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Abstract. In this article, we revise the estimation of the dose–response function
described in Hirano and Imbens (2004, Applied Bayesian Modeling and Causal

Inference from Incomplete-Data Perspectives, 73–84) by proposing a flexible way
to estimate the generalized propensity score when the treatment variable is not
necessarily normally distributed. We also provide a set of programs that accom-
plish this task. To do this, in the existing doseresponse program (Bia and Mattei,
2008, Stata Journal 8: 354–373), we substitute the maximum likelihood estimator
in the first step of the computation with the more flexible generalized linear model.

Keywords: st0328, glmgpscore, glmdose, generalized propensity score, generalized
linear model, dose–response, continuous treatment, bias removal

1 Introduction

How effective are policy programs with continuous treatment exposure? Answering
this question essentially amounts to estimating a dose–response function as proposed
in Hirano and Imbens (2004). Whenever doses are not randomly assigned but are given
under experimental conditions, estimation of a dose–response function is possible using
the generalized propensity score (GPS). The GPS for continuous treatment is an extension
of the popular propensity-score methodology for binary treatment group assignments
(Rosenbaum and Rubin 1983, 1984) and multivalued treatments (Imbens 2000; Lechner
2001). Indeed, Hirano and Imbens (2004) show that the GPS has a balancing property
similar to the binary propensity score. Conditional on observable characteristics, the
level of treatment can be considered random for units belonging to the same GPS strata.
This means that adjusting for the GPS removes all biases associated with differences in
the covariates.

Since its formulation, the GPS has been repeatedly used in observational stud-
ies, and programs have been provided for Stata users with doseresponse.ado and
gpscore.ado by Bia and Mattei (2008), henceforth BM. However, many applied works
(Fryges and Wagner 2008; Fryges 2009) remark that the treatment variable may not be

c© 2014 StataCorp LP st0328



142 Estimating the dose–response function

normally distributed. In this case, the BM programs should not be used, because they
do not allow for distribution assumptions other than the normal density.

In this article, we overcome this problem. Building on BM programs, we provide
a new set of Stata programs, glmdose.ado and glmgpscore.ado, that accommodates
different distribution functions of the treatment variable. We accomplish this task in
the first step by substituting the maximum likelihood (ML) estimator (from the existing
program doseresponse.ado) with the generalized linear model (GLM).

To help compare the estimates—which we will present with those from the seminal
work by Hirano and Imbens (2004)—we use the same dataset, originally collected by
Imbens, Rubin, and Sacerdote (2001). The sample comprises individuals winning the
Megabucks lottery in Massachusetts in the mid-1980s. The main source of potential bias
is the unit and item nonresponse. Hirano and Imbens (2004) claim that it is possible to
prove that the nonresponse was nonrandom. The missing data imply that the amount
of the prize is potentially correlated with background characteristics and potential out-
comes. We emphasize that by using these bias-reducing techniques, it is possible to
reduce, but not to eliminate, the bias generated by unobservable heterogeneity. The
extent to which unconfoundedness holds, namely, the extent to which the bias is re-
duced, depends on the quality of the database used to compute the GPS. This caveat
is independent of the particular distribution function one is willing to assume for the
treatment variable.

Notice also that the Stata command teffects estimates average treatment effects
and average treatment effects on the treated by regression adjustment, inverse-prob-
ability weighting, and doubly robust methods, including inverse-probability weighted
regression adjustment. This command is suitable for a binary or multinomial treatment
variable. In contrast, glmdose does not impose this restriction on the treatment variable;
in addition, it incorporates a test for the balancing not offered by teffects.

The remainder of the article proceeds as follows. Section 2 briefly reviews the esti-
mation of the dose–response function. Section 3 introduces the GLM and explains how
to use it to fit the GPS. Section 3.1 analyzes the fractional logit case, flogit, a special
case of particular interest in economics. Section 4 describes how the programs work
step by step. Sections 5 and 6 list the syntax and the options, respectively. Section 7
presents an application of the programs using a nonnormal distribution of the treatment
variable. Section 8 concludes.

2 A brief review of the econometrics of the

dose–response function

Let us define a set of potential outcomes {Yi(t)} for t ∈ T , where T represents the
continuous set of potential treatments defined over the interval [t0, t1], and Yi(t) is
referred to as the unit-level dose–response function.
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Let us suppose we have a random sample of N units. For each unit i, we observe
a k × 1 vector of pretreatment covariates, Xi; the level of the treatment delivered, Ti;
and the outcome corresponding to the level of the treatment received, Yi = Yi(Ti). We
are interested in the average dose–response function ψ(t) = E{Yi(t)}.

Under some regularity conditions1 of {Yi(t)}, Xi, and Ti, Hirano and Imbens (2004)
define the propensity function as the conditional density of the actual treatment given
the covariates. In more detail, if we define r(t, x) = fT |X(t|x) as the conditional density
function of the treatment given the covariates, then the GPS is

R = r(T |X)

The balancing property can be defined similarly to that defined by the binary case.
That is, within strata with the same value of r(t, x), the probability that T = t does
not depend on the value of X:

X⊥1(T = t)|r(t, x)

This balancing property, along with unconfoundedness, implies that assignment to treat-
ment is unconfounded given the GPS. If the weak unconfoundedness assumption holds,
given the pretreatment variables X, we have

Y (t)⊥T |X ∀ t ∈ T

Then for every t, we have

fT {t|r(t,X), Y (t)} = fT {t|r(t,X)}

This means that the GPS can be used to eliminate any bias associated with differences
in the covariates (for a formal proof, see theorem 2.1 and 3.1 of Hirano and Imbens
[2004]). Therefore, the dose–response function can be obtained as

γ(t, r) = E{Y (t)|r(t,X) = r} = E(Y |T = t, R = r) (1)

ψ(t) = E[γ{t, r(t,X)}] (2)

Practical implementation of the GPS is accomplished in three steps.2

In the first step, the score r(t, x) is estimated. In the second step, the conditional
expectation of the outcome as a function of two scalar variables, the treatment level
T and the GPS R, is estimated: E(Y |T = t, R = r). In the third step, the dose–
response function, ψ(t) = E[{t, r(t,X)}], t ∈ T , is estimated by averaging the estimated
conditional expectation, γ̂{t, r(t,X)}, over the GPS at each level of the treatment in
which one is interested.

1. For each i, {Yi(t)}, Xi, and Ti are supposed to be defined on a common probability space; Ti is
continuously distributed with respect to Lebesgue measure on T ; and Yi = Yi(Ti) is a well-defined
random variable.

2. In their seminal article, Hirano and Imbens (2004) use the notation µ instead of ψ and β instead
of γ. We have slightly changed notation to avoid confusion in the following sections.
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Because the second and the third steps in our programs replicate BM’s program, we
refer the reader to it for more details about these steps. Meanwhile, we will devote more
attention to explaining how our programs implement the first step to compute the score
r(t, x).

3 Estimation of the score through the GLM

In many economic applications, T cannot be assumed to be normally distributed, and as-
suming a normal distribution of the treatment given the covariates Ti|Xi ∼ N(β′Xi, σ

2),
where β is a k×1 vector of parameters, has several drawbacks. The problem is not new
in the econometric literature; count, binomial, fractional, and survival data are a few
examples (see Wooldridge [2010] for a comprehensive review of this topic). We aim to
overcome these problems by presenting a possible solution to the estimation of the GPS

in these cases. Our idea consists of replacing the linear regression3 with the GLM devel-
oped by McCullagh and Nelder (1989) in the first step to estimate the dose–response
and to retrieve the GPS from the exponential family distribution. By using the GLM, we
differentiate the modeling from the ordinary regression in two important respects. First,
the distribution of T is specified from the exponential family.4 Thus the distribution
may be explicitly nonnormal. Second, a nonidentity transformation of the mean of the
treatment is linearly related to the explanatory variables. These two basic elements of
the GLM can be formalized as follows:

f(T ) = c(T, φ)exp

{
Tθ − a(θ)

φ

}
(3)

g{E(T )} = β′X (4)

Equation (3) specifies that the distribution of the treatment variable belongs to the
exponential family. Equation (4) states that a transformation of the mean g(·) is linearly
related to explanatory variables contained in X.

The choice of a(θ), commonly referred to as the family, is guided by the nature
of the treatment variable. It determines the actual probability function, such as the
binomial, Poisson, normal, gamma, inverse Gaussian, and negative binomial. Moreover,
irrespective of the distribution chosen, the following relationships hold for the first and
the second moment,

E(T ) = ȧ(θ), Var(T ) = φä(θ)

where the dots represent the first and the second derivative with respect to θ.

The choice of g(·), a monotonic, differentiable function called a link function, is
suggested by the functional form of the relationship between the treatment and the
explanatory variables. It determines how the mean is related to the covariates X, while

3. Precisely, gpscore estimates the GPS assuming T |X or some transformations of T , g(T )|X, nor-
mally distributed. The estimation of β is performed through the ML.

4. For a formal proof of how to obtain the different distributions from the exponential family, see
de Jong and Heller (2008, chap. 3) or Rabe-Hesketh and Everitt (2007, chap. 7).
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θ and φ represent the canonical parameter and the dispersion parameter, respectively. In
this context, given X, µ is determined through g(µ). Given µ, θ is determined through
ȧ(θ) = µ. Finally, given θ, Ti is determined as a draw from the exponential density
specified in a(θ). When we compare our modeling with ordinary regression modeling,
we clearly see that the extra steps are related to the choice of the family() and link()

options: a(θ) and g(µ).

Indeed, by simply changing family() and link(), one can accommodate a very
broad spectrum of distributions of T ; however, not all combinations make sense (for a
list of the feasible ones, we refer the reader to [SEM] gsem family-and-link options).
In addition, and more importantly, Hirano and Imbens (2004) state: “In the first stage
we use a normal distribution for the treatment given the covariates [. . . ]. We may
consider more general models such as mixtures of normals, or heteroskedastic normal
distributions [. . . ]”. The GLM fully captures this point: because it allows T to be a
member of the exponential family, the treatment can be heteroskedastic. Thus the
variance will vary with the mean, which in turn varies with explanatory variables.

The GLM allows one to estimate β by maximizing the following quasi-maximum log
likelihood (QML) for Ti independently distributed:

l(β) ≡
N∑

i=1

li(β) ≡
N∑

i=1

logf(Ti;β) =

N∑

i=1

{
logc(Ti, φ) +

Tiθi − a(θi)
φ

}
(5)

Because the GPS is the conditional density of the treatment received given the co-
variates, we can compute the GPS by using the exponential density function evaluated
at β̂, given the covariates

R = r(T,X) = f
(
β̂
)

where f is according to (3). Put another way, the GPS coincides with the vector of the

likelihood evaluated at β̂, L(β̂), where L(β̂) = exp{l(β̂)}.
However, whenever T is discrete or fractional, a clarification is in order. In these

cases, the ML in (5) is replaced by the Bernoulli QML, as seen in (6):

lB(β) ≡
N∑

i=1

lBi (β) =
N∑

i=1

Tilog{F (Ti;β)}+ (1− Ti)log{1− F (Ti;β)} (6)

If T is binary and (6) is estimated by setting binomial as family and logit (or probit) as
link, (6) exactly reproduces the case of binary treatment. In this case, the probability of
being assigned to treatment—that is, the p-score—is F (T = 1), which is the cumulative

logit (or probit) evaluated at β̂′X for T = 1. By definition, this is not the cumulative
logit (or probit) evaluated at the actual level of the treatment received, which can
be either 0 or 1. Starting from this consideration, we extend this argument from the
binary to the fractional case. Because a great part of the empirical literature has come
across the necessity to estimate a dose–response function with fractional treatment data
(Fryges and Wagner 2008; Fryges 2009), we believe this case deserves special attention.
Thus we will treat it in more detail in the following subsection.
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3.1 Flogit or fractional treatment data: A case of particular interest

In economics, it is quite common to come across a fractional dependent variable, in our
setup, T ∈ [0, 1]. Some examples include the fraction of income contributed to charity,
the fraction of weekly hours spent working, the proportion of total firm capitalization
accounted for by debt capital, high school graduation rates, and export sales ratio. (See
Hausman and Leonard [1997]; Liu et al. [1999]; Wagner [2001]; Fryges and Wagner
[2008]; and Fryges [2009].) Papke and Wooldridge (1996) show that the problems of
linear models for fractional data are analogous to those of the linear probability model
for binary data. Thus if T is bounded, the effect of any particular covariate in Xi cannot
be constant over its range. Augmenting the model with nonlinear functions of Xi does
not overcome the problem, because the values from an ordinary least-squares regression
can never be guaranteed to lie in the unit interval.

The common practice of regressing the log odds-ratio, that is, log{T/(1−T )} in the
linear regression instead of T , generates problems whenever any observation Ti takes on
the values 0 or 1 with positive probability. As a practice, when Ti are proportions from
a fixed number of groups with known group size, the extreme values are adjusted before
taking the transformation. However, the fraction Ti is not always a proportion from a
discrete group size. In addition, if a large percentage is at the extremes, the adjustment
mechanism is at least debatable. Papke and Wooldridge (1996) sidestep these problems
by specifying a class of functional forms for E(T |X) and show how to estimate the
parameters using a Bernoulli QML estimator of β, namely, the GLM. In particular, they
assume that for all i,

E(Ti|Xi) = F (β′Xi)

where F (·) is typically a logit or probit function, from here the name of flogit estimator.5

Analogously to the binary case, the estimation procedure defines the Bernoulli log-
likelihood function as

li(β) ≡ Tilog {F (β′Xi)}+ (1− Ti)log {1− F (β′Xi)} (7)

and maximizes the sum of li(β) over all N using the GLM. Because the GPS is the
probability of the actual (that is, the observed) treatment received, LB

i (β) does not
coincide with the GPS.6 {1 − F (β′Xi)} attains the probability of receiving T = 1 − t,
which is not the actual treatment, that is, the observed one, but its complement. Hence,
it must not enter the gpscore(). The estimated GPS based on the Bernoulli log-
likelihood function in (7) is

Ri = F
(
β̂′Xi

)
∀ i

In this respect, the GPS and the p-score are computable exactly in the same way when-
ever the likelihood is Bernoulli.

5. Notice that in the notation of, for instance, (4), F = g−1, if g(·) is the log-odds or logit transfor-
mation, g(µ) = log{µ/(1− µ)}, F = exp(µ)/{1 + exp(µ)}; that is, F = Λ, the logit distribution.

6. See Wooldridge (2010, 739–743).
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Therefore, as a general rule, we can state that by using the GLM in the first step of
the dose–response function to retrieve the GPS, one must

• take L(β̂) whenever the QML is not Bernoulli.

• take F (β̂′Xi) whenever the QML is Bernoulli, where F (·) is the probability of
succeeding, that is, of being assigned to treatment t. That is exactly what our
programs automatically implement.7

4 The estimation algorithm

The implementation method can be broken down into three steps. In the first step,
the program glmgpscore.ado estimates the GPS and tests the balancing properties for
any family and link set. In the second step, the conditional expectation of the outcome
is estimated as a function of the treatment level T and the GPS R, γ(t, r) = E(Y |T =
t, R = r). Finally, in the third step, the dose–response function, ψ(t) = E[γ{t, r(t,X)}],
is estimated by averaging the estimated conditional expectation, γ̂{t, r(t,X)}, over the
GPS at each level of the treatment in which the user is interested.

In detail, the first step is implemented as follows:

1. Estimate the parameters θ and φ of the selected conditional distribution of the
treatment given the covariates. Indeed, the distribution of T is specified from the
exponential family through the family() and link() options.

2. If the family selected is normal, assess the validity of the assumed normal dis-
tribution model by one of the following user-specified goodness-of-fit tests: the
Kolmogorov–Smirnov, the Shapiro–Francia, the Shapiro–Wilk, or the Stata skew-
ness and kurtosis test for normality. The user can skip the test by specifying the
flag b(2) option. If the normal distribution model is not statistically supported,
inform the user that the assumption of normality is not satisfied. The user is in-
vited to use different family() and link() options or a different transformation
of the treatment variable.

3. Estimate the GPS as

R̂i = r(T,X) = c
(
T, φ̂

)
exp




T θ̂ − a

(
θ̂
)

φ̂





where θ̂ and φ̂ are the estimated parameters in step 1.

7. The authors wish to thank K. Hirano for helping on this point in a private conversation. In contrast
with our approach in a Bernoulli QML, Fryges and Wagner (2008) and Fryges (2009) take LB

i
(β̂).
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4. Test the balancing property, and inform the user whether it is supported by the
data and, if so, to what extent. Following Hirano and Imbens (2004), the pro-
gram glmgpscore.ado tests for balancing of covariates according to the following
scheme:

a. Divide the sample into k groups according to a user-specified rule, which
should be defined on the basis of the sample distribution of the treatment
variable.

b. In the first group, k = 1, compute the GPS at the user-specified representative
point. For instance, compute the median of the group, and evaluate the GPS

for each individual in the sample by setting t = median of the group.8

c. Take the GPS obtained in step b, and divide it into nq subintervals defined by
its quantiles of order j/nq, j = 1, . . . , nq − 1. We refer to these subintervals
as blocks.

d. Within each block, compare individuals who are treated—that is, who belong
to group k (according to step a)—with individuals who are in the same block
but belong to another group. Specifically, within each block, calculate the
mean difference of each covariate between units belonging to group k and
units not belonging to group k.

e. Combine the nq mean differences, calculated in step d using a weighted av-
erage, with weights given by the number of observations in each GPS block.

f. Go to step b, set k = 2, and go through steps b–e.

For each group, test statistics (the Student’s t statistics or the Bayes factors) are
calculated and shown in the Results window. Finally, the most extreme value of the test
statistics (the highest absolute value of the Student’s t statistics or the lowest value of
the Bayes factors) is compared with reference values, and the user is told to what extent
the balancing property is supported by the data. If adjustment for the GPS properly
balances the covariates, we would expect all differences to be statistically not significant.

Notice that for binary treatments, although the GPS is correctly calculated, the
dose–response function reduces to a point rather than a curve. For this standard case,
we refer the user to pscore.ado by Becker and Ichino (2002) and to psmatch2.ado by
Leuven and Sianesi (2003).9

8. Notice that this will generate a distribution of the GPS with N elements for each group.
9. When the family is binomial, the balancing mechanism is slightly different. Indeed, in this case, the

GPS is independent of t because r(t, x) = F (β′x). Therefore, going through step b, the algorithm
will generate k times the same GPS vector. It means that step f becomes ineffective because the
GPS does not change by changing the representative point of t.



B. Guardabascio and M. Ventura 149

In the second stage, the conditional expectation for the outcome Yi, given Ti and Ri,
is modeled as a flexible function of its two arguments. We use polynomial approxima-
tions of order not higher than three. Specifically, the most complex model we consider
is

ϕ{E(Yi|Ti, Ri)} = λ(Ti, Ri;α)

= α0 + α1Ti + α2T
2
i + α3T

3
i + α4Ri + α5R

2
i + α6R

3
i + α7TiRi

where ϕ(·) is a function that relates the predictor, λ(Ti, Ri;α), to the conditional ex-
pectation E(Yi|Ti, Ri).

The last step consists of averaging the estimated regression function over the score
function evaluated at the desired level of the treatment. Specifically, to obtain an esti-
mate of the entire dose–response function, the program estimates the average potential
outcome for each level of the treatments in which one is interested by applying the
empirical counterpart of (1) and (2); that is,

̂E{Y (t)} = 1

N

N∑

i=1

γ̂ {t, r̂(t,Xi)} =
1

N

N∑

i=1

ϕ−1
[
λ̂ {t, r̂(t,Xi); α̂}

]

Briefly, the program glmdose.ado estimates the dose–response function according
to the following algorithm:

1. Estimate the GPS (according to the family and link specified by the user) through
the GLM approach; check the normality, if required; and test the balancing prop-
erty by using the routine glmgpscore.ado.

2. Estimate the conditional expectation of the outcome, given the treatment and the
GPS, by calling the routine doseresponse model.ado.10

3. Estimate the average potential outcome for each level of the treatment in which
the user is interested.

4. Estimate the standard errors of the dose–response function via bootstrapping.11

5. Plot the estimated dose–response function and, if requested, its confidence inter-
vals.

10. The doseresponse model command (Bia and Mattei 2008) is required by the glmdose command.
Type search doseresponse model, and follow the links to install the latest package.

11. As in glmdose.ado, when bootstrapped standard errors are required, the bootstrap encompasses
both the estimation of the GPS based on the specification given by the user and the estimation of
the α parameter.
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5 Syntax

This section presents the syntax of the programs, reporting all the potential options.
The next section reports only the details of the options specific to glmgpscore and
glmdose and refers the reader to gpscore and doseresponse (Bia and Mattei 2008)
for the options in common.12

glmgpscore varlist
[
if
] [

in
] [

weight
]
, t(varname) gpscore(newvar)

predict(newvar) sigma(newvar) cutpoints(varname) index(string)

nq gps(#) family(string) link(string)
[
t transf(transformation)

normal test(test) norm level(#) test varlist(varlist) test(type)

flag b(#) opt nb(string) opt b(varname) detail
]

glmdose varlist
[
if
] [

in
] [

weight
]
, outcome(varname) t(varname)

gpscore(newvar) predict(newvar) sigma(newvar) cutpoints(varname)

index(string) nq gps(#) dose response(newvar) family(string)

link(string)
[
t transf(transformation) normal test(test) norm level(#)

test varlist(varlist) test(type) flag b(#) cmd(regression cmd)

reg type t(type) reg type gps(type) interaction(#) tpoints(vector)

npoints(#) delta(#) filename(filename) bootstrap(string) boot reps(#)

analysis(string) analysis level(#) graph(filename) opt nb(string)

opt b(varname) detail
]

Note that in the commands glmgpscore and glmdose, the argument varlist repre-
sents the control variables, which are used to estimate the GPS.

6 Options

The glmdose options include all the doseresponse options and some others strictly
related to the GLM estimator. In what follows, we provide only a description of the
options related to the glmdose command and not included in doseresponse or with a
different content, referring the reader to BM for the others. In addition, we recall that
the glmdose options include all the options for the glmgpscore command.

12. Type search doseresponse or search gpscore, and follow the links to install the latest package.



B. Guardabascio and M. Ventura 151

6.1 Required

gpscore(newvar) specifies the variable name for the estimated GPS via GLM.

sigma(newvar) creates a new variable containing the GLM fit of the conditional stan-
dard error of the treatment given the covariates, which are obtained from Pearson
residuals.13

family(string) specifies the distribution family name of the treated variable.

link(string) specifies the link function for the treated variable. The default is the
canonical link for the family() specified.14

6.2 Optional

flag b(#) skips either the balancing or the normal test or both and takes as arguments
0, 1, or 2. If flag b() is not specified, the program estimates the GPS performing
both the balancing and the normal tests. flag b(0) skips both the balancing and
the normal tests; flag b(1) skips only the balancing test; flag b(2) skips only the
normal test.

opt nb(string) specifies the negative binomial dispersion parameter. In the GLM ap-
proach, you specify family(nb #k), where #k is specified through the opt nb()

option. The GLM then searches for the #k that results in the deviance-based dis-
persion being 1. Instead, nbreg finds the ML estimate of #k.

opt b(varname) specifies the name of the variable that contains the number of binomial
trials.

7 Stata output

We illustrate the details of our programs using the dataset collected by Imbens, Rubin,
and Sacerdote (2001). Our choice of the dataset has been motivated by the need of
comparing our results with those of Hirano and Imbens (2004). The aim of the original
exercise was to estimate the effect of the Lottery prize amount on subsequent labor
earnings, year6. Because our econometric exercise is simply motivated by the need
to show the functioning of the programs, we have considered a different treatment
variable (different from prize) that allows us to use the binary distribution function.
In particular, the flogit case has been implemented by using the treatment variable
fraction, which is obtained by normalizing the variable prize with respect to its
highest value in the sample. Accordingly, the results of glmgpscore and glmdose are
shown below.

13. The authors wish to thank J. Wooldridge for helping on this point in a private conversation. Recall
that in the case of normal distribution, Pearson residuals coincide with usual residuals.

14. For the list of all the admissible family–link combinations, see [SEM] gsem family-and-link

options.
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7.1 Flogit glmgpscore output

In this case, the treatment variable is fraction, which by construction takes on values in
the unit interval. The code is implemented by setting the cutpoints to divide the sample
into three groups contained in the variable cut1. The link function is the canonical one,
logit; however, other links are admissible. The output appears as follows:

. use lotterydataset

. egen max_p=max(prize)

. generate fraction= prize/max_p

. quietly generate cut1 = 23/max_p if fraction<=23/max_p

. quietly replace cut1 = 80/max_p if fraction>23/max_p & fraction<=80/max_p

. quietly replace cut1 = 485/max_p if fraction >80/max_p

. #delimit ;
delimiter now ;
. glmgpscore male ownhs owncoll tixbot workthen yearw yearm1 yearm2,
> t(fraction) gpscore(gpscore_fr) predict(y_hat_fr) sigma(sd_fr)
> cutpoints(cut1) index(mean) nq_gps(5) family(binomial) link(logit) detail
> ;

Generalized Propensity Score

******************************************************
Algorithm to estimate the generalized propensity score
******************************************************

Estimation of the propensity score

The treatment is fraction

T

Percentiles Smallest
1% .0103137 .0023495
5% .0202446 .0023495

10% .0231977 .0103137 Obs 237
25% .0351369 .0110477 Sum of Wgt. 237

50% .0654881 Mean .1138546
Largest Std. Dev. .127485

75% .1299367 .5571485
90% .270282 .629324 Variance .0162524
95% .3482539 .6669279 Skewness 2.888956
99% .629324 1 Kurtosis 15.08626
note: T has noninteger values

Generalized linear models No. of obs = 237
Optimization : ML Residual df = 228

Scale parameter = 1
Deviance = 25.91237504 (1/df) Deviance = .1136508
Pearson = 29.27315861 (1/df) Pearson = .128391

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = .6036733
Log pseudolikelihood = -62.53528122 BIC = -1220.805
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Robust
T Coef. Std. Err. z P>|z| [95% Conf. Interval]

male .6402121 .1694826 3.78 0.000 .3080323 .9723918
ownhs -.1515907 .1086591 -1.40 0.163 -.3645586 .0613773

owncoll .0401978 .0431132 0.93 0.351 -.0443026 .1246982
tixbot .0202427 .0249659 0.81 0.417 -.0286895 .0691749

workthen .1558366 .2139876 0.73 0.466 -.2635714 .5752446
yearw -.0169543 .0603052 -0.28 0.779 -.1351503 .1012416

yearm1 -.0055257 .0131275 -0.42 0.674 -.0312552 .0202037
yearm2 .0089422 .0134262 0.67 0.505 -.0173726 .035257
_cons -2.146518 .5413156 -3.97 0.000 -3.207477 -1.085559

robust standard errors reported

Estimated generalized propensity score

Percentiles Smallest
1% .0556678 .0537445
5% .0600808 .0547833

10% .0659206 .0556678 Obs 237
25% .0749973 .0563906 Sum of Wgt. 237

50% .1254999 Mean .1138546
Largest Std. Dev. .0387714

75% .1413647 .217338
90% .1541515 .2175611 Variance .0015032
95% .167948 .2198188 Skewness .2804054
99% .2175611 .2256652 Kurtosis 2.511468

********************************************
End of the algorithm to estimate the gpscore
********************************************

******************************************************************************
The set of the potential treatment values is divided into 3 intervals
The values of the gpscore evaluated at the representative point of each
treatment interval are divided into 5 intervals
******************************************************************************

***********************************************************
Summary statistics of the distribution of the GPS evaluated
at the representative point of each treatment interval
***********************************************************

Variable Obs Mean Std. Dev. Min Max

gps_1 237 .1138546 .0387714 .0537445 .2256652

Variable Obs Mean Std. Dev. Min Max

gps_2 237 .1138546 .0387714 .0537445 .2256652

Variable Obs Mean Std. Dev. Min Max

gps_3 237 .1138546 .0387714 .0537445 .2256652

***********************************************************************************
Test that the conditional mean of the pre-treatment variables given the generalized
propensity score is not different between units who belong to a particular
treatment interval and units who belong to all other treatment intervals
***********************************************************************************
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Treatment Interval No 1 - [.0023494709748775, .0474060922861099]

Mean Standard
Difference Deviation t-value

male .07032 .03214 2.1881

ownhs .27061 .13368 2.0244

owncoll .14939 .21863 .6833

tixbot .09136 .43645 .20931

workthen -.01029 .05015 -.20523

yearw .15477 .18022 .85879

yearm1 1.4991 1.7217 .8707

yearm2 1.823 1.5597 1.1688

Treatment Interval No 2 - [.0476247407495975, .1631902456283569]

Mean Standard
Difference Deviation t-value

male -.06435 .02183 -2.9477

ownhs -.13305 .13008 -1.0228

owncoll -.18433 .19743 -.93368

tixbot -.48247 .38721 -1.246

workthen -.00199 .04998 -.0398

yearw -.33553 .1666 -2.014

yearm1 .07426 1.6071 .04621

yearm2 -.09833 1.4601 -.06734

Treatment Interval No 3 - [.1711813360452652, 1]

Mean Standard
Difference Deviation t-value

male -.01669 .03175 -.52566

ownhs .19524 .17768 1.0988

owncoll .18711 .27456 .68148

tixbot .47912 .50744 .94421

workthen -.05865 .07293 -.80421

yearw .23415 .22407 1.045

yearm1 -.70637 1.966 -.35929

yearm2 -1.1814 1.7682 -.66816

According to a standard two-sided t test:

Decisive evidence against the balancing property

The balancing property is satisfied at a level lower than 0.01

. #delimit cr
delimiter now cr
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7.2 Flogit glmdose output

The glmgpscore command is replaced by glmdose and additional options are added.
Specifically, the matrix tp1 contains the value of the treatment we are interested in.
See figure 1.

. use lotterydataset.dta, clear

. egen max_p=max(prize)

. generate fraction= prize/max_p

. quietly generate cut1 = 23/max_p if fraction<=23/max_p

. quietly replace cut1 = 80/max_p if fraction>23/max_p & fraction<=80/max_p

. quietly replace cut1 = 485/max_p if fraction >80/max_p

. mat def tp1 = (0.10\0.20\0.30\0.40\0.50\0.60\0.70\0.80)

. #delimit ;
delimiter now ;
. glmdose male ownhs owncoll tixbot workthen yearw yearm1 yearm2,
> t(fraction) gpscore(gps_flog) predict(y_hat_fl) sigma(sd_fl)
> cutpoints(cut1) index(mean) nq_gps(5) family(binomial) link(logit)
> outcome(year6) dose_response(doseresp_fl) tpoints(tp1) delta(0.1)
> reg_type_t(quadratic) reg_type_gps(quadratic) interaction(1)
> bootstrap(yes) boot_reps(10) analysis(yes) detail
> filename("output_flog") graph("graphflog.eps")
> ;

********************************************
ESTIMATE OF THE GENERALIZED PROPENSITY SCORE
********************************************

Generalized Propensity Score

******************************************************
Algorithm to estimate the generalized propensity score
******************************************************

(output omitted )

The outcome variable ´´year6´´ is a continuous variable

The regression model is: Y = T + T^2 + GPS + GPS^2 + T*GPS

Source SS df MS Number of obs = 202
F( 5, 196) = 4.44

Model 4.2029e+09 5 840589784 Prob > F = 0.0007
Residual 3.7122e+10 196 189397662 R-squared = 0.1017

Adj R-squared = 0.0788
Total 4.1325e+10 201 205596471 Root MSE = 13762

year6 Coef. Std. Err. t P>|t| [95% Conf. Interval]

fraction -63135.37 30152.68 -2.09 0.038 -122600.7 -3670.024
fraction_sq 9555.672 40829.3 0.23 0.815 -70965.47 90076.82

gps_flog 297627.5 137193.5 2.17 0.031 27062.67 568192.4
gps_flog_sq -931930.1 571320.7 -1.63 0.104 -2058655 194795

fraction_gps_flog 201989.2 290293.7 0.70 0.487 -370510.9 774489.3
_cons -4979.084 7733.942 -0.64 0.520 -20231.51 10273.34
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Bootstrapping of the standard errors
..........

The program is drawing graphs of the output
This operation may take a while

(note: file graphflog.eps not found)
(file graphflog.eps saved)

End of the Algorithm

. #delimit cr
delimiter now cr
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Figure 1. Estimated dose–response function, estimated derivative, and 95% confidence
bands for binomial distributed data

8 Conclusions

In recent years, there has been growing interest in the evaluation of policy interventions
and, more generally, in the estimation of causal effects. To accomplish these tasks,
researchers need ad hoc software and programs. In this article, we provided two Stata
programs implementing the GPS in a general setup. The programs are very versatile
thanks to the introduction of the GLM estimator in the first step of the estimation of
the GPS.
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