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Introduction 

During the past two decades, direct human transformation of terrestrial ecosystems, 

sometimes referred to as land use change, has been increasingly regarded as a primary 

source of global environmental change (Millennium Ecosystem Assessment, 2005). 

Important environmental problems such as desertification, sedimentation of lakes and 

rivers, biodiversity loss, and climate change caused by greenhouse gasses, are just a sample 

of local and global phenomena brought about or exacerbated by human activities.  

These problems have attracted the interest of many disciplines. In particular, ecologists, 

economists, and geographers have engaged in the specification of models that attempt to 

capture the causes and consequences of land-cover and land-use change. Applications of 

these models range across temperate and tropical ecosystems. Some of these models use 

spatially-explicit data in the sense that the dependent variable and most or all the 

independent variables are geographically identified through a system of coordinates. These 

modeling efforts are also characterized by the use of data derived from remote sensing 

applications, and handled and manipulated with geographic information system software. 

In this article we focus on the recent progress made in the area of behavioral models on 

land use change in regions where data are particularly scarce. Most of the developing world 

falls in this category. We review a group of promising new modeling techniques that 

address some of the limitations of earlier approaches at the cost of increased data needs.   

The Bid-rent Model and Static Analysis 

Almost all economic models of land use change that use spatially data are based on the bid-

rent model introduced by von Thünen in 1826. Johann Heinrich von Thünen used 
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agricultural products to illustrate the importance of location and the resulting transport 

costs to a central market in determining land use choices at various locations. The basic 

idea was that of land rent, defined as the price paid for the services yielded by land during 

a specific time period, determines land use. The land use with the highest value product can 

offer the highest land rents and, thus, outbids other uses. The choice of land use at a given 

location is made by a profit-maximizing “operator” of the land at that location – a single 

person, household, or group of people in the case of common property ownership. In the 

simplest von Thünen formulation, with homogeneous land and ownership, the resulting 

land use pattern is a set of concentric rings around the market center with each ring devoted 

to growing a particular crop. 

Identifying Land Use Determinants Using Comparative Statics Analysis 

The earliest of the spatial economics analyses used a single period to identify important 

land use determinants. Variation across space is the source of information about the causes 

of change. Chomitz and Gray (1996) provided the first publication of a theoretical basis for 

the reduced form estimates common in newer land use studies.  

The operator is assumed to choose a particular land use by comparing the net present value 

of the returns to all possible land uses.  If we assume that a given land use has a single 

marketed product, the net present value of the return to that land use (h), its rent (Rhl)  is 

given by: 

hlhlhlhlhl XCQPR −=   1   

where P is the output price, Q is the quantity of output, C is a vector of input costs, X is a 

vector of inputs under operator control all for each land use h at location l.  The operator 

identifies the X necessary to maximize R for each land use and uses that information to 
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choose the land use with the highest Rhl for the parcel.  Note that this formulation assumes 

that the operator starts tabula rasa; there are no costs of converting from an existing land 

use to one that has just become the most profitable. 

Using a Cobb-Douglas functional form to represent the production technology and using 

the indirect profit function to express at each time t the maximum profit as a function of the 

output and input prices (see Beattie and Taylor, 1993 for more details): 

h
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where the αks are the exponents of the Cobb-Douglas production function with k inputs, 

∑−=
k

khb α1 , and G is a productivity shifter, a multiplicative combination of geophysical 

features affecting productivity such as slope, altitude, climate, and soil quality. 

Since parcel-specific data on prices of outputs and costs of inputs are seldom available it is 

common to proxy them with access cost to a relevant location such as the nearest village, 

market or town. 
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After further manipulation and assumptions about production relationships, in particular the 

use of a Cobb-Douglas functional form, we arrive at the following reduced form (see 

Nelson and Geoghegan, 2002 for more details): 

hllh
n

hllnhhhhl XGDR εβεααα +=+++= ∑ '
10 lnln  4 

The choice of land use is determined by three sets of variables. The first set is the location’s 

geophysical characteristics.  These might be vegetative (type of forest cover, soil quality), 

mineral, or even atmospheric (rainfall, evapotranspiration).  A second set of characteristics 
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is socioeconomic — location-specific attributes such as prices of inputs and outputs; degree 

of operator control over the parcel; and household characteristics.  Finally, geophysical and 

socioeconomic variables combine with a set of production technologies that relate inputs 

and outputs. The decision variable, either profit or utility, is unobserved. Hence the need to 

use latent-variable techniques to link land use determinants with outcomes. This situation is 

similar to the discrete choice problem, where maximization of (unobserved) utility leads to 

an observed choice among discrete alternatives.  We can reformulate this problem as 

finding the probability of choosing land use k at location l: 

[ ]lnlnlnPr] Pr[ RRhchoice hl >= ;  5 

where { }1,...h N∈  a finite set of available choices; and  h ≠ m 

Substituting from equation 4 leads to: 

[ ] ( ) ( )1Pr Pr ,...,hl l h l hl Nl h lchoice h ε ε ε ε= − < − − < −⎡ ⎤⎣ ⎦1 Nβ β X β β X
 6 

The choice of estimation techniques depends upon the distribution of the error term.  If it is 

extreme value and the errors are uncorrelated across land uses, McFadden (1973) has 

shown that: 
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The βhs are estimated using maximum likelihood techniques. 

We use the estimated βhs to generate probability predictions for each land use at every 

location in the area under investigation.  For example, with 4 land use choices, we might 

find the following land use probabilities at a location – forest type A – 70%, forest type B – 

15%, agriculture – 5%, urban areas – 10%.  The sum of probabilities for all four categories 

is 100%. To convert probabilities to predicted choices, the winner-takes-all rule is typically 
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used; that is, the land use with the highest probability is the ‘predicted’ land use. Other 

rules have been proposed but seldom implemented. 

Assumptions, Problems, and Shortcomings 

Several assumptions are necessary to estimate the model described in equation 4. Some of 

these assumptions are dictated by the availability of data. For example, the absence of 

information on actual transportation costs has meant that most authors use a proxy for the 

actual costs of moving other goods, both inputs and outputs. 

While there are a few examples of research using georeferenced survey data (Vance and 

Geoghegan, 2006; Geogheagan et al., 2001), most studies rely on data derived from 

satellite images and make the assumption of a one-to-one correspondence between the unit 

of observation and the unit of decision making.  

There are other assumptions that are a direct consequence of the model specification of 

equation 4 have potentially severe consequences for usefulness of this model.  

Stationary state and dynamic processes 

Models that use cross-sectional data assume that information on land use is collected from 

a stationary state. This means that at the time data are collected all the dynamic forces and 

interactions responsible for land use choices have taken place and exhausted their effect.  

There are several potential problems with this assumption. For example, building a road 

changes transportation costs; lowering a tariff on imported corn reduces the profitability of 

corn farming. Since responses to these changes are not instantaneous, not all changes might 

be observable in a time period close to when the policy changes are implemented or 

infrastructure investment is completed. Furthermore, the costs associated with the process 

of change from one land use to another affect the speed of change, which may be faster for 
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some conversions than others. Chomitz and Gray (1995, pg. 493-494) stress the potential 

significance of price expectations and irreversibility of some land use choices. Ignoring the 

time dimension also corresponds to ignoring the possible option value of certain choices, 

learning processes, and sunk costs (Schatzki, 2003). All these factors imply that the 

expected profit needed to induce land use conversion is likely to be significantly higher 

than the profit derived from the current use. 

Property rights 

The operator of a parcel of land is assumed to have effective property rights and perfect 

information, and principal-agent problems do not exist.   

In fact, the likelihood and the type of change in land use also depends on the existence and 

enforceability of property rights. When property rights are poorly defined the competitive 

bidding process on which the von Thünen model relies breaks down. 

Spatial effects and interdependent behavior 

Modeling land use choices in the context of equation 7 assumes independence of behavior 

of the decision-maker and no spatial interactions, either socioeconomic or biological. In 

fact, an agent’s behavior might be the result of interactions among several decision makers 

rather than the profit maximization decision of an individual who acts in isolation. Second, 

eco-biological processes can transcend parcel boundaries and create interdependence across 

locations. All these interactions may involve both spatial and temporal dimensions. 

The potential for spatial interdependence translates into econometric difficulties. Ignoring 

spatial effects – local, global, and in-errors following Anselin’s taxonomy – can result in 

biased and/or inefficient parameter estimates (Anselin, 2003). 
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Nonlinearity in the objective function  

The specification of equation 4 forces the relationship between dependent and independent 

variables to be linear. The independent variables in the estimation can be nonlinearly 

transformed versions of the true underlying variables (e.g. including distance and distance 

squared) but the estimating relationship is linear. However, there are some situations when 

a linear specification is incorrect. Robertson (2005) presents two examples, reproduced in 

Figure 1. 

 In a situation like that of von Thünen’s featureless plain but with nonlinear transportation 

costs, land use can switch from vegetables to wheat and then back (top of Figure 1). 

Another example is shown in the bottom of Figure 1. Suppose an improved rice variety is 

particularly sensitive to optimum amounts of water. For either greater or lesser amounts of 

rainfall, a traditional variety has higher yields. In this situation the relationship between 

water and land use (in this case variety choice) is nonlinear. 

Profit/Utility-maximizing operator 

The bid-rent paradigm requires that each land use choice is made by a profit- or utility-

maximizing operator. This is often an unrealistic assumption in developing countries where 

risk-minimization behavior might strongly influence land use decisions. Furthermore, 

transaction costs may be so high that households make production decisions based on self 

sufficiency needs rather than market opportunities. 

Some, but not all, of the above listed assumptions and shortcomings have been addressed 

by researchers. In the next section we report some of the new modeling techniques that 

have been proposed to overcome some of the limitations. 
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Progress in the Literature 

Dynamic processes  

Since much of this literature is concerned with deforestation, the temporal dimension has 

received much attention.  While annual crops can often be analyzed adequately using cross 

section data, many forestry land uses require multiple years to generate an output.  In 

addition, swidden land uses shift from agriculture to forest and back, potentially 

confounding any analysis based on a single cross section (Dvorak 1992).  Once a temporal 

component is added to production, decision-making under uncertainty becomes an issue 

since future prices are not known.  

The gradually increasing availability of land use/land cover observations has allowed 

researchers to incorporate the time dimension in their analysis. Some attempts have been 

made to incorporate dynamic mechanisms using the framework provided by equation 7. 

Mertens and Lambin (2000) use land use trajectories to implicitly account for spatio-

temporal complexities of land use decisions. The land use trajectories specification might 

capture heuristically the forces that shape land use choices but it does not shed any more 

light than the previous models on the decision process followed by the land operator. 

Munroe et al. (2004) include time lags to include the intertemporal relationships among 

choices in the model. However, this method can cause estimation problems with most of 

the data sets used in land use change models because explanatory variables such as slope, 

elevation, distance to roads and villages do not change in time. As a consequence, 

significant correlation can exist between the unobserved factors contributing to both the 

independent variable and the dependent variable, which results in biased estimators.  

Two alternate modeling techniques have been proposed: hazard (also known as survival) 

analysis and limited dependent variable dynamic optimization. 
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Survival analysis  

A group of studies (Boscolo et al. 1999; Irwin and Bockstael 2001; Vance and Geoghegan 

2002), have experimented with survival analysis, framing the land use change problem in 

terms of optimal time to switch away from an existing land use. These studies implicitly 

take into account the option value of a choice. This technique overcomes some of the 

conceptual and technical shortcomings of the discrete choice approach such as the 

independence from irrelevant alternatives assumption and makes explicit use of the time 

dimension. Equation 8 lays out the behavioral model underlying the survival analysis 

technique. The agent chooses the optimum conversion date such that: 

∫ ∫
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The first term in equation 8 is the net present value of keeping a parcel in its current use F 

from the present to period T. The second term is the net present value of converting the 

parcel to an alternative use after T, and the third term is the discounted cost of converting 

the land use. i is the discount rate. With some manipulation, the probability that parcel l 

will be converted in period t, its hazard rate, is: 
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 9   

were F[] is the cumulative distribution function for ε, X is a set of observable 

characteristics, and *ε is the value that satisfies the following arbitrage condition exactly. 

A F
d C
dt

εΠ −Π + ≥  10   

Although survival analysis includes the time dimension explicitly and addresses, at least in 

principle, the cost of conversion issues and the option value of certain choices, it has 

several problems. In particular, it cannot deal with the possibility of multiple transitions 
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(e.g. forest to agricultural land and back to forest) and the irreversibility of some decisions 

but not others. 

Limited dependent variable dynamic optimization 

De Pinto (2004) frames the land user’s choice problem as a solution to a dynamic 

optimization problem. The agent makes a series of choices over time and the alternative 

that is chosen in one period affects the attributes and availability of alternatives in the 

future. The agent’s objective is to maximize the expected discounted value of payoffs Π at 

any time t by choosing the optimal time sequence of control variables{ } ,jltc j J∈ where the 

control variable in this case is land use. Agents behave according to the following optimal 

decision rule: 

⎥
⎦
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jltlt
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t
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where i ∈(0,1) is the discount factor and X is a vector of variables (i.e. output prices, soil 

quality, slope, elevation, etc.) that describe the state of the system faced by the agent. The 

solution to the intertemporal optimization problem in equation 9 is given recursively by the 

Bellman equation and called the value function: 

, 1( ) max ( , ) ( , )
jlt

lt lt jlt l t jltc
V X X c E V X c+⎡ ⎤= Π + ⎣ ⎦  12  

The term , 1( , )l t jltE V X c+⎡ ⎤⎣ ⎦ , called the continuation value in the dynamic programming 

literature, captures the effect of current choices on future states of the system. It is like a 

“shadow price” for the effects of each action on future payoffs. 

The probabilities are given by: 

[ ]
[ ]∑

∈
+

+

+

+
=

Jj
jlttljltlt

hlttlhltlt
lthlt cxViEcx

cxViEcx
xcP

)],([),(exp
)],([),(exp

)|(
1,

1,

π
π

 13  



 12

The estimator is the nested pseudo-likelihood algorithm (NPL) proposed by Aguirregabiria 

and Mira (2002). The advantages of this approach are that it can account for the option 

value of choices, selective irreversibility, and expectations about future prices. The 

disadvantages are that it requires a relatively complex modeling and it requires data on 

output prices in order to form the agent expectations.  

Property Rights 

Nelson and Hellerstein (1996) provided the theoretical background to incorporate property 

rights in the static Chomitz and Gray framework. In a study on road building and land use 

change in Mexico the authors introduced the net present value of each land use as the 

operator’s maximand. The land operator now chooses among the possible utilizations the 

one that generates the highest stream of returns through time.  

The net present rent at time t is given by 

( ) li t
hl hl hlhlhl

t=0

=   e dtQR P
∞

−−∫ C X  14  

where il is the location-specific discount rate. 

The version of equation 4 for estimation becomes: 

'
0 1ln ln lnhl h h nh l l hl h l hl

n
R D G i Xα α α ε β ε= + + + + = +∑  15 

Nelson, Harris, Stone, (2001) exploited this model specification to assess the potential 

effects of property rights and a proposed road paving project in the Darién province of 

Panama on land use. The province has three types of land tenure regimes – private land 

(with uncertain degree of legal ownership), reserves for indigenous populations, and the 

Darién National Park. Darién National Park is located on the southern border of the 

province and makes up about one third of the provincial area. 
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The mechanism for modeling different property right settings is to include a dummy 

variable for the different tenure regimes existent in a certain area. If a pixel is in an area 

with a particular regime, the variable is set to one; outside the area, the variable’s value is 

zero.  

It is important to note that while the modified specification makes it possible to test for 

differences in effectiveness of property rights, it assumes that the agent is maximizing the 

stream of returns through time. It does not allow for the possibility that in the absence of 

property rights agents might follow a different decision process.  

Spatial Effects 

A theoretically rigorous treatment of spatial effects for discrete choice models is still under 

development (Fleming 2004; Parker and Munroe, forthcoming). In its absence, the land use 

literature has proposed several ad hoc procedures mitigate the potential negative effects on 

estimates and predictions. Three types of ad-hoc corrections can be found in the land use 

literature:  

Spatial sampling 

Nelson and Hellerstein (1997), following Besag (1974) as described in Haining (1994), 

applied a “coding” scheme (Besag’s terminology) that selects samples over a regular grid 

in such a way that two observations are not physical neighbors. The rationale for this 

method is that many spatial relationships between observations decay with Euclidean 

distance. Observations ‘sufficiently’ distant do not influence each other. See Robertson and 

Nelson (2006) for more discussion of the issues with spatial sampling. 

Latitude and longitude as exogenous variables 

Nelson, et al. (2001) corrected for spatial effects using two additional explanatory variable 

representing latitude and longitude of each observation. This method is equivalent to the 
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spatial expansion technique (Cassetti, 1992). This type of correction is likely to be helpful 

when the spatial effect is caused by an unobserved variable that varies linearly over the 

area. However, this is a very special case and does not account for all the other possible 

spatial relationships.  

Spatially lagged geophysical variables 

Nelson, et al. (2001) and Munroe, et al. (2002) use spatial lags (weighted averages of 

values in neighboring locations) of geophysical variables such as soil type, slope, 

vegetation index used as exogenous variables. The reason for using these types of variables 

is to account for the direct influence that the surrounding environment might have on land 

use decisions made in a particular location.  

Nonlinear estimation 

It turns out there are close parallels between neural net and econometric estimation. Figure 

2 presents a diagram of a feed forward neural net with a single hidden layer. In the figure, 

arrows are called synapses and represent weights in a calculation. Circles are called 

neurons and they are where the calculations are done. The bottom layer (N0 to N3) is 

where exogenous variables enter the calculation. The output layer (N7 to N9) includes a 

neuron for each land use category; in the diagram there are just 3. If there were no hidden 

layer, the values of the exogenous variables, along with a constant term (called a bias in the 

neural network literature), would be passed to the top layer where the calculation called a 

softmax in the neural network literature) for output neuron m would be: 
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Note that this calculation is identical to that of equation 7. The feed forward neural net has 

the desirable characteristic that if it has no hidden layers, it is identical to a multinomial 
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logit. The synapse weights are found by minimizing cross-entropy, which is identical to 

maximizing the log likelihood function. 

Adding a hidden layer (called hidden because it doesn’t connect to the outside either to 

receive inputs or to generate final values), allows for nonlinear combinations of the 

exogenous variables. Unfortunately for estimation, it also allows for the possibility of local 

minima. This means that the estimation process cannot guarantee a global solution and the 

computation time is typically much larger. In comparing the predictive power of 

multinomial logit and a neural net for land use in southern Sumatra, Robertson found that 

the neural net results were somewhat better but with significantly higher computation time 

and effort.  

Profit Maximization 

Vance and Geoghegan (2004) point out that in some areas some farmers may be fully 

engaged in the local markets while others do not participate. Therefore, the two behaviors 

should be modeled separately. For this purpose they use a two-stage switching regression 

with endogenous switching. The first stage defines a dichotomous variable identifying the 

regime into which each farmer falls: 

 (Seller) 1 if '
 (Nonseller) 0 otherwise,

S Z u
S

τ= ≥
=

   

where Z is a vector of variables that determine the seller or non-seller regime and τ is a 

vector of parameters. Among the variables that determine the seller status are: an index that 

captures the quantity of in-house consumption, labor availability, age and education of the 

head-household, distance to markets, and availability of credit. Once the regime is 

identified the second stage of the regression is implemented: 
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where the dependent variable y is the number of hectares dedicated to a crop, and 

1 1Xβ and 2 2Xβ are the associated parameters and explanatory variables for the two different 

regimes.  

This modeling technique makes it possible to distinguish the determinants of land use 

according to the household’s relationship with the market and also to test for the presence 

of two different behaviors in the same area. One of the drawbacks is that the model is data 

intensive as it relies heavily on household data. 

An Empirical Application  

Do these new modeling techniques actually help researcher in making better predictions or 

better policy recommendations? The answer to this question is not a trivial; two recent 

papers (Robertson and Nelson, 2006; De Pinto and Nelson, 2006) demonstrate this point.  

As mentioned earlier, researchers have adopted a series of techniques to mitigate the 

potential negative consequences of spatial effects under the assumption that if spatial 

effects are correctly modeled the model performance would improve. Robertson and 

Nelson (2006) use a Monte Carlo simulation to investigate the consequences of various 

kinds of spatial effects on predictive ability. Their results show that leaving spatial effects 

unmodeled does not have serious effects on predictive ability. They argue that the 

information content in a limited dependent variable model is so limited that only extreme 

spatial effects are likely to affect predictions and simulations. 

One of the problems of using the multinomial logit specification is the independence from 

irrelevant alternatives assumption. The implications of this assumption in the land use 
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context is that, for example, given two initial land uses that farmers can choose from (i.e. 

forest and agriculture), the introduction of a third choice (i.e. pasture) should draw equal 

proportions of resources from the previous two options. This is highly unlikely since 

considering the costs involved in moving from one utilization to the other, we would expect 

that farmers would switch more easily from agriculture to pasture than from forest to 

pasture. Researchers have tried to overcome this problem using alternative specifications 

such as multinomial probit, nested logit, or randome parameters logit. Nelson et al. (2004) 

compared the performance of three model specifications – multinomial logit, nested logit, 

and random parameters logit – and found that the nested logit was superior to the others in 

terms of correct predictions. However, De Pinto and Nelson (2006) revisit this previous 

study and compare model performance using a measure of uncertainty present in the 

predictions of each model. According to this measure there is no statistically significant 

difference between the performance of nested and multinomial logit. 

It is therefore not clear which of these modeling techniques truly improve the usefulness of 

these models.  

We now report in more detail the results of another study that demonstrate the potential 

value of adopting more advanced modeling techniques. De Pinto (2004) compares the 

performance of a dynamic discrete choice model against the performance of other models 

of land use that are common in the literature –  multinomial logit, random parameters logit, 

and a survival model. The dynamic discrete choice model, the random parameters logit, 

and the survival model are used over three time periods – 1985, 1987, 1997 – and the 

estimated parameters are used to predict land use in the year 2000. The multinomial logit is 
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used with the year 2000 and the estimated parameters are used to predict the land use for 

the same year.  

We review two sets of results – for land use and land use change predictions. The land use 

results presented in Table 1 and Table 2 show that the dynamic discrete choice model 

outperforms all alternative models in terms of correct predictions for the year 2000. The 

overall predictive power of is 0.792 for the multinomial logit, 0.765 for the mixed logit and 

0.887 for the dynamic discrete choice. In order to compare the performance of the dynamic 

discrete choice and survival models, the two are used to predict land use change in the year 

2000. The survival model correctly predicts some 66 percent of pixels that actually undergo 

a change in the year 2000 while the dynamic discrete choice model returns a perfect score 

with 100 percent of the change correctly predicted (Table 2). Both models over-predict 

land use change, 27 percent of the pixels that are predicted to change by the dynamic 

discrete choice do not undergo any change while the survival model overestimates land use 

change by some 53 percent. 

The parameter estimates can be used to simulate the effects of changes in the 

socioeconomic variables. De Pinto (2004) simulated the paving of a major highway in the 

Darien province by replacing the original cost variables with simulated values that reflect 

the reduced cost. Table 3 compares the results obtained with the dynamic discrete choice, 

multinomial logit, and mixed logit models. The dynamic discrete choice model predicts a 

more modest change than either the multinomial logit or mixed logit models. Table 4 

compares the results of the dynamic discrete choice and survival models. The survival 

model predictions are similar to those of the dynamic discrete choice: 352 and 264 

respectively.  
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Road resurfacing in the area has not been completed yet. We can speculate though that, 

given the better performance of the dynamic discrete choice model in terms of prediction 

accuracy and given that both survival and dynamic discrete choice models return similar 

results in term of land use change caused by a variation in transportation costs, the 

inclusion of dynamic processes is a necessary component in a model that is to correctly 

predict change. The results of our simulation suggest that road resurfacing would only 

cause a modest change in land use and that additional encroachment of forested land by 

agricultural uses is strongly limited by geophysical factors and transition costs. 

Interestingly, the differences between models are mostly in the number of hectares but not 

in the location of change as can be observed in Figure 3. Most of the land use change 

occurs at the frontier between land uses. The results of the simulation of road resurfacing 

support the hypothesis that static models tend to overestimate land use changes. 

Concluding Remarks 

One of the advantages of the static analysis techniques is their relatively low cost. The 

analysis relies mostly on remotely sensed data and other relatively inexpensive ancillary 

data such as roads and rivers networks or slope and altitude. As modeling techniques 

become more sophisticated data requirements increase. First of all, introducing the 

temporal dimension requires the availability of time series data, which in tropical countries 

can be a problem due to cloud cover. Relaxing the assumption on profit maximization 

behavior means that more refined data on household become necessary. It is also important 

to point out that some of the new data requirements derive from the fact that some 

assumptions that were perhaps acceptable in static analysis become more problematic in a 

dynamic setting. For instance, assuming equal inputs for all land use categories is a 
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common practice in static analysis and the differentiation in production costs is due only to 

transportation costs. However, when time series are used, the unmodeled input prices 

become part of the error term and the error terms become correlated through time.  

The modeling techniques reviewed in this article address some important theoretical 

shortcomings of earlier models. It is still not clear though if the benefits of using these new 

methods outweigh the costs, both data and computational. This is an area that researchers 

have recently started to explore. However, several problems stand in the way. First, it is 

still difficult to develop rich data sets that make it possible to implement new models. 

Clearly cloud cover, access to and cost of images are a problem, but also turning satellite 

images into land use maps and manipulating large data sets are important constraints. 

Second, some modeling challenges are difficult to solve. For example, researchers have 

been searching for a statistically sound limited dependent variable estimator that 

incorporates spatial effects for almost a decade. Third, and possibly more important, a 

method to compare model performances is not in place and relying on log-likelihood, 

pseudo R2, or predictive power measures can be misleading (see De Pinto and Nelson, 

2006 for more details). We believe that developing useful economic models capable of 

explaining land use change processes relies on overcoming these problems.  
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Figure 1: Examples of Nonlinearity in the Objective Function 
Source: Robertson, 2005.
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Figure 2: Neural Net with Single Hidden Layer 
Source: Based on Robertson,2005.
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Figure 3: Land Use Change Caused by Road Resurfacing with Different Estimation 
Methods. 
Source: De Pinto, 2004. 
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Table 1: Prediction matrix for the Dynamic Discrete Choice, Multinomial Logit, and 
Mixed Logit Models, (Number of 0.25 Km cells) 

 Land Use Forest Agriculture Idle Total 

(True) 

Ratio Correct to 

Total Predictions

Forest 41,817 6,217 19 48,053 0.870

Agriculture 73 8,718 855 9,646 0.903

Idle 0 0 6,195 6,195 1.000

 

Dynamic 

Discrete 

Choice 

Model 
Total 

(Predicted) 

41,890 14,935 7,069 63,894 0.887

Forest 40,950 7,002 101 48,053 0.852

Agriculture 1,431 8,148 67 9,646 0.844

Idle 1,725 2,951 1,519 6,195 0.245

 

Multinomial 

Logit 

Total 

(Predicted) 

44,106 18,101 1,687 63,894 0.792

Forest 35,157 12,842 54 48,053 0.731

Agriculture 595 7,534 1,517 9,646 0.781

Idle 0 0 6,195 6,195 1.000

 

Mixed  

Logit 

Total 

(Predicted) 

35,752 20,376 7,766 63,894 0.765

Source: De Pinto, 2004. 

Note: Columns are predictions of change for year 2000; rows are actual change in the year 

2000) 
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Table 2: Prediction matrix for Survival Model and Dynamic Discrete Choice Model 
(Number of 0.25 Km cells) 

 Land Use No-

Change 

Change Total 

(True) 

Ratio Correct 

Predictions to 

Total 

No-Change 58,621 1,439 60,060 0.976 

Change 0 3,834 3,834 1.000 

 

Dynamic 

Discrete 

Choice 

Model 

Total 

(Predicted) 

58,621 5,273 63,894 0.977 

No-Change 57,143 2,917 60,060 0.951 

Change 1,298 2,536 3,834 0.66 

 

Survival 

Model Total 

(Predicted) 

58,441 5,453 63,894 0.934 

Source: De Pinto, 2004. 

Note: Columns are predictions of change for year 2000; rows are actual change in the year 

2000) 
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Table 3: Effects of Road Resurfacing for the Year 2000, Dynamic Discrete Choice Model 
vs. Multinomial Logit 

 Forest Agriculture Idle

Dynamic Model 

Before Resurfacing 41,890 14,935 7,069

After Resurfacing 41,626 15,199 7,069

Net Change - 264 + 264 0

Multinomial Logit 

Before Resurfacing 44,106 18,101 1,687

After Resurfacing 40,653 20,558 2,773

Net Change - 3,543 + 2,457 + 1,086

Mixed Logit 

Before Resurfacing 36,107 19,660 7,659

After Resurfacing 34,904 20,863 7,659

Net Change - 1,203 + 1,203 0

Source: De Pinto, 2004. 

Note: Number of 0.25 Km cells. 
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Table 4: Effects of road resurfacing on forecasted change for the year 2000, Dynamic 
Discrete Choice Model vs. Survival Model (number of .25 km cells) 

 Change No-Change

Dynamic Model 

Before Resurfacing 5,383 58,511

After Resurfacing 5,647 58,247

Net Change +264 - 264

Survival Model 

Before Resurfacing 5,453 58,441

After Resurfacing 5,775 58,119

Net Change +352 -352

Source: De Pinto, 2004. 
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