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Abstract. This article presents a new Stata command, miivfind, that imple-
ments an algorithm developed by Bollen and Bauer (2004, Sociological Meth-

ods and Research 32: 425–452) to find the model-implied instrumental variables
(MIIVs) from an identified structural equation model. MIIVs allow researchers to
draw on instrumental-variable estimators, such as two-stage least-squares estima-
tors, to obtain estimates for the parameters of a hypothesized structural equation
model. It can be difficult to identify MIIVs by inspection of either a diagram of
the model or the model equations. Two examples are provided that illustrate the
use of miivfind to identify MIIVs and some of the advantages of a MIIV estimator
as compared with a maximum likelihood estimator. By assisting in the process
of finding MIIVs, miivfind facilitates the use of an alternative class of estima-
tors, instrumental-variable estimators, to the standard maximum-likelihood and
asymptotic-distribution free estimators available for structural equation models.

Keywords: st0324, miivfind, structural equation models, instrumental-variable es-
timators, model-implied instrumental variables

1 Introduction

Interest in the use of Stata for structural equation models (SEMs) has increased with the
introduction of a suite of commands for fitting SEMs. The sem command comes with the
option of using one of three popular estimators: a maximum likelihood estimator (ML),
a direct maximum-likelihood mean- and variance-adjusted estimator for missing data,
and an asymptotic distribution free estimator. Though not with the sem command,
one can also obtain parameter estimates for SEMs by using instrumental-variable (IV)
estimators and other procedures available in Stata. Madansky (1964), Hägglund (1982),
and Jöreskog (1983) provided the initial development of IV estimators for factor analytic
models, and Jöreskog and Sörbom (1993) discussed a procedure involving an IV estima-
tor for obtaining estimates for the parameters in the latent-variable model. However,
these were restricted in a variety of ways ranging from assuming uncorrelated errors to
not providing significance tests for statistical inferences. In a series of articles, Bollen
and colleagues derived alternative IV estimators for the general SEM, for higher-order
factor analysis, and for SEMs involving endogenous categorical or censored observed
variables (Bollen 1996b, 2001; Bollen and Biesanz 2002; Bollen and Maydeu-Olivares
2007).

c© 2014 StataCorp LP st0324
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Instrumental-variable estimators hold a number of advantages over traditional ML

estimators for SEMs. Most IV estimators are noniterative and thus not subject to com-
putational issues that can lead to nonconvergence with ML estimators (or other iterative
estimators). In addition, IV estimators for SEMs can be used equation by equation (that
is, treated as limited-information estimators), which helps isolate bias resulting from
structural misspecifications in other parts of the model (Bollen et al. 2007). In contrast,
ML estimators are full-information estimators, which have the potential to spread bias
because of misspecification throughout the model parameters.1 Overidentification tests
have been derived for IV estimators that in the context of SEMs can help identify struc-
tural misspecifications in any given equation (Kirby and Bollen 2009). IV estimators
for SEMs are asymptotically “distribution free” and allow for heteroskedastic-consistent
standard errors (Bollen 1996a). Furthermore, IV estimators are readily available in
Stata with the ivregress command.

The key challenge in using IV estimators for SEMs with latent variables lies in rewrit-
ing the model equations in terms of observed variables and identifying which of the
observed variables, if any, are suitable instruments for each equation. According to
Bollen’s (1996b) terminology, such instruments are referred to as model-implied in-
strumental variables (MIIVs) because they arise from the specification of the model
(discussed in more detail in the following section). Bollen (1996b, 2001) demonstrated
how to rewrite the general SEM equations involving latent variables in terms of observed
variables only, and Bollen and Bauer (2004) developed an algorithm for identifying the
MIIVs for each equation.

This article presents a new Stata command, miivfind, that uses the algorithm
developed by Bollen and Bauer (2004) to output the MIIVs for a given SEM supplied
by the user. Though the algorithm was developed for SEMs involving latent variables,
it is also applicable to other SEMs in which there are no latent variables. For instance,
miivfind can also be used to identify instruments in classic simultaneous equation
models without latent variables. The article is organized as follows: The next two
sections provide a brief overview of MIIVs and the logic of the algorithm for finding
them. The fourth section provides a detailed discussion of the inputs and outputs of
miivfind. Finally, the fifth section provides two examples of using miivfind to identify
the MIIVs for two different SEMs. The first example illustrates the use of miivfind for
a simple model. The second example is designed to illustrate both the use of miivfind
and some of the potential benefits of an IV estimator. This example compares the
estimates from an IV estimator (based on using the output from miivfind) and an ML

estimator.

1. Full-information estimators are typically more efficient than limited-information estimators, but
simulation results suggest that the efficiency gains of ML over two-stage least-squares (2SLS) esti-
mators with respect to SEMs are minimal (Bollen et al. 2007).
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2 What are MIIVs?

Readers may be unfamiliar with instrumental variables in relation to latent-variable
SEMs. In econometrics texts, IVs are usually introduced to address endogenous covari-
ates (for example, Cameron and Trivedi [2005] and Wooldridge [2010]). When a model
includes a potentially endogenous covariate, then the analyst searches for additional vari-
ables that could serve as instruments. In some cases, the additional variables are wholly
outside the model (for example, using settler mortality rates as an instrument for insti-
tutions in models of economic growth, as in Acemoglu, Johnson, and Robinson [2001]);
in other cases, time-lagged or spatially lagged variables can serve as instruments (for
example, Anselin [1988] and Arellano and Bond [1991]). More recently, econometricians
have focused on instrumental variables that arise in randomized or quasi-randomized
experiments (for example, Angrist and Pischke [2009]; Heckman, Urzua, and Vytlacil
[2006]; and Imbens and Angrist [1994]). By definition, an instrumental variable, z, is a
variable that satisfies two conditions: 1) z must be correlated with an endogenous regres-
sor x and 2) z must be uncorrelated with the disturbance term ǫ (Cameron and Trivedi
2005). With a little algebra, it is possible to show how such variables arise naturally in
nearly all identified SEMs.

Using a slightly modified version of Jöreskog’s (1977) notation, we write the latent-
variable model as

η = αη +Bη + Γξ + ζ (1)

where η is a vector of endogenous latent variables, ξ is a vector of exogenous latent
variables, and ζ is a vector of disturbances. The matrix of coefficients B gives the
effects of the latent endogenous variables on each other, and the matrix of coefficients
Γ gives the effects of the latent exogenous variables on the latent endogenous variables.
We assume that E(ζ) = 0, E(ξ′ζ) = 0, and (I−B) is nonsingular. The measurement
model includes two equations,

y = αy +Λyη + ǫ (2)

x = αx +Λxξ + δ (3)

where y and x are, respectively, vectors of indicators of the latent endogenous and
exogenous variables, and ǫ and δ are vectors of disturbances. The matrices of factor
loadings Λy and Λx give the effects of the latent variables on the observed indicators.
We assume that E(ǫ) = E(δ) = 0 and that ǫ and δ are uncorrelated with each other
and with ξ and ζ.

Three additional matrices are used to identify the variances and covariances among
the disturbances in (1), (2), and (3). The matrix for the variances and covariances
among the disturbances for the latent-variable model, ζ, is the Ψ matrix. The matrices
for the variances and covariances among the disturbances for the measurement models,
ǫ and δ, are, respectively, Θǫ and Θδ.

Equations (1), (2), and (3) are quite general and include many well-known models
as special cases. If one assumes no measurement error (that is, y = Iη and x = Iξ),
then (1) reduces to the classic simultaneous equations model from econometrics. If
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in addition, there is only a single outcome, y, then (1) further reduces to a standard
multiple regression model. Alternatively, if one does not specify structural effects among
the latent variables (that is, B = Γ = 0) and does not specify y, then only (3) remains, a
confirmatory factor analysis model. Because the general SEM includes many well-known
models as special cases, MIIV estimators are widely applicable to models not typically
thought of as SEMs.

To use an IV estimator, the equations in (1), (2), and (3) need to be rewritten in
terms of only observed variables. This is accomplished by choosing an indicator to serve
as a scaling indicator for each latent variable and solving the measurement equations for
these indicators for the latent variables. If we denote the vectors of scaling indicators
for the endogenous and exogenous latent variables as y1 and x1, then we have

η = y1 − ǫ1 (4)

ξ = x1 − δ1 (5)

Following Bollen (2001), (4) and (5) can be substituted into (1), (2), and (3), and with
the remaining nonscaling indicators denoted by y2 and x2, we have

y1 = αη +By1 + Γx1 + ǫ1 −Bǫ1 − Γδ1 + ζ (6)

y2 = αy2
+Λy2

y1 −Λy2
ǫ1 + ǫ2 (7)

x2 = αx2
+Λx2

x1 −Λx2
δ1 + δ2 (8)

With the equations for the general SEM expressed in terms of observed variables, it
is now possible to identify potential MIIVs. As noted above, a vector of instruments, z,
must in general satisfy two conditions: 1) z must be correlated with the covariates in the
equation and 2) z must be uncorrelated with the disturbance term in the equation. The
first condition is not difficult to check. After identifying candidate MIIVs, one can regress
the covariates in the equation on the candidate MIIVs and use standard procedures for
assessing the strength of the instruments (Cameron and Trivedi 2005; Stock and Yogo
2005). The second condition is typically more challenging to assess.

The model equations (6), (7), and (8), written in terms of observed variables, in-
troduce composite disturbance terms. For instance, the disturbance term in (6) is a
function of ǫ, δ, and ζ. All the observed variables are candidate instruments for any
given equation; however, those that are associated with any of the error terms in the
composite disturbance fail to meet the second condition and thus are not suitable instru-
ments for the given equation. The specification of the model determines which observed
variables are correlated with each disturbance, hence the term MIIVs. Of course, the
proposed model may be misspecified, in which case the MIIVs based on the proposed
model may in fact be correlated with the composite disturbance and therefore fail to
meet the second condition. As long as there are more MIIVs than right-hand-side vari-
ables for a given equation, standard overidentification tests for instrumental-variable
estimators can be used to help assess whether the instruments are uncorrelated with
the error term (Sargan 1958; Basmann 1960). The overidentification tests serve a sim-
ilar function of detecting model misspecification as the χ2 test for model fit available
with ML estimators (Bollen 1989).
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3 Algorithm for finding MIIVs

In practice, it can be difficult to determine the MIIVs for a given equation by examining
a set of equations representing a SEM. Bollen and Bauer (2004) developed an algorithm
for identifying MIIVs in any SEM that can be expressed using equations (1), (2), and (3).
The algorithm involves four steps, which are outlined below. For more details about
the algorithm, readers should consult Bollen and Bauer (2004).

In the first step of the algorithm, the composite disturbances are worked out for
each equation [see equations (6)–(8)]. As described below, the inputs for the algorithm
include vectors and matrices with indices for the observed variables and error terms
and indicators for the parameters associated with a given SEM. The first step simply
involves systematically searching through these inputs to identify each equation in the
model and the associated error terms. If we let J be the number of equations with K
disturbances, then in the miivfind command, the composite disturbances are stored
in a matrix C with J rows and K + 1 columns. The entries in the first column of the
matrix are indices for the dependent variable for a given equation. The entries in the
remaining columns are indices for the disturbances associated with a given equation
or a 0 if necessary to ensure conformability (that is, when a given equation has fewer
disturbances than the maximum number across all equations).

The second step of the algorithm is to identify the total effects of each disturbance.
Although it is unusual to consider the total effects of an error term, it is possible to treat
error terms, because they are variables, in the same way as other variables to calculate
their total effects on all the observed variables. The total effects of the disturbances can
be obtained from the coefficients from the following reduced form equations (see Bollen
[1987, 1989] for details regarding derivations and stability conditions):

y = αy +Λy(I−B)−1αη +Λy(I−B)−1Γξ +Λy(I−B)−1ζ + ǫ

x = αx +Λxξ + δ

These equations indicate that the total effect of ǫ on y and δ on x is simply I and the
total effect of ζ on y is Λy(I−B)−1. The algorithm uses these coefficients to construct
a matrix T that has rows equal to the number of observed variables (O) and K + 1
columns. The first column is reserved for the indices of the observed variables, and the
remaining columns contain indices for the disturbances that have an effect on a given
variable or a 0 if necessary to ensure conformability.

The third step of the algorithm involves comparing the matrices C and T to identify
the initial set of potential instruments for each equation. For each equation, the initial
set of potential instruments consists of the observed variables that are unaffected by the
disturbances for the given equation. This is determined by working through each row
of C, which corresponds to each equation, and checking whether the observed variables
indexed in T are affected by the disturbances in a given equation identified in C. In
other words, if j indexes equations, k indexes disturbances, and o indexes observed
variables, then if Cjk = Tjo, the observed variable o cannot serve as an instrument in
equation j, because the observed variable is associated with at least one component
of the composite disturbance in equation j. The initial set of instruments, L for each
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equation, is stored in a matrix P with the J rows and the L + 1 columns. The first
column is reserved to index the equation, and the remaining columns contain indices for
the observed variables that are potential instruments or zeros to ensure conformability.

The fourth step of the algorithm involves checking whether the potential instruments
identified in the third step are ineligible because of the potential presence of correla-
tions among disturbances. This is determined by checking whether the disturbances
that have an effect on a given potential instrument are associated with disturbances
that are present in the composite error term for a given equation. Information about
the associations among disturbances are contained in the error term matrices defined by
users as inputs for the algorithm (see discussion in next section). Any potential instru-
ment affected by a disturbance that is correlated with a disturbance in the composite
error term for a given equation is removed from further consideration. The remaining
instruments, if any, for each equation are stored in a matrix IV with the J rows and
columns equal to the maximum number of instruments across all equations plus one.
The matrix IV thus contains the MIIVs, if any, for each equation of a given SEM.

4 The miivfind command

The new Stata command miivfind implements Bollen and Bauer’s (2004) algorithm and
outputs the MIIVs for each equation from a user-supplied SEM. A few preliminary steps
are required to prepare the inputs (vectors and matrices) for miivfind. The first step
is to specify a SEM and assign each of the observed variables a unique index number (for
example, y1 = 1, y2 = 2, . . . , x1 = 5, x2 = 6). The second step is to identify the scaling
indicators for each of the latent variables and construct row vectors for y1,x1,y2, and
x2 using the index numbers for the variables. If there are no variables that correspond
with one of the given vectors, the user should specify it as a zero vector. For instance,
if there are no observed variables in x2, then it should be set to [0].

The third step is to construct coefficient matrices that correspond with the param-
eters in the specified model. The parameter matrices from equations (6), (7), and (8)
are B, Γ, Λy2

, and Λx2
. These matrices should be defined using 1s to indicate free

parameters and 0s to indicate fixed parameters. As with the row vectors, if the matrix
is not an element of the model, then the matrix should be set to a zero matrix. It is
important to note that Λy2

and Λx2
refer to the matrices of factor loadings for the

variables contained in y2 and x2, respectively.

Finally, the fourth step is to specify the covariance matrices for the disturbances.
There are three matrices that need to be specified: Θǫ, Θδ, and Ψ. These matrices also
require unique index numbers. It is convenient to use the same index numbers assigned
to the observed variables to reference the error variances associated with the given vari-
able. For instance, if the variable y1 is assigned the index 1, then it is convenient to
also assign the error variance for y1, the [1, 1] cell in Θǫ, the index 1. Any remaining
covariances among disturbances need to be assigned their own index numbers; however,
as symmetric matrices, the index number assigned to the i, jth cell should be the same
as the number assigned to the j, ith cell. Any variance or covariance among the distur-
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bances that is not estimated should be set to 0. As with all the previous vectors and
matrices, if one of these matrices is not an element of the model, then the matrix should
be set to the zero matrix.

The command miivfind takes the 11 matrices outlined above in the following order
as arguments.

miivfind y1 y2 x1 x2 Beta Gamma Lam y2 Lam x2 Theta ep Theta del Psi

The vectors and matrices need to be defined by the user before invoking the miivfind
command. They can have any name, but the order must be maintained. The command
is designed to check the dimensions of each matrix for accuracy and conformability (for
example, the vector y1 should always be a row vector with the number of columns
equal to the number of columns in B). If the command returns an error, it is an
indication that either the noted vector or matrix was incorrectly specified or the vectors
and matrices were entered out of order. The command outputs a table that lists each
equation based on the index assigned to the dependent variable and the indices of any
observed variables that are MIIVs for each equation.

5 Two examples

This section illustrates the use of the miivfind command with two examples. The first
example is a simple measurement model with one latent variable, four indicators of the
latent variable, and a correlation between two of the disturbances (see figure 1). The
equations for this model are

x1 = ξ1 + δ1

x2 = α2 + λ2ξ1 + δ2

x3 = α3 + λ3ξ1 + δ3

x4 = α4 + λ4ξ1 + δ4

with Cov(δ2, δ3) 6= 0. As depicted in figure 1, the xs are assigned the index numbers 1
through 4. The latent variable, ξ1, is scaled to x1; therefore, x1 = [1] and x2 = [2 3 4].
The only free parameters in the model are the factor loadings for x2, x3, and x4, so we
have

Λx2
=



1
1
1




Finally, the same index numbers used for the xs are used for the covariance matrix
among the disturbances with the addition of 5 for Cov(δ2, δ3). This results in

Θδ =




1 0 0 0
0 2 5 0
0 5 3 0
0 0 0 4
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All the remaining vectors and matrices are set to the zero vector or matrix.

Figure 1. Diagram of model for example 1

The following log illustrates the Stata commands to enter the matrices, the use of
miivfind, and the resulting output for this model.

. *** Input vectors and matrices

. matrix y1 = (0)

. matrix y2 = (0)

. matrix x1 = (1)

. matrix x2 = (2, 3, 4)

. matrix Beta = (0)

. matrix Gamma = (0)

. matrix Ly2 = (0)

. matrix Lx2 = (1 \ 1 \ 1)

. matrix ThetaE = (0)

. matrix ThetaD = (1, 0, 0, 0 \ 0, 2, 5, 0 \ 0, 5, 3, 0 \ 0, 0, 0, 4)

. matrix Psi = (0)
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. *** Invoking miivfind

. miivfind y1 y2 x1 x2 Beta Gamma Ly2 Lx2 ThetaE ThetaD Psi

List of MIIVs (if any) by Equation DV

DV MIIVs

2 4
3 4
4 2, 3

Note: numbers in table are indices assigned to variables.

The output indicates that x4 is the only MIIV available for the x2 and x3 equations.
Both x2 and x3 are MIIVs for the x4 equation. With information about the MIIVs
for each equation, the MIIV-2SLS estimator (Bollen 1996b) can be used with Stata’s
ivregress command in combination with various postestimation options to assess the
potential presence of weak instruments and overidentification tests when available (see
[R] ivregress for options).

The second example is designed to illustrate the use of miivfind to identify MIIVs in
a more complicated model and to compare a MIIV-2SLS estimator with an ML estimator
in a context in which there are advantages to using the MIIV-2SLS estimator. Figure 2
depicts a model in which the latent variable ξ1 has a direct effect on the latent variable
η1. Each of the latent variables is measured by three indicators. The exogenous latent
variable, ξ1, also affects two of the indicators for η1. In the figure, these cross loadings
are drawn with dashed lines to indicate these effects are present in the population but
unknown to the analyst and are thus a source of misspecification.

Figure 2. Diagram of model for example 2. Dashed lines indicate effects in the popula-
tion that are unknown to the analyst.
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As limited-information estimators, MIIV estimators are more robust to model mis-
specifications than full-information estimators, such as the standard ML estimator for
SEMs. In this example, as we will demonstrate, the MIIV-2SLS estimator is able to re-
cover the structural parameter (the effect of ξ1 on η1), while the standard ML estimator
returns a biased estimate. This illustrates one potential advantage of MIIV estimators
and underscores their usefulness as an alternative option for fitting SEMs. This is not
to suggest, however, that MIIV estimators are always to be preferred to ML estimators.

The equations for this model (from the perspective of the analyst who is unaware of
the cross loadings) are

η1 = αη1
+ γ11ξ1 + ζ1

xj = αxj
+ λxj

ξ1 + δj

yj = αyj
+ λyj

η1 + ǫj

for j = 1, 2, 3. The latent variables are both scaled to the first indicator; that is,
αx1

= αy1
= 0 and λx1

= λy1
= 1.

As shown in figure 2, the ys are indexed 1, 2, and 3, and the xs are indexed 4, 5,
and 6. The two scaling indicators are x1 and y1; thus y1 = [1] and x1 = [4]. This leaves
y2 = [2 3] and x2 = [5 6]. The matrices for the free structural parameters are

B =
[
0
]
and Γ =

[
1
]

The matrices for the free parameters in the measurement model are

Λy2
=

[
1
1

]
and Λx2

=

[
1
1

]

Note that the failure to consider the cross loadings from ξ1 to the indicators of η1 means
that the analyst’s model is misspecified. The covariance matrices for the disturbances
are

Θǫ =



1 0 0
0 2 0
0 0 3


 , Θδ =



4 0 0
0 5 0
0 0 6


 , and Ψ =

[
7
]

The following log illustrates the Stata commands used to enter the matrices for the
second example and the use of miivfind.

. *** Input vectors and matrices

. matrix y1 = (1)

. matrix y2 = (2,3)

. matrix x1 = (4)

. matrix x2 = (5,6)

. matrix Beta = (0)

. matrix Gamma = (1)

. matrix Ly2 = (1 \ 1)

. matrix Lx2 = (1 \ 1)
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. matrix ThetaE = (1, 0, 0 \ 0, 2, 0 \ 0, 0, 3)

. matrix ThetaD = (4, 0, 0 \ 0, 5, 0 \ 0, 0, 6)

. matrix Psi = (7)

. *** Invoking miivfind

. miivfind y1 y2 x1 x2 Beta Gamma Ly2 Lx2 ThetaE ThetaD Psi

List of MIIVs (if any) by Equation DV

DV MIIVs

1 5, 6
2 3, 4, 5, 6
3 2, 4, 5, 6
5 1, 2, 3, 6
6 1, 2, 3, 5

Note: numbers in table are indices assigned to variables.

The output indicates that x2 and x3 (that is, the variables labeled “5” and “6”) are
MIIVs for the y1 equation, which is used to estimate the structural parameter γ11. The
MIIVs for the remaining equations, which are used to estimate the measurement model
parameters (λs), include all the observed variables except for the appropriate scaling
variable (that is, y1 for the indicators of η1 and x1 for the indicators of ξ1) and the
dependent variable for the given equation.

To illustrate how one can use the information from miivfind and the potential value
of a MIIV estimator, I constructed a simple simulation treating the model illustrated in
figure 2 as the population model. I parameterized the model as follows: I set γ11 = 0.5;
I set the free-factor loadings to 0.7 and the cross loadings to 0.4; I set all intercepts to
0; and I set the distributions for all the disturbances and the latent exogenous variable
to N(0, 1). I drew 1,000 samples of size N = 1,000. For each sample, I estimated the
analyst’s model (that is, the misspecified model that omits the cross loadings) by using
Stata’s sem command, and I estimated γ11 and λy2

by using MIIV-2SLS estimators via
Stata’s ivregress command with the information provided by miivfind concerning
which observed variables to use as instruments.
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The following log provides the Stata code for the simulation program.

. *** Defining simulation program

. capture program drop miivsim

. program miivsim, rclass
1. clear
2. *** Generating data

. set obs 1000
3. gen xi1 = rnormal(0,1)
4. gen eta1 = 0.5*xi1 + rnormal(0,1)
5. gen x1 = xi1 + rnormal(0,1)
6. gen x2 = 0.7*xi1 + rnormal(0,1)
7. gen x3 = 0.7*xi1 + rnormal(0,1)
8. gen y1 = eta1 + rnormal(0,1)
9. gen y2 = 0.7*eta1 + 0.4*xi1 + rnormal(0,1)
10. gen y3 = 0.7*eta1 + 0.4*xi1 + rnormal(0,1)
11. *** ML estimator

. qui sem (Xi -> x1 x2 x3) (Eta -> y1 y2 y3) (Xi -> Eta)
12. matrix b1 = e(b)
13. return scalar chisq_pval = e(p_ms)
14. return scalar ml_gamma11 = b1[1,1]
15. return scalar ml_lambda21 = b1[1,10]
16. *** MIIV-2SLS estimators

. qui ivregress 2sls y1 (x1 = x2 x3)
17. qui estat overid
18. matrix b2 = e(b)
19. return scalar tsls_gamma11 = b2[1,1]
20. return scalar y1_sargan_pval = r(p_sargan)
21. qui ivregress 2sls y2 (y1 = x1 x2 x3 y3)
22. qui estat overid
23. matrix b3 = e(b)
24. return scalar tsls_lambda21 = b3[1,1]
25. return scalar y2_sargan_pval = r(p_sargan)
26. end

After simulating data from the population model, the program first estimates the ana-
lyst’s model by using Stata’s sem command and stores estimates for γ11, λy2

, and the
p-value for the χ2 test of overall model fit. The program then uses Stata’s ivregress
2sls command to invoke MIIV-2SLS estimators to obtain estimates for γ11 by using the
y1 equation with the instruments identified by miivfind and for λy2

by using the y2
equation with instruments identified by miivfind. The program stores the estimates
for γ11, λy2

, and, because these equations are overidentified, the p-values from Sargan’s
(1958) χ2 test of the overidentifying restrictions. Because the y1 equation is correctly
specified (that is, there are no misspecifications in the structural component of the
model), one would expect roughly 5% of the simulation samples to return a significant
p-value (less than 0.05). In contrast, because the y2 equation is part of the measurement
model, which is misspecified, we would expect a substantial proportion of the samples to
return a significant p-value. I set the seed to 69,185,391 with the simulation command.

Table 1 presents the mean parameter estimates and root mean square errors (RMSEs)
for γ11 and λy2

from the two estimators. As expected, the MIIV-2SLS estimator recov-
ers the structural parameter γ11, while the ML estimator is biased. Also as expected,
both estimators are biased for λy2

because of the analyst’s misspecification of the mea-
surement model. In this case, the RMSEs for the MIIV-2SLS estimator are lower than
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the RMSEs for the ML estimator for both parameters, but this is due to the greater
bias in the ML estimator. In general, ML estimators are more efficient than MIIV-2SLS

estimators, though the gains in efficiency can be quite small in practice (Bollen et al.
2007).

Table 1. Parameter estimates from simulation study

Parameter Population MIIV-2SLS ML

Mean RMSE Mean RMSE

γ11 0.5 0.502 0.069 0.653 0.162
λy2

0.7 1.017 0.323 1.077 0.382

The χ2 test for the overall model fit is significant in 99% of the samples, which is
an indication that the model is misspecified. The test, however, is for the model as
a whole and does not provide any guidance about the nature of the misspecification.
Sargan’s (1958) test for the y1 equation, which is used to estimate γ11, is significant in
4.8% of the samples, which is within sampling fluctuation of the nominal 5%. Sargan’s
(1958) test for the y2 equation, which is used to estimate λy2

, is significant in 99% of
the samples. This test points to a problem with the measurement model for η1, which
might help analysts narrow down the source of misspecification.

This example and simulation illustrate how the MIIVs identified by miivfind can be
used in conjunction with the ivregress command to obtain parameter estimates for
a given SEM in which the MIIV-2SLS estimator has some advantages over the standard
ML estimator. This is not to suggest that the MIIV-2SLS estimator will always or even
often be preferred over an ML estimator. For additional information about MIIV esti-
mators, readers should consult Bollen and his colleagues’ work (Bollen 1996b, 2001;
Bollen and Biesanz 2002; Bollen and Maydeu-Olivares 2007). Cameron and Trivedi
(2010) provide a nice general discussion of IV estimators as implemented in Stata. Fi-
nally, readers should consult Stata’s documentation for the various options available
with the ivregress command (see [R] ivregress).

6 Conclusion

This article presents a new Stata command, miivfind, that assists users in finding MIIVs
from an identified SEM. MIIV estimators have a number of benefits relative to the more
commonly used ML estimators for SEMs. MIIV estimators have the potential to better
isolate misspecification errors (as demonstrated in the second simulation); can make
use of overidentification tests, when available; are asymptotically “distribution-free”;
and can allow for heteroskedastic errors. However, it can be difficult to identify MIIVs
by inspection of the model equations. By assisting in the process of finding MIIVs,
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miivfind facilitates the use of an alternative class of estimators to the standard ML

estimators available for SEMs.
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