-0.005 
(-1.328) 

0.007* 
(1.892) 

0.012*** 
(6.501) 

-0.005 
(-1.245) 

0.007 
(1.660) 

W*lnCO2 -- -0.076 

(-1.252) 
-0.017 

(-0.280) -- -- -- -- -- -- 

W*lny -- -3.356 
(-0.752) 

-3.129 
(-0.669) -- -- -- -- -- -- 

W*(lny)
2
 -- 0.330 

(0.609) 
0.287 

(0.506) -- -- -- -- -- -- 

W*(lny)
3
 -- -0.012 

(-0.562) 
-0.010 

(-0.447) -- -- -- -- -- -- 

W*lnpop -- -0.200 
(-0.396) 

-0.242 
(-0.457) -- -- -- -- -- -- 

W*indadd -- -0.004 
(-1.055) 

-0.005 
(-1.145) -- -- -- -- -- -- 

Note: 1) t-values in parentheses 2)*, **, and *** indicate that the coefficient is significantly different from zero at the 10%, 5% and 1% significance level, respectively. 
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4.4 Results comparison within different models 

Next, we calculate the nationwide GDP per capita that corresponding to the turning points in 

each non-spatial and Spatial Durbin model (SDM). 

 

 
Fig. 6 Turning points of GDP per capita in nonspatial models and SDM models 

Source: authors’ calculation 
 

Figure 6 overall illustrates that the turning points corresponding to the nonspatial models 

are much higher than their counterparts in the spatial panel models. More specifically, the 

nonspatial models of spatial fixed effects generates the largest real GDP per capita which 

amounts to 487634.8 yuan (1978 constant price), while the biased corrected Spatial Durbin 

model has the smallest above the total effects. This implies that the consideration of spatial 

connections naturally makes it easier for regions to achieve peak emissions. In addition, the 

reason why results over the direct effects are nearly twice as those over the total effects is that 

emissions and income are interactively affected not only by regions who share the same 

border (first-order neighbors) but cities or provinces who neighboring the first-order 

neighbors. In fact, if one particular province decides to implement a local policy, it might 

benefit more since its neighbors have in turn facilitate the local area itself; or the policy might 

fail as profits are unexpectedly taken away by its neighbors. The eastern region has exported 

carbon emissions to the middle and west when it is ready transfers the heavy industry outside 

(Liu et al, 2010). Sooner or later, spillover of mitigation by the East China will in turn be 

extended to the other regions in a way of investment encouragement, technology diffusion, 

and labor migration. Obviously, spatial interaction acts actively in promoting the mitigation 

plan and reaching emissions peak at the expense of lower income. In other words, it seems 

necessary to pay more attention to those leading area and fairly important to consider the 

spatial dependence when design mitigation policy.  
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Fig. 7 Turning points of GDP per capita (PPP) of the US, the UK, Germany, France and China 
 

If compared from a global perspective, China will reach the peak emissions at a higher 

individual income (see Figure 7). The turning point in the United Kingdom occurred in 1971 

at approximately USD 13000 GDP per capita (2000 constant price), the United States in 1973 

at USD 19500, Germany and France in 1979 around USD 17000. It appears that most of the 

developed countries have passed the stage where industrialization and urbanization triggered 

by large energy consumption, and now they are looking for clean patterns, like the reform that 

energy consumption transfers from petroleum to shale gas commences in the United States 

and the strict and comprehensive regulations on renewable energy are proposed by the Europe 

Union, all enable them a low-carbon economy in the future whilst shows China a good 

example of how to design the roadmap for sustainability patterns . 

In recent years, China has been working on emissions reduction. Provinces are allocated 

with a specific mitigation target and China has achieved a totally 19 percent of energy 

intensity reduction during the Eleventh Five-Year Plan. Also, the government has started to 

pay more attention to the renewable energy, in a hope to achieve clean and sustainable 

patterns of energy consumption. In all words, the essence of improving efficiency falls into 

the utility of renewable energy, however, large amount of investment in China is needed not 

only for the basic demand for survival, but also to fulfill the demands for R&D as well as 

marketization on advanced technologies and equipment, to subsidize those who are 

encouraged to use clean products or even supporting those who lost jobs because the 

heavy-pollutant industries they worked for are discarded. In this way, it seems that if without 

any assistance from other industrial countries, China would get to the peak emissions at a 

relatively higher price.  
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5. Conclusion 

Spatial dependence, as it undoubtedly exists in real life, yet has been long neglected when 

models are estimated. It is more likely to “risk misspecification and are in danger of 

presenting a deceitful story of the reasons why emissions change over time” when researchers 

forget to take the spatial effects into their models (Maddison, 2006).  

By conducting Moran’ I test, we find that from a nationwide perspective, carbon emissions 

patterns are similar when regions cluster, but this locally regional dependence is diminishing 

by year. The decomposed Theil index tells the reason that inequality in emissions contributed 

by inter-regional differences is decreasing by 9 percent since 1995. Faced with the heavier 

mitigation targets, the eastern region has to make a compromise to the competition by the 

revitalization in Middle China and great leap in West China. The truth is gap within the west 

part has made increasing contribution with an average growth rate of 8 percent to the 

emissions inequality, in sharp contrast to the other three regions. It appears that regional 

interaction in space might have been becoming more complicated and thus, increasingly 

important to China’s mitigation action and social development in the future. 

We then employ one specific form of the spatial panel models, Spatial Durbin model, to 

shape the relationship between mitigation and economic growth using the panel data of 29 

provinces ranging from 1995 to 2011. On the basis of all results, it is more likely that peak 

emissions occur when the GDP per capita reaches between $USD 21594 to 24737 at 2000 

constant price. It seems much lower when compared with the estimations of models which 

ignore the spatial dependence, but still higher than some highly industrialized countries who 

have passed the emissions peak. In fact, provinces often mimicking other favorable 

environmental policies in order to reduce the costs in decision-making, especially those 

policies implemented by regions where share the similar resource, preference and 

development patterns. For China, the effects of policies of updating industries, advancing 

technologies and adjusting consumption structures would be largely strengthened by fully 

taking advantage of the regional interactions.  
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