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Abstract. This article describes sreweight, a Stata command to reweight survey
data to external aggregate totals.

Keywords: st0322, sreweight, survey reweighting, external totals, calibration of
survey data

1 Introduction

Statistical agencies and research institutes often need to adjust survey weights so that
estimates match known control totals for given variables. These adjustments could be
important to reduce the bias of estimates, to increase their efficiency, or to achieve
consistency when alignment with other sources is required. In this article, I examine
the sreweight command, which implements the methodology proposed by Deville and
Särndal (1992) for survey reweighting. In contrast to other user-written commands,
sreweight allows for a large number of distance functions, something that can be help-
ful when convergence is difficult to achieve in practice. Moreover, for all distance func-
tions that require numerical methods, sreweight implements the algorithm proposed
by Creedy (2003), which provides extremely rapid convergence. Finally, sreweight has
several flexible options that can be helpful when calibration to external totals is difficult
to achieve independently from the chosen function.1 Section 2 contains the theoreti-
cal background for survey reweighting. Section 3 describes the sreweight command.
Section 4 presents two empirical applications based on survey data.

2 An overview of the calibration method

Let us consider a survey of N individuals and K individual-level variables, such as
income, sex, and age. We collect these variables for the generic respondent i in the
following vector: xi = (xi1, xi2, . . . , xiK)′. If we define the survey weight with the
vector s = (s1, s2, . . . , si, . . . , sN ), the estimated 1×K vector of totals is given by

t̂ =

N∑

i=1

sixi (1)

1. Other user-provided commands perform the same type of reweighting on the basis of Deville and
Särndal’s (1992) article, but they lack sreweight’s characteristics listed above.

c© 2014 StataCorp LP st0322
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If external information is available on the real population totals for these K variables,
it is possible to compute a new vector of weights—w = (w1, w2, . . . , wi, . . . , wN )—that
is as close as possible to the original weights and that respects the following calibrating
conditions,

t =
N∑

i=1

wixi (2)

where t is the 1 ×K vector of true totals. Indeed, if we denote the distance between
the original and the new weights with the function G(si, wi), the new weights can be
obtained by minimizing the following Lagrangian function with respect to w,

L =

N∑

i=1

G(si, wi) +

K∑

k=1

λk

(
tk −

N∑

i=1

wixik

)
(3)

where λ = [λ1, λ2, . . . , λK ]′ are the Lagrange multipliers. Clearly, the solution of the
minimization problem depends on the properties of the chosen distance function. Here
we follow Creedy (2003) and require the function G(si, wi) to respect the following
convenient properties:

1. The first derivative of G(si, wi) with respect to wi can be defined as a function of
the ratio between the new and the original weights:

∂G(si, wi)

∂wi
= g

(
wi

si

)

2. The inverse of the first derivative of G(si, wi) exists and can be obtained explicitly.

If these properties hold, then the N first-order conditions for the problem in (3) are

g

(
wi

si

)
− x

′

iλ = 0 i = 1, 2, . . . , N

and the new weights can be obtained as

wi = sig
−1(x

′

iλ) i = 1, 2, . . . , N (4)

given a solution for the Lagrange multipliers.

The Lagrange multipliers can be obtained through an iterative procedure after some
algebraic manipulation of (4). In particular, let us substitute (4) into (2),

t =
N∑

i=1

wixi =
N∑

i=1

sig
−1
(
x

′

iλ
)
xi

and then subtract (1) from both sides:

t− t̂ =

N∑

i=1

sig
−1
(
x

′

iλ
)
xi −

N∑

i=1

sixi =

N∑

i=1

si

{
g−1

(
x

′

iλ
)
− 1
}
xi (5)
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If we define a = t− t̂, (5) can be rewritten as

f(λ) = a−
N∑

i=1

si

{
g−1

(
x

′

iλ
)
− 1
}
xi = 0 (6)

The root of this function can be computed by means of Newton’s method, which involves
the following iterative algorithm,

λ(t+1) = λ(t) −
{
∂f(λ)

∂λ

}−1

f(λ) (7)

where f(λ) is evaluated with the previous value of the Lagrange multipliers, λ(t).
The generic s, k element of the Hessian matrix that enters the previous recursion—
{∂f(λ)}/{∂λ}—can be computed from (6),

∂fs(λ)

∂λk
= −

N∑

i=1

sixis

∂g−1
(
x

′

iλ
)

∂λk

= −
N∑

i=1

sixisxik

∂g−1
(
x

′

iλ
)

∂
(
x

′

iλ
)

where s = 1, 2, . . . , k, . . . ,K. Given a set of initial values for λ, the recursion in (7)
can be repeatedly evaluated until convergence. The following considers some of the
most common distance functions and provides the related equations for the empirical
implementation of the recursive algorithm explained in this section.

2.1 The chi-squared distance

The chi-squared distance function is one of the most popular choices in the applied
literature. The main reason is that the minimization problem in (3) has an explicit
solution that can be obtained immediately without the iterative procedure outlined
above. The chi-squared distance function is given by

G(s, w) =
1

2

N∑

i=1

(wi − si)2
si

(8)

Hence, substituting this function into (3), we obtain

L =
1

2

N∑

i=1

(wi − si)2
si

+
K∑

k=1

λk

(
tk −

N∑

i=1

wixik

)
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and the first-order conditions are

∂L

∂wi
=

(
wi

si
− 1

)
−

K∑

k=1

λkxik = 0

(
wi

si
− 1

)
− x

′

iλ = 0

si

(
1 + x

′

iλ
)
= wi (9)

for i = 1, 2, . . . , N . To obtain the Lagrangian multipliers, we premultiply (9) by xi,
rearrange, and sum over all N :

N∑

i=1

sixix
′

iλ =

N∑

i=1

wixi −
N∑

i=1

sixi (10)

Then given the conditions in (1) and (2), (10) can be rewritten as

(
N∑

i=1

sixix
′

i

)
λ = t− t̂

λ =

(
N∑

i=1

sixix
′

i

)−1 (
t− t̂

)
(11)

Finally, substituting (11) into (9) gives the new weights for the N observations.

2.2 Alternative distance functions

The main limitation of the chi-squared distance is that no constraints are placed on
the size of the adjustment of the survey weights, with the possibility that some of the
calibrated weights become negative after the adjustment.

In addressing this, the literature proposes that alternative functions incorporate
constraints on the size of the adjustment. However, for these functions, a closed-form
solution is no longer available, and the iterative procedure explained above has to be
used. The following table reports three distance functions coded into sreweight that
force the new weight to be strictly positive. Table 1 also shows the equations needed
to update the recursion during the iterative procedure, which are the functions g(x

′

iλ),

g−1(x
′

iλ), and {∂g−1(x
′

iλ)}/{∂(x
′

iλ)}.
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Table 1. Different distance functions

Type G(si, wi) g(wi

si
) g−1(x

′

iλ)
∂g−1(x

′

iλ)

∂(x
′

i
λ)

a 2
(√
wi −

√
si
)2

2

{
1−

(
wi

si

)− 1
2

} (
1− x

′

iλ

2

)2 (
1− x

′

iλ

2

)3

b −si ln
(

wi

si

)
+ wi − si 1−

(
wi

si

)−1 (
1− x

′

iλ
)−1 (

1− x
′

iλ
)−2

c wi ln
(

wi

si

)
− wi + si ln

(
wi

si

)
exp

(
x

′

iλ
)

exp
(
x

′

iλ
)

The DS distance function

The sreweight command also allows for the following distance function,

G(si, wi) =

(
rU −

wi

si

)
log

(
rU − wi

si

rU − 1

)
+

(
wi

si
− rL

)
log

( wi

si
− rL

1− rL

)
+
rU − rL

α
si

where rL < 1 < rU are positive constants, and α = {rU −rL}/{(1− rL) (rU − 1)}. This
function was proposed by Deville and Särndal (1992) because—in contrast to the other
functions outlined above—the calibrated weights are kept within a known range set by
the user; that is, rLsi < wi < rUsi.

The related elements of G(si, wi) that are needed to update the recursion with the
Deville and Särndal (DS) distance function are

g

(
wi

si

)
=

1

α

{
log

( wi

si
− rL

1− rL

)
− log

(
rU − wi

si

rU − 1

)}

g−1
(
x

′

iλ
)
=
rL(rU − 1) + rU (1− rL) exp(αx

′

iλ)

(rU − 1) + (1− rL) exp(αx′

iλ)

∂g−1
(
x

′

iλ
)

∂(x
′

iλ)
= g−1

(
x

′

iλ
){

rU − g−1
(
x

′

iλ
)} (1− rL)α exp

(
αx

′

iλ
)

(rU − 1) + (1− rL) exp
(
αx

′

iλ
)

The modified chi-squared distance function

Deville and Särndal (1992) also propose a modification of the chi-squared distance. Sim-
ilar to the DS case, the modification constrains the new weights to be within the range
rL < wi/si < rU . Whereas this function does not allow for an explicit solution, it proves
to be very stable and ensures convergence even when calibration to external totals is
difficult in practice.
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To show how the iterative procedure works for this function, we consider the deriva-
tive of the chi-squared function in (8),

g

(
wi

si

)
=
wi

si
− 1

which implies that g−1(x
′

iλ) = wi/si = 1 + x
′

iλ. Therefore, if at some iterations,

si(1 + x
′

iλ) is outside the required range, the updated weight, wi, can be simply set to
the relevant limit (that is, sirL or sirU ) until the algorithm achieves convergence.2

3 The sreweight command

3.1 Syntax

The generic syntax for sreweight is

sreweight varlist
[
if
] [

in
]
, sweight(varname) nweight(newvar)

total(matrix) dfunction(name)
[
svalues(matrix) tolerance(#) niter(#)

ntries(#) upbound(#) lowbound(#) rbounds(#) rlowbound(# #)

rupbound(# #)
]

where varlist includes the calibration variables.

3.2 Options

sweight(varname) specifies a numeric variable to be used for the original survey
weights. sweight() is required.

nweight(newvar) contains the name of the variable to be created with the new weights.
nweight() is required.

total(matrix) contains a 1×K matrix with the user-provided totals, which is ordered
as the variables in varlist. The arguments must be inserted in the same order as the
K calibrating variables in varlist. total() is required.

dfunction(name) specifies the distance function to be used when computing the new
weights. The allowed functions are those introduced in section 2, which are the
chi-squared (chi2), the modified chi-squared (mchi2), Deville and Särndal’s (1992)
function (ds), and the functions we defined as type A (a), type B (b), and type
C (c). Note that for all functions but the chi-squared, sreweight works with the
recursion outlined in the previous section. dfunction() is required.

2. In this case, given that g−1(x
′

i
λ) = 1 + x

′

i
λ, the derivative {∂g−1(x

′

i
λ)}/{∂(x

′

i
λ)} has to be set

to 0 for that observation because 1 + x
′

i
λ equals a constant (that is, rU or rL).
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svalues(matrix) specifies user-provided starting values. Starting values must be put
in a Stata 1 × K matrix following the same order as the variables in varlist. The
default is a vector with the Lagrange multipliers obtained from the chi-squared
distance function.

tolerance(#) specifies the tolerance level that enters the iterative algorithm to declare
convergence. The default is tolerance(0.000001).3

niter(#) specifies the maximum number of iterations. The default is niter(50).

ntries(#) specifies the maximum number of “tries” when the algorithm does not
achieve convergence within the maximum number of iterations. This option can
be useful when the external totals are significantly different from the survey totals.
In such situations, the algorithm automatically restarts with new random starting
values up to # times. The default is ntries(0).4

upbound(#) specifies the upper bound of the ratio between the new and the original
weights when using either the modified chi-squared or the DS distance function. The
default is upbound(4). Note that this value must be bigger than 1.

lowbound(#) specifies the lower bound of the ratio between the new and the original
weights when using either the modified chi-squared or the DS distance function. The
default is lowbound(0.2). Note that this value must be between 0 and 1.

rbounds(#) is relevant only for the modified chi-squared and the DS functions when
the ntries() option is effective. In this case, if the recursion does not achieve
convergence, the algorithm restarts with both a new set of starting values and a new
set of random bounds. The allowed values for this option are 0 (no random bounds)
and 1 (allow for random bounds). The default is rbounds(0).

rlowbound(# #) and rupbound(# #) are relevant options only for the modified chi-
squared and the DS distance functions when the options ntries() and rbounds()

are both effective. In this case, the two values in rlowbound() (or rupbound())
define the support of the uniform distribution from which the new lower (or upper)
bound is drawn.5 When the rbounds() option is effective, the default values for
these options are rlowbound(0.1 0.7) and rupbound(1.5 6).

3. sreweight uses a double criterion to assess convergence. The first is that the difference between
the estimated and external totals must be lower than the tolerance level. The second is that from
one iteration to the other, the percentage variations of the estimated distance between the new and
the original weights must be lower than the tolerance level for each observation in the sample.

4. New starting values are obtained from a random perturbation of the Lagrange multipliers obtained
with the chi-squared distance function. The perturbation for each multiplier is drawn from a
uniform distribution with range −1 to 1.

5. Hence, if the user sets rlowbound(0.2 0.8), the new lower bound will be drawn from a uniform
distribution with support 0.2− 0.8.
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4 Empirical applications

For our empirical exercise, we use data from the Second National Health and Nutrition
Examination Survey (NHANES II). Two different applications are presented: One focuses
on the problem of survey reweighing, and the other focuses on the problem of variance
estimation in complex survey data.

4.1 Reweighing NHANES II

In this section, we show how to use sreweight for the calibration of NHANES II to a set
of known totals related to a hypothetical distribution of the population by gender and
age.

First, the database is loaded, and the command svyset is used to declare the survey
design. Second, the calibrating variables—sex and age1–age6—are created, and the
command svy: total is used to estimate the totals of interest. Finally, a vector of
hypothetical population totals is created:6

. use http://www.stata-press.com/data/r13/nhanes2

. quietly svyset psu [pw=finalwgt], strata(strata)

. generate byte ones=1

. quietly tab agegr, gen(age)

. quietly recode sex 2=0

. label drop sex

. quietly svy: total ones, over(sex)

. matrix sex =e(b)

. quietly svy: total ones, over(agegr)

. matrix age =e(b)

. matrix Tot=[sex[1,2]*1.01 \ age[1,1]*0.99 \ age[1,2]*1.01 \ age[1,3]*0.98 \
> age[1,4]*1.019 \ age[1,5]*0.95 \ e(N_pop)]

Once the vector with the new totals is created, sreweight can be repeatedly used
to compute the new vectors of weights, each based on a different distance function:

. local dfset "chi2 a b c ds mchi2"

. foreach df of local dfset {
2. quietly sreweight sex age1-age5 ones, sweight(finalwgt) nweight(type_`df´)

> total(Tot) dfunction(`df´) niter(40)
3. }

As explained in section 2, both the ds and the mchi2 functions allow users to set
bounds for the ratio w/s. In the previous lines, no upper or lower bounds are specified,
and sreweight uses the default bounds (4 and 0.2, respectively). Clearly, these broad
limits can be progressively modified toward 1 so long as a solution is available. In this
specific database, for example, an upper bound of 1.1 and a lower bound of 0.94 do not

6. As the code shows, the original estimate of the population size is also included in the last row of
the vector (e(N pop)). Hence, only five out of the six new totals related to the population size by
age group need to be included in the vector.
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lead to convergence for either functions. When convergence is not achieved because of
the tight intervals, the rlowbound() and rupbound() options can be used to avoid a
time-consuming search of the closest values around 1 for the two bounds:

. set seed 987456123

. sreweight sex age1-age5 ones, sweight(finalwgt) nweight(type_1ds) total(Tot)
> niter(40) dfunction(ds) upbound(1.1) lowbound(0.94) ntries(50) rbounds(1)
> rupbound(1.15 1.20) rlowbound(0.94 0.99)
Iteration 1

(output omitted )

Iteration 40 Not Converged within the maximum number of iterations, the
> algorithm now tries with new random bounds up to 50 times:
try number 1 current bounds .978 - 1.169

(output omitted )

try number 17 current bounds .95 - 1.17
Converged, new starting values saved in the return list

Survey and calibrated totals

Variable Original New

sex 56159480 56721075
age1 32857697 32529120
age2 23935443 24174797
age3 19725067 19330566
age4 19584095 19956193
age5 15639265 14857302
ones 117157513 117157513

Note: type-ds distance function used
Current bounds: upper=1.1704 - lower=.9495

. set seed 987456123

. sreweight sex age1-age5 ones, sweight(finalwgt) nweight(type_1mchi2) total(Tot)
> niter(40) dfunction(mchi2) upbound(1.1) lowbound(0.94) ntries(50)
> rupbound(1.15 1.20) rlowbound(0.94 0.99)
Note: with this distance function, rbounds() is automatically set to 1 if the
> argument of ntries() is >0
Iteration 1

(output omitted )

Iteration 40 Not Converged within the maximum number of iterations, the
> algorithm now tries with new random bounds up to 50 times:
try number 1 current bounds .978 - 1.169

(output omitted )

try number 17 current bounds .95 - 1.17
Converged, new starting values saved in the return list

(output omitted )
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The following figures show, respectively, the kernel densities of the original and
calibrated weights, and the densities of the ratios w/s for all the distance functions
used in the previous lines:

0.00000

0.00002
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Figure 1. Nine overlapping kernel densities of original and calibrated weights
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Figure 2. Densities of ratios w/s

From figure 1, we see that all the distance functions produce very similar results and
that the densities of the calibrated weights closely resemble the densities of the original
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weights. However, as figure 2 shows, reducing the allowed range of the ratio w/s may
place several weights in the range limits, in particular the lower limit, given the chosen
bounds and the type of data. This result was also found in Creedy (2003) and suggests
some carefulness when constraining the maximum deviation of the calibrated weights
from the survey weights.

When the known totals highly differ from the estimated totals, the ntries() and
the rbounds() options can be useful, as can the possibility to choose among several
distance functions, given that not all of them may achieve convergence. Let us redefine
the 1 × 7 matrix with the known totals using values that are quite different from the
estimated totals:

. matrix Tot=[sex[1,2]*1.5 \ age[1,1]*0.6 \ age[1,2]*1.5 \ age[1,3]*0.4 \
> age[1,4]*1.5 \ age[1,5]*1.5 \ e(N_pop)]

The calibrated weights can be recomputed for all distance functions using ntries()

in the loop so as to automatically search for better starting values in case of no conver-
gence:

. local dfset "chi2 a b c ds mchi2"

. foreach df of local dfset {
2. set seed 987456123
3. display " "
4. display in white "Type_`df´:"
5. sreweight sex age1-age5 ones, sweight(finalwgt) nweight(type_`df´)

> total(Tot) dfunction(`df´) niter(40) ntries(35)
6. }

Type_chi2:
New weights obtained from the chi2 distance function are negative, try with
> other distance functions

Type_a:
Iteration 1

(output omitted )

Iteration 7 - Converged

Survey and calibrated totals

Variable Original New

sex 56159480 84239220
age1 32857697 19714618
age2 23935443 35903165
age3 19725067 7890027
age4 19584095 29376142
age5 15639265 23458898
ones 117157513 117157513

Note: type-a distance function used

Type_b:
Iteration 1

(output omitted )
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Iteration 40 Not Converged within the maximum number of iterations, the
> algorithm now tries with new starting values up to 35 times:
try number 1

(output omitted )

try number 34
Converged, new starting values saved in the return list

(output omitted )

Type_c:
Iteration 1

(output omitted )

Iteration 40 Not Converged within the maximum number of iterations, the
> algorithm now tries with new starting values up to 35 times:
try number 1

(output omitted )

try number 35
Not Converged within the maximum number of tries. Try to increase the number of
> maximum tries and/or the number of maximum iterations

Type_ds:
Iteration 1

(output omitted )

Iteration 40 Not Converged within the maximum number of iterations, the
> algorithm now tries with new starting values up to 35 times:
try number 1

(output omitted )

try number 35
Not Converged within the maximum number of tries. Try to: activate the
> rbounds() option, increase the number of maximum tries or the number of
> maximum iterations

Type_mchi2:
Note: with this distance function, rbounds() is automatically set to 1 if the
> argument of ntries() is >0
Iteration 1

(output omitted )

Iteration 40 Not Converged within the maximum number of iterations, the
> algorithm now tries with new random bounds up to 35 times:
try number 1 current bounds .554 - 3.171

(output omitted )

try number 25 current bounds .106 - 2.575
Converged, new starting values saved in the return list

(output omitted )

As can be seen, the new totals require such an adjustment of the original weights
that some of the new weights become negative with the chi-squared function. Moreover,
the algorithm does not achieve convergence within the selected number of iterations for
all the functions except the a distance. However, using the option ntries(), we find a
solution for the b and the mchi2 functions after 34 and 25 tries, respectively.
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Given the random bounds found for the mchi2 function (2.575 and 0.106), an attempt
can be made to see whether another set of bounds closer to 1 exists. To this end, the
options rlowbound() and rupbound() can be used to avoid a manual search:

. set seed 987456123

. sreweight sex age1-age5 ones, sweight(finalwgt) nweight(type_1mchi2)
> total(Tot) dfunction(mchi2) upbound(2) lowbound(0.2) rupbound(2 2.5)
> rlowbound(0.14 0.2) ntries(35)
Note: with this distance function, rbounds() is automatically set to 1 if the
> argument of ntries() is >0
Iteration 1

(output omitted )

Iteration 50 Not Converged within the maximum number of iterations, the
> algorithm now tries with new random bounds up to 35 times:
try number 1 current bounds .185 - 2.186

(output omitted )

try number 18 current bounds .15 - 2.281
Converged, new starting values saved in the return list

(output omitted )

What is the performance of each distance function when the new totals are so much
different from the original estimates? The next two figures show the densities of the
various vectors of weights and the densities of the ratio w/s:
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Figure 3. Densities of vectors of weights
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Figure 4. Densities of ratio w/s

The differences between the various distance functions are more evident if compared
with the previous exercise. In particular, there is a clear difference between the results
produced with the a and the b functions—those that do not place constraints on the
adjustment of the original weights—and the results obtained with the mchi2 distance.

Specifically, the mchi2 function produces several weights that are very close to the
limits of the distribution and, at the same time, a number of new weights that are similar
to the original weights.7 On the contrary, the functions that set no constraints to the
adjustment rescale most of the original weights toward the bottom of the distribution
without placing as many at the outer limit. However, this is partially compensated by
a number of new weights that are relatively bigger than the original weights.

To summarize: When the difference between the new and the original totals is rather
large, the functions that constrain the adjustments of the original weights allow preserv-
ing several of the original values, but at the cost of placing most of the adjustments at
the bounds of the distribution. However, when no bounds are imposed, the adjustment
is more general, with several new weights shifted toward the left (or the right, depending
on the data) of the distribution, even though not so close to the outer limit.

Unfortunately, a one-size-fits-all solution does not exist for the selection of the op-
timal function, and as explained in Deville and Särndal (1992) and Särndal (2007), the
choice should be mainly driven by practical issues rather than theoretical principles.8

Typical discriminating factors are, for example, the presence of negative or implausible

7. This can be seen in figure 4, where the density of the ratio w/s is higher around 1 and around the
selected bounds.

8. Deville and Särndal (1992) have demonstrated that different distance functions have a minor effect
only on the variance of the calibration estimator and that under very mild conditions, they are all
asymptotically equivalent.
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high weights, the possibility that the algorithm does not achieve convergence—either
because of the number of calibrating variables or the type of adjustment required to
the original weights—and the degree of modification of the population relationships
between calibrating and other target variables.9

4.2 The use of reweight for variance estimation in complex surveys

In Stata, the problem of variance estimation in complex surveys has been analyzed in
Kolenikov (2010). As explained in that article, several variance estimation methods can
be used with survey data depending on the information available. For example, the
possibility to identify the stratum and the primary sampling units allows for estimating
the variances of interest through a Taylor series expansion (the delta method). However,
when such information is not available, other methods must be used (one of the most
flexible is the balanced bootstrap with internal scaling).10

However, when the original weights are poststratified (or adjusted for nonresponse),
the replicate weights created with the balanced bootstrap with internal scaling must be
processed accordingly to account for the same adjustment that was used with the original
weights. The command outlined in Kolenikov (2010)—bsweights—can perform the
balance bootstrap with internal scaling, and sreweight can be easily used as a wrapper
to perform the calibration adjustments of the replicate weights.

Let us suppose that the original weights of NHAMES II were poststratified with
respect to the age group and the gender. Hence, each vector of replicate weights must
be calibrated after the internal scaling so that the estimated population size by gender
and age group is the same as that obtained with the original weights. To replicate the
data used in Kolenikov (2010), we first collapse some of the strata of NHAMES II and
recode the primary sampling units; then we again svyset the data and store the totals
of interest in a 1× 7 matrix:

. generate cstrata = floor(sqrt(2*strata-1))

. egen upsu = group(strata psu)

. quietly svyset upsu [pw=finalwgt], strata(cstrata)

. quietly svy: total ones, over(sex)

. matrix sex =e(b)

. quietly svy: total ones, over(agegr)

. matrix age =e(b)

. matrix Tot=[sex[1,2] \ age[1,1] \ age[1,2] \ age[1,3] \ age[1,4] \ age[1,5] \
> age[1,6]]

9. Given our application, a target variable of interest could be the individual weight, which is strongly
related to the gender and the age group.

10. Internal scaling is important to rectify the bias of a näıve bootstrap scheme and can be achieved
by the replicate weights. See Kolenikov (2010) for more details about this procedure.
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The following lines define the calibration program that allows bsweights to use
sreweight internally,

. program Calreweight
1. args wvar
2. tempvar app
3. sreweight sex age1-age6, sweight(`wvar´) nweight(app) total(Tot)

> dfunction($df) ntries(50)
4. replace `wvar´=app
5. end

where it is worth noting that the command is general enough to allow for different
distance functions in the reweighting procedure. Finally, we create the replicate weights
for each distance function coded in sreweight and run the estimation command—a
logistic regression—using the bs4rw command for each set of replicate weights:

. local dfset "a b c ds chi2"

. foreach df of local dfset {
2. global df="`df´"
3. bsweights bw`df´, n(-2) reps(120) dots balanced calibrate(Calreweight @)

> seed(10101) replace
4. bs4rw, rweights(bw`df´1-bw`df´120): logistic highbp height weight sex

> age1-age5 [pw=finalwgt]
5. }

Balancing within strata:
.......

Rescaling weights
.................................................. 50
.................................................. 100
....................

(running logistic on estimation sample)

BS4Rweights replications (120)
1 2 3 4 5

.................................................. 50

.................................................. 100

....................

Logistic regression Number of obs = 10351

(output omitted )
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Clearly, each distance function has an impact on the estimated standard errors. To
compare such estimates, we recompute the same standard errors with the delta method,
which is the default estimation procedure for survey data in Stata:

. svy: logistic highbp height weight female age1-age5
(running logistic on estimation sample)

Survey: Logistic regression

Number of strata = 7 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513

Design df = 55
F( 8, 48) = 160.13
Prob > F = 0.0000

Linearized
highbp Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]

height .9638611 .0050313 -7.05 0.000 .9538306 .973997
weight 1.053076 .0029406 18.52 0.000 1.0472 1.058986
female .6137008 .0379283 -7.90 0.000 .5422095 .6946183

age1 .1096952 .0102944 -23.55 0.000 .0908886 .1323933
age2 .1794773 .018754 -16.44 0.000 .1455678 .2212859
age3 .275236 .0308778 -11.50 0.000 .2198185 .3446246
age4 .5544411 .0585061 -5.59 0.000 .4487601 .6850094
age5 .694758 .0670287 -3.77 0.000 .5726174 .8429515
_cons 29.89828 23.18172 4.38 0.000 6.321514 141.4071

Then following Kolenikov (2010), the percentage variations of the standard errors
obtained with bsweights and bs4rw for each distance function are compared with those
obtained with the delta method:11

Type of distance function
Variable χ2 A B C DS

height 5.006% 5.001% 4.999% 5.002% 5.002%
weight −1.233% −1.236% −1.239% −1.236% −1.236%
sex 2.075% 2.072% 2.071% 2.073% 2.073%
age1 3.381% 3.410% 3.420% 3.400% 3.399%
age2 3.392% 3.410% 3.417% 3.404% 3.403%
age3 −3.056% −3.046% −3.042% −3.049% −3.050%
age4 3.362% 3.365% 3.365% 3.364% 3.364%
age5 0.529% 0.557% 0.566% 0.547% 0.546%

As the results show, the highest deviation is about 5%; therefore, the inference
conclusions stay unchanged. Moreover, reading the results by row, we can see that
the standard errors produced by the different distance functions are almost the same.
Hence, we can conclude that in this database, the choice of the distance function does
not have a significant impact on the variance estimation.

11. Results for the mchi2 distance are not reported, because they are the same as those obtained with
the chi2 function.
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