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Abstract

Practical computational limits for stochastic decision analysis models often require
that probability distributions have a modest number of points with positive mass.
This paper develops an approach to constructing such discrete joint probability
distributions which introduces less bias than more commonly used methods. The

method, based on solving systems of nonlinear equations, is demonstrated for both
continuous and discrete distributions.
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1 Introduction

Practical limits to computation for stochastic decision analysis problems often require that
probability distributions be represented by a modest number of points with positive mass.
Where possible, these distributions should be subjective and elicited directly from the decision
maker. When the number of random variables relevant to the decision problem is small and the
decision maker has developed intuition regarding the random variables, the direct elicitation of
distributional information is reasonably practical. However, when the number of random
variables is large or the decision maker has little or no basis for imagining distributions for some
or all of the random variables, other methods based on historical observations may be more
useful than elicitation.

In situations where historical observations are employed to develop distributional
information, two commonly employed approaches are to either directly use the historical data
as an "empirical distribution" by assigning probabilities to the individual observations or to use
the data to estimate the parameters of a known (or assumed) continuous distribution. Due to
practical limits on computational capacity, neither of these approaches may be appropriate since
the empirical distribution may contain too many points to be directly useful, and an estimated
continuous distribution may not be directly useful. (An example of the latter case occurs in
problems of expected utility maximization where, given the continuous distribution of the
random variable or variables, the expected utility function has no closed form expression.) In
these cases, the method described in this paper may be of use. This method, called Gaussian

Quadrature for Joint Distributions, is an approach to approximating joint probability distributions



by a set of discrete points and associated probabilities. The method is superior to other
commonly used methods which can be shown to systematically understate the variability in the
distributions to be approximated.

2 Notation

The notation to be used throughout this paper is defined here. Let:

x=[x;);_,, = a vector of m random variables whose components are denoted x;.

{x}= the joint probability mass function for the variables x, i=1,2,..,m.

<Sfx)>= f_: f_: f_: fix){x}dxdx,..dx,= the expected value of the function f(x).

Jx=Px),.,, = the vector in m-dimensional space which represents the j -th point in the

discrete approximation to the distribution {x}.
ip= the probability mass associated with /x in the discrete approximation.

y= a vector of decision variables.

3 Stochastic Decision Problems, Taylor Series, and Gaussian Quadrature

In general, a stochastic decision problem may be stated in the form

maximize o <f(x|y)> (1)
where fix|y) is a measure of the benefit associated with the choices y when x is realized and
whose expected value is to be maximized. (In the following discussion, the argument y in f
will be suppressed.) To make the solution of such problems practical when <f{x)> has no closed

form solution, the expected value is typically approximated by
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Provided that fix) has a Taylor series expansion (or that f{x) can be approximated by a

polynomial over the relevant range for x) then
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Thus, the problem objective becomes the integral of an infinite polynomial in the variables x;.

Combining (1) and (3),

<S)>=fG) +2: pi_z Cxiy T

i

. . m m _1— azj(x)

E DM )55 ox,2%, “)
N A m m m 1 . a3ﬂ;)

. 1213121:;5( w7 ) (x5 x"_x")a x,0% 9%,

If the above approximation of <f{x)> is truncated after K terms, then the approximation involves

expectations of products of the random variables only up to the K-th order. If all of these

moments are correct for the approximate distribution, the truncation error may be expressed as
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for some 0<6<1. This error will be small if all of the moments of the K plus first order are

small or if the expected value of the K plus first order derivatives of the objective are small.

In practice these conditions are likely to be difficult or even impossible to check. However, it
is intuitively appealing that extremely high order moments of the distribution are unlikely to have
a large effect on decision maker choices. Thus, so long as K is chosen to be moderately large,
the truncation error seems likely to be small.

In their paper on discrete approximations of distributions of single random variables,
Miller and Rice suggest that the discrete distribution should be chosen so as to match as many
as possible of the lower order moments of the true distribution. They go on to show that the
usual approach of defining a discrete approximation to a distribution by dividing the domain into
regions and assigning the probability of falling in the region to the conditional mean in the
region biases the even numbered moments downward. Because the direction of the bias can be
predicted (at least for even numbered moments), they suggest that the simple approach to
defining approximate discrete distributions should be viewed as unacceptable. As an alternative,
Miller and Rice suggest using a gaussian quadrature approach to distribution approximation.

There is little evidence in the literature that this gaussian quadrature approach has been
widely adopted by decision analysis practitioners. The probable reasons are two-fold. When
possible, it is probably more relevant to elicit the decision maker’s (DM’s) subjective probability
distribution directly. Second, the gaussian quadrature approximation procedure, as it appears

in the literature, is focused on univariate distributions. However, it is in the multivariate case



that the DM would likely be overwhelmed by the task of specifying probabilities associated with
the joint outcomes of several random variables. In this case, an analysis based on historical data
is typically needed to develop distributional information.

One approach to what is in essence a problem of numerical integration is to use the
Monte Carlo approach to computing the expected benefit function. Thus, a uniform random
sample over the support region for the continuous random variables would be generated and the
product of the density and the benefit function evaluated at each realization would be computed
and summed to give an approximation to the integral. While this has been viewed as a good
approach to numerical integration, particularly in the multivariate case, it fails to satisfy some
important goals. First, the desired distribution approximation should involve a moderate number
of points. To get reasonable accuracy from the Monte Carlo approach, a fairly large number
of points must be sampled. Second, the Monte Carlo approach does not take full advantage of
our knowledge of the joint distribution of the random variables. Third, there does not seem to
be an analog to the Monte Carlo approach for discrete distributions. It is noteworthy that with
Monte Carlo integration, not even the mean of the distribution is preserved.

As an alternative, we are proposing an approach to constructing approximate distributions
which is not sampling based as is a Monte Carlo method. Before considering the details of the
theory and practice of the new method, a simpler approach that has been used in previous studies
(e.g., Moss) will be described and illustrated.

The analogous approach to the simple method (described by Miller and Rice) of defining
a discrete approximation is no longer entirely simple in the multivariate case. For example, one

approach to defining a discrete approximation to a distribution which uses a small number of



points and preserves the mean of the true distribution would be to divide the support of the
random variables into regions defined by planes parallel to all but one of the axes for the random
variables which pass through the mean vector. Points could then be defined by the conditional
means for the regions, and the mass associated with the points would be equal to the mass
associated with the region. Thus, for the standard bivariate normal distribution for instance, the
discrete approximation would be the conditional means for each of the four quadrants, and the
mass on each of these points would be one quarter.

Based on this simple approach, four-point distributions were constructed for the standard
bivariate normal and bivariate multinomial distributions. These approximate distributions appear
in Table 1. The percentage errors in the first four central moments for these approximate
distributions are displayed in Table 2. Many of the moments (higher than the first) are
substantially in error. In particular, all moments involving only even numbered powers of the
random variables are substantially understated. Thus, the same sort of predictable bias observed
by Miller and Rice in the univariate case also occurs in the multivariate case.

Table 1: Approximate Distributions Based on the Conditional Expectation Approach

Point  Bivariate Normal Bivariate Multinomial
No. -20 x y
f(x,y) — 1 e—x’-yz ﬂX,}’ - 2012 ( l l
2r x1yl (20-x-y)!1 2 ) | 2
where x+y<20
p x Y 4 X y
1 0.25 0.1995 0.1995  0.0945 6.6612 6.6612
2 0.25 -0.1995 0.1995  0.2884 3.5789 7.0870
3 0.25 0.1995  -0.1995  0.2884 7.0870 3.5789
4 0.25 -0.1995  -0.1995  0.3288 3.9388 3.9388




The approach Miller and Rice suggest is to base the approximation on gaussian

quadrature. With a single random variable, this amounts to choosing a set of probabilities and

points satisfying,

<xk= f_:x "{x}dx=§ kp bk (6)

i=1
for k=0,1,.,2N-1. In the case where x represents a single random variable, this system of
equations is straightforward to solve by solving two linear systems and determining all of the
roots of a polynomial of order N-1. The resulting solution satisfies some convenient properties.
For instance, if the moments of the original distribution are finite, then the solution to the system

will exist and the values *x will lie within the support of the original distribution.

Table 2: Percentage Error in Central Moments Using Conditional Expectation Approach

Moment Bivariate Bivariate
Normal Multinomial
<x> 0.0 0.0
<x2> -96.0 -4.5
<xy> 0.0 0.7
<3 0.0 -10.5
<xZy> 0.0 -3.5
<> -99.9 -17.9
<x¥y> 0.0 9.1
<x2y?> -99.8 -9.0

This paper addresses the generalization and solution of this system of equations for the
case where a discrete approximate distribution for a set of jointly distributed random variables

is desired. The method is equally applicable to both continuous and discrete joint probability



distributions. Special approaches to the joint normal case which result in less efficient but more
easily computed approximations are also derived.

4 Joint Distribution Approximations Based on Gaussian Quadrature

The generalization of the approach to approximating distributions based on gaussian quadrature
to joint distributions is theoretically straightforward. In the multivariate case, the analogous
system of equations to solve to match all moments up to the K-th order (including the cross

moments) is given by

J .

IR R )
pH xi = <H xi >
i=1

j=1 i=1
where J denotes the number of points in the discrete approximation, and for all combinations

of the h,’s such that 0<X, h,<K. Miller and Rice suggest a method for solving this system in

the univariate case which does not generalize to the multivariate case. However, advances in
software for numerical solution of nonlinear equations make it reasonable to consider solving
this system of equations directly. The structure of the nonlinear system has implications for the
number of points in the approximation based on the number of random variables and the number
of moments to be exactly matched. That is, if there are two random variables, and it is desired
to match the moments from the zero-th through the fifth, then the number of conditions on the
discrete distribution is equal to one for the zero-th moment, two for the first moments, three for
the second moments, four for the third moments, five for the fourth moments, and six for the
fifth moments, yielding a total of twenty one conditions. For a bivariate distribution, each point
in the discrete distribution contributes three variables to the system of nonlinear equations: the

probability of the point, the value for the first random variable and the value for the second



random variable. If we choose to satisfy all moments through the fifth order (21), the number
of equations and the number of variables can be chosen to be equal by choosing to have seven
points in the discrete approximation to the distribution.

If, on the other hand, it is desired to match exactly only the zero-th through the third
moments (ten conditions), then there will either be too many conditions or too many variables

depending on how many points are chosen. This occurs because the number of moments is not

divisible by one plus the number of random variables. When all moments of order K or less

are satisfied exactly, the K-th order Taylor series expansion can be used as the objective
function for the decision problem, and the error in the approximation of the objective will be

the expected value of e, .

In the case where the number of points and the number of moments to be matched are
not consistent, the resulting system will either be underdetermined if too many points are used
in the approximation, or overdetermined if too few points are used. In the case where the
system is underdetermined, there will be multiple solutions to the system of equations. Since
there will be differences in the higher order moments for these alternative solutions, the choice
of approximate distribution may affect the solution to the decision problem. However, if the
distribution is approximated with a sufficient number of moments being satisfied, the resulting
effect on the solution to the decision problem should be negligible. One way to create a
completely determined system is to include additional higher order moments until the number

of variables and nonlinear equations is matched. However, even when the nonlinear system has

2 Alternatively, the expectation of the original benefit function may be used (where the expectation is taken with
respect to the approximating distribution). The approximation error will be somewhat different in this case.
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a number of variables equal to the number of equations, the resulting system may have multiple
solutions or no solutions as will be seen below in our examples. It appears to be difficult to
recognize when multiple solutions exist. No solutions will exist when the system of nonlinear
equations is dependent and the moments to be matched are not dependent in the same way. For
instance, for a bivariate distribution where we wish to match all moments up to the second
order, a straightforward counting of the number of equations and variables suggests that two
points are adequate to approximate the distribution. However, due to nonlinear dependencies
between the equations, it may not be possible to match both of the variances and the covariances
using only two points. Similarly, for five point approximation to a bivariate distribution a
straightforward counting of variables indicates that it should be possible to exactly satisfy all
moments of order four or lower. However, these equations are dependent, and there may be
no solution to the system unless the moments themselves are dependent in the same way that the
equations are.

On the other hand, if the system of equations is overdetermined, then the system of
equations may be restated as a nonlinear least squares problem to get a near solution to the
system. It may also be desirable to weight the equations for the least squares problem to give
greater emphasis to accurately satisfying the lower order moments. In the case where the
number of points and the number of moments to be matched are not consistent, the error in the
approximation to the objective function for the decision problem is more complex than
otherwise.

5 Approximating Distributions of Known Form

The solutions to the system of moment equations are shown in Table 3 for the bivariate normal,

10



and bivariate multinomial distributions. The number of points was chosen to be four and five.
In the four point case, all moments through the third order (ten moments) can be satisfied. But
with four points, there are twelve variables. Thus for each of the distributions, two cases are

presented which employ alternative choices for two additional moments of order four to obtain

a well determined system. In the first case, all ten moments of degree three or less, plus <x*>
and <y*> are employed. In the second case, all moments of degree three or less, <x’y>, and

<xy®> are employed. In the five point case, the number of moments that can be satisfied is

fifteen which happens to equal the number of moments of order four or less. As mentioned

earlier, these equations are dependent. As a result, no solution exists to the full system for the
bivariate normal case. To obtain a solution, we eliminate the moment <x2y?> from the system

of moment equation and solving the remaining system. Surprisingly, the moments for the
multinomial case have nearly the same dependence relationship as the equation system. Thus,
it was possible to compute a solution for which all of the moments are matched in their first four
significant digits. The five-point approximations are displayed in Table 3 for both the joint
normal and multinomial cases.

The systems of equations were solved using the MINOS nonlinear optimization system
(Murtagh and Saunders). The problem was formulated as follows. The problem variables are
the probabilities and associated values for the random variables in the discrete approximation.
The objective was taken to be the sum of squares of the differences between the moments of the
true distribution and the moments of the approximating distribution for all moments greater than

the zero-th. The zero-th moment, requiring that the probabilities sum to one, is treated as a
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linear constraint. Otherwise, the problem is unconstrained. (To facilitate the solution process,
bound constraints restricting probabilities to be nonnegative and less than one, and restricting

the random variables to lie within the respective supports of the true distributions were also

employed.)

Table 3: Multivariate Gaussian Quadrature Approximations

Standard Normal Multinomial

p X y p X Y
Four Points with <x*>, <y*>
1 0.45412 0.74196 0.74196 0.39568 6.23816 6.23816
2 0.04588 -2.33441 2.33441 0.08026 1.30404 9.19697
3 0.45412 -0.74196 -0.74196 0.44380 3.80553 3.80553
4 0.04588 2.33441 -2.33441 0.08026 9.19697 1.30404
Four Points with <x3y>, <xy3>
1 0.25000 1.00000 1.00000 0.31301 5.98328 6.72977
2 0.25000 1.00000 -1.00000 0.13355 1.98201 7.93674
3 0.25000 -1.00000 1.00000 0.39301 3.89396 3.56598
4 0.25000 -1.00000 -1.00000 0.16044 8.30273  2.69355
Five Points (excluding <xZy?> for the normal)
1 0.16667 1.73205 0.00000 0.20913  8.06222 4.51335
2 0.16667 -1.73205 0.00000 0.02896 0.00000 8.24387
3 0.05826 0.00000 2.32811 0.47493  3.84503 4.29489
4 0.36803 0.00000 0.61497 0.07583 7.07850 1.11506
5 0.24038 0.00000 -1.50581 0.21116 4.53111  8.04483

This approach is equally applicable to the approximation of either discrete or continuous
distributions. Thus, when a true continuous distribution is unknown, but a sample is available,
the procedure described here may be applied to produce an approximation to the sample using

fewer points than the sample distribution. It is interesting that the discrete approximations do
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not necessarily share the symmetry properties of the original distributions. For instance, the
first four-point normal distribution approximation is not symmetric with respect to reflections
across either the axes, while the original distribution is invariant to such a reflection. Similarly,
the second four-point approximation to the multinomial distribution is not symmetric about the
forty five degree line where the two random variables are equal. Thus, the approximations are
not unique.

6 Approximating Joint Normal Distributions

In cases where the distribution is multivariate joint normal and the system of nonlinear equations

cannot conveniently be solved, an alternative approach to constructing a discrete approximation

based on gaussian quadrature is available. The idea is as follows. Given a set of m jointly

distributed normal random variables, determine a transformation which yields m independent

normally distributed random variables which are linear functions of the original random
variables. Use tabulated values (as in e.g., Stroud) or the approach of Miller and Rice to
determine levels for the individual independent random variables. Invert the linear
transformation to translate the levels for the independent random variables back to the original
random variables. This results in an approximation to the original joint distribution that matches

the same number of moments as are matched for the independent factors.

Let x be an m-dimensional vector of jointly distributed random variables with mean p

and variance Z. (Itis assumed that the matrix X is positive definite. If not, then techniques

from principle component or factor analysis should be applied to reduce the set of random
variables.) The discrete approximation may then be constructed by the following set of four

steps.
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Compute the Cholesky factors of Z=Q‘DQ, where Q is orthonormal and D is
diagonal.

Define the new random variables z=Qx and note that the z’s are independent and
normally distributed with means equal to Qu and variance covariance matrix D.

(Letting g; denote the i -th row of Q, z,=¢,x and the mean and variance of z;
are q,p and d.

Use gaussian quadrature formulae to obtain discrete approximations for each of

the  z,’s. These discrete N-point approximations will be denoted

[p, J'z,-]jﬁlr._ - The joint distribution of the z’s is then denoted

mn . . .
J h N Im
{” Pl 71, 20 Zm]t} ={’p/z j=1.2,. ,N™
i1 oMy i N

Use the inverse transformation to obtain the final discrete distribution for the

original set of jointly distributed random variables,

{Ip,%x j=l,2,...N"'={jp’Q t jZ}i=1.2..w"'

The discrete distribution constructed by this approach will have moments of order zero through2N-1

which will match those of a joint normal distribution with mean p and variance-covariance

matrix .
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Table 4: Normal Distribution Approximated by Direct Solution of Moment Equations

(Seven Points) and by Decomposition (Nine Points)

Point Direct Equation Solution Decomposition Approach

Number  Approach

p x y p X y

1 0.08333  -2.82643 0.07520 0.11111  1.73205  0.00000
2 0.08333  2.82643 -0.07520 0.02778  1.73205  2.44949
3 0.08333  1.50531 1.69232 0.11111  0.00000 2.44949
4 0.08333  -1.32112  1.76842 0.02778  -1.73205 2.44949
5 0.50000  0.00000  0.00000 0.11111  -1.73205  0.00000
6 0.08333  1.32112 -1.76842 0.02778  -1.73205 -2.44949
7 0.08333  -1.50531 -1.69323 0.11111  0.00000 -2.44949
8 0.02778  1.73205 -2.44949
9 0.44444  0.00000 0.00000

The results of applying this procedure as well as the procedure described in the previous
section are displayed in Table 4 for a bivariate normal distribution with correlated random
variables. The distributions for the transformed, independent normal random variables are
approximated by three points each. Hence, the discrete distribution based on this decomposition

approach employs nine points and has all moments up to the fifth order correctly specified. The
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alternative method based on direct solution of the nonlinear moment equations employs seven
points and also exactly satisfies all moments up to the fifth order. In this bivariate case the
difference in the number of points employed by these two approaches is small. However, the
difference can, in general, be quite large since for a fixed number of moments, the number of
points required increases exponentially in the number of random variables. For instance,
consider the case where there are five random variables and the goal is to have all moments of
order three or less exactly correct. In this case, twelve points are required by the method based
on direct solution of the nonlinear equations, but 32 points are needed for the approach based
on decomposition.> Thus, even though the numerical effort required for direct solution of the
nonlinear equations is much higher than for decomposition, the former approach may still be
desirable if the cost of having a distribution with more points in the decision problem is
substantial.

7 Conclusions

The accuracy of the solution of a stochastic decision problem depends critically on how
accurately the probability distribution is expressed in the solution process. When practical limits
to computation make using the true distribution impractical, the distribution must be
approximated by a relatively small number of points with positive mass. Conventional
approaches to making such an approximation may grossly understate variances and other higher

order moments.

3 This comparison is not quite fair. With the direct solution approach, all moments up to the given order are
satisfied exactly. With the decomposition approach, all moments involving powers of the random variables up to

the given order are satisfied exactly. Thus, in our example in Table 4, <x5y5> is correct for the decomposition
approach, but not for the direct solution approach.
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One approach to constructing practical discrete approximations to distributions is to
choose the points and probabilities so as to match as many lower order moments of the original
distribution as needed. When there is a single random variable or when random variables are
independent, this is equivalent to the gaussian quadrature approach to numerical integration. The
method is generalized here to the case of jointly distributed random variables. This method can
be applied to any distribution for which the low order moments through the degree desired can
be determined, regardless of whether the original distribution is discrete or continuous. An
alternative method which produces approximate distributions with more discrete points, but
which is easier to compute, is also available for the case where the random variables are

distributed jointly normal.
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