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Abstract: This paper introduces the rank-based estimation method to modelling the Cobb-Douglas production function as an alternative to
the least squares approach. The intent is to demonstrate how a nonparametric regression based on a rank-based estimator can be used to es-
timate a Cobb-Douglas production function using data on maize production from Ghana. The nonparametric results are compared to common
parametric specification using the ordinary least squares regression. Results of the study indicate that the estimated coefficients of the Cobb-
Douglas Model using the Least squares method and the rank-based regression analysis are similar. Findings indicated that in both estimation
techniques, land and Equipment had a significant and positive influence on output whilst agrochemicals had a significantly negative effect on
output. Additionally, seeds which also had a negative influence on output was found to be significant in the robust rank-based estimation, but
insignificant in the ordinary least square estimation. Both the least squares and rank-based regression suggest that the farmers were operating
at an increasing returns to scale. In effect this paper demonstrate the usefulness of the rank-based estimation in production analysis.
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INTRODUCTION

Cobb and Douglas (1928) propose an econometric methodology
to investigate production functions. This entails specifying a
linear relationship between inputs and outputs and estimating
the linear model using ordinary least squares estimation
technique. Consequently, the parametric estimation of the
production function has dominated the literature. However,
the Cobb-Douglas econometric technique comes with
associated constraints imposed on the data.

Some studies highlight the limitations of the parametric
approaches and propose a non-parametric estimation of
the production functions. For example Henningsen and
Kumbharkar (2009) advertised a semi parametric approach
to efficiency analysis that estimates production function by
a non-parametric regression approach. Furthermore, some
studies (Czekaj and Henningsen, 2011) suggest the use of a
non-parametric method to scrutinize the traditional parametric
estimation method. Subsequently they provide comparison of
parametric and non-parametric estimates of the production
function. However these studies proposing a non-parametric
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estimation do not consider the rank-based non parametric
estimation technique. This study expands on the parametric
and non-parametric estimation of production functions by
exploring the rank based estimation. Rank-based estimators
have been developed as robust non parametric alternative to
traditional least squares estimators. Rank-based regression
was first introduced by Jureckova (1971) and Jaeckel (1972).
Mckean and Hettmansperger (1978) developed a Newton
step algorithm that led to feasible computation of these
rank-based estimates. Kloke and Mckean (2015) developed
a package (Rfit) for rank-based estimation and inference for
linear models using R programming language. This paper
demonstrates that the rank-based non-parametric regression
offers an alternative and useful approach to estimating the
production function. The paper is outlined as follows. The
introduction is followed by the methodology which discusses
Cobb-Douglas Production Function, Parametric and non-
parametric regression approaches, Ordinary Least Squares
and Rank-Based Estimations, Returns to Scale, Results and
Discussion, and Conclusion.
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METHODOLOGY

The methodology describes the data and the parametric and
non-parametric econometric techniques employed in the
study. Econometric techniques such as ordinary least
squares and rank-based non-parametric regression analysis
and the Cobb-Douglas model are emphasized.

Cobb-Douglas Production Function

The Cobb-Douglas function is most commonly used in
applied production economics. The Cobb-Douglas
production function with N inputs is defined as:

N
y=a] [+ [1]
i=1

This function can be linearized by taking the (natural)
logarithm on both sides:

N
Iny = ay + Z a;lnx; [2]

i=1
where «, is equal to InA.

Thus, the Cobb-Douglas production function is a linear
model of the natural logarithm of both the dependent
variable and the independent variable(s). In this study,
estimation of the parameters of linearized Cobb-Douglas
production function is done using Ordinary Least Squares
(parametric) method and Rank-Based estimation (non-
parametric), and the results were compared.

Parametric
Approaches

and  Non-parametric ~ Regression

The goal of regression analysis is to estimate the
relationship of one or more explanatory variables with a
single dependent variable. This is done by evaluating the
conditional expectation of the dependent variable given the
explanatory variables, which can be expressed as:

yi=folx) + & (3]

i= 1’2"‘.’n’

where i = 1,2,---,n denotes an observation of a subject, y;
is the response variable, and x; is a kX1 vector of
predictor variables, fy(x;) is the expectation of y;
conditional on x; (the unknown regression function), and ¢;
is the error term.

The traditional parametric approach to regression analysis is
to assume that f,(x;) belongs to a parametric family of
functions: fy(x;|B). So fy(x;) is known to have up to a
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finite number of parameters. Most importantly, parametric
approach to regression analysis requires the specification of
a functional form for f,(x;).

In non-parametric approach we do not assume a certain
parametric functional form for f;(x;) but is constructed
according to information derived from the data.
Nonparametric regression requires larger sample sizes than
regression based on parametric models because the data
must supply the model structure as well as the model
estimates.

Ordinary Least Squares Estimation (OLS)

In this approach, the most crucial decision is the
specification of the functional form for f;(x;). It is assumed
that y; in the model is linearly related with x;, and ¢; is
independent and identically distributed (iid) with E(g;) =0
and variance 0. Consider the following model:

fo(xilB) = Bo + xip [4]

Thus a linear regression model is written as:

Vi=PBotxif+e [5]

where [, is the intercept and S is kX1 vector of
parameters. For convenience, Equation 5 can be written
as:y = Xp + &, where B is p X 1 vector of parameters,
p=k+1,y,isnx1, X is k X p design matrix, and € is
the n X 1 vector of error terms.

Under Gauss-Markov assumptions, the estimators of S is
the Best Linear Unbiased Estimators (BLUE), and can be
estimated by using OLS. Using the OLS method of

estimation f can be estimated by f which is given by the
explicit formula:

B=XX)"Xy (6]

The matrix (X'X)~1X’ is called the Moore-Penrose pseudo
inverse matrix of X. After B has been estimated, the fitted
values (or predicted values) from the regression will be:

y=XB=XX'X)"'X'y [7]

In the case of simple linear regression (one predictor
variable) the model is written as:

yi=a+px;+e, (8]
and « and S are estimated as:

nY Xy — XX XY
an? — (X x;)?

p= [9]

=y-px [10]
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After we have estimated a and £ the fitted values (or
predicted values) from the regression will be:

9i=a+px; [11]

Notably, the OLS estimator is the minimizer of Euclidean
distance between y and y = XB.

It is assumed that the errors are independent and identically
distributed (iid) with mean O and variance o2, thus
£~N(0,0%I). Now since y=XB+¢&, implies that
y ~N(XB,0%I), which is a compact description of the
regression model. From this it can be found, using the fact
that linear combinations of normally distributed values are
also normal, that:

B~N@B, (X"X)15?)

Inference on all the predictor variables can be tested by
testing:

Ho: By =Py =P =0
H, is to be rejected if

_ (TSS—RSS)/(p— 1)
- RSS/(n —p)

> Fl—a,p—l,n—p

where TSS = (y — ¥)T(y —¥) which is sometimes known
as sum of squares corrected for the mean, and RSS = (y —
XB)T(y — XB) which is the residual sum of squares.

The approximate (1 — a) X 100% confidence interval for

B; is
ré]’ * tl—a/Z,n—pse(Bj)

where se(f;) =& [(XTX)7}, and (XTX);! is the jth

diagonal element of (X7 X)~1.
Rank-Based Estimation

In contrast, the non-parametric approach to regression
analysis does not require any presumptions for the
functional form of f,(x;). As with OLS, the goal of rank-
based estimation is to estimate the vector of parameters, S,
of a linear model in Equation 5. For convenience, Equation
5 can be written in matrix notation as:
y=al+Xp+¢ [12]
where y is the n X 1 vector of responses, X is the n X k
design matrix, f is k X 1 vector of parameters, and & is the
n X 1 vector of error terms. The only assumption on the
error term is that it is continuous; in that sense the model is
general. The geometry of the rank-based procedures is the
same as OLS, except that instead of the Euclidean distance,
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the Jaeckel’s dispersion function is used which is based on a
pseudo-norm ||-||,. The Jaeckel’s dispersion function is

given by:

DB) = lly — XBll, [13]
where |||, is a pseudo-norm defined as:
n
lull, = Z a(R(u))u, , wERN,

i=1

L
ey

decreasing square-integrable function ¢(u), defined on the
interval (0,1), and R(u;) is the rank. Assume without loss
of generality that it is standardized, so that [ ¢@(u)du =0
and [¢@?(u)du=1. Two of the most popular score
functions are the Wilcoxon (¢ (w) = V12[u — (1/2)]) and
the L, (p(u) = sgn[u — (1/2)]). Because the scores sum
to zero and the ranks are invariant to a constant shift, the
intercept cannot be estimated using the norm. Instead it is
usually estimated as the median of the residuals. That is,
a¢ = med{Y; — x7B,}, where x[ is the ith row of X.

where the scores are generated as a(i) = ¢ ( ) for a non-

The rank-based estimator of B is defined as:

B, = Argmin|ly - XBll, [14]

This estimator is a highly efficient estimator which is robust
in the Y-space. A weighted version can attain 50%
breakdown in the X-space at the expense of a loss in
efficiency; see Chang et al. (1999).

ﬁq, is the Hodges-Lehmann estimate (i.e., the median of all
pairwise differences between the samples) if the Wilcoxon
scores is used. Let f(t) denote the probability density
function of ¢;. Then, under regularity conditions:

as) - .
<E(p) is approximately

—2%"(XTX) !

k
N ), "
et <ﬁ) [T;(XTX)-lf T2 (XTX)

where & = @$ —x"B,,,

s = [2f (0],

7 = [[ ey )du] ™,

k, =n"'12 + 12%7(X"X) ',

and @p(w) =—f'(F~'(w)/

fF(w).
Depending on knowledge of the error probability density
function f(t), appropriate scores can result in

asymptotically efficient estimates. This result can be

summarize as follows:

B,~N(B.,t2(X"X)71)
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An estimate of 7,, is necessary to conduct inference. Denote
this estimator by ,. Then Wald tests and confidence
intervals can be calculated. Let se(B;) = £,(X"X)j},
where (X7X);}! is the jth diagonal element of (X"X)™!.
Then an approximate (1 —a) X 100% confidence interval
for B; is

.[;)j * tl—a/z,n—p—lse(:éj)‘
A Wald test of the general linear hypothesis
Hy: M = 0 versus
Hi:MB +0

is to reject H, if

MB)TMXTX)"*MT" 1 (MB)/q
L z > Fi_qqn—p-1, Where q =

dim(M).
Returns to Scale (RTS)

From the Cobb-Douglas production function, the output
elasticities with respect to the factors of production (inputs)
are equal to the corresponding coefficients of the Cobb-
Douglas regression model. Based on the farmers’ output
elasticities, it would be known whether the farmers’
exhibits constant returns to scale, decreasing returns to
scale or increasing returns to scale and its implication to the
farmers. The returns to scale is the summation of all the
output elasticities of the factors of production. It is specified
mathematically as:

k k
RTS = Z € = Z Bi
i=1 i=1

where €; is the output elasticities with respect to the ith
input, and f3; is the coefficient of the ith input of the Cobb-
Douglas regression model.

[15]

SAMPLE SIZE AND DATA ANALYSIS

In this study, simple random sampling technique was used
to select 306 maize farmers from the Ejura Sekyedumase
District. The analytical tools used for this study were
descriptive statistics and parametric and non-parametric
regression analyses. The dependent variable of the production
function is the farm’s output measured as total maize yield.
The independent variables used in the regression analyses were
six: labour, land, equipment, agrochemical, fertilizer, and
seeds. The R programming software was used to analyse the
data. The Cobb-Douglas production function was estimated
using the ordinary least squares estimation and the rank-based
estimation. The R packages Rfit was used for the rank-based
estimation.
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RESULTS

Descriptive statistics of the regression variables are presented
in Table 1. Findings from Table 1 indicate that on average a
yield of 7396.37kg was obtained. This output was obtained by
combining 170.65 person-days of labour, 16.06 acres of land,
15.82 litres of agrochemicals, 140.98 kilogram of fertiliser,
5.03 kilogram of seeds and GHS15.68 of equipment.

Table 1: Descriptive Statistics of Regression Variables

Variable Unit Mini- Maximum Mean Std. Dev
mum
Output Kg 480.00 5220000 739637  6919.31
Labour P-D 28.00 469.00 170.65 7591
Land Acres 2.00 60.00 16.06 10.60
Equipment GHS 2.40 72.00 15.68 14.04
ﬁflrs“hem' Lit. 3.00 63.00 15.82 10.65
Fertiliser Kg 25.00 300.00 14098  43.33
Seed Kg 3.00 9.00 5.03 112

OLS estimation results of the Cobb-Douglas regression
model presented in Table 2, reveals a significant and positive
relationship between land and equipment as explanatory
variables and maize yield as the dependent variable. There
is also a significant but negative relationship between the
use of agrochemicals (weedicides, pesticides, fungicide and
insecticide) as an explanatory variable and maize yield as
dependent variable. There is also a negative relationship
between seed as explanatory variable and maize yield
as dependent variable. However, this relationship is not
significant.

Table 2: Ordinary Least Square Estimates

Estimate Std. Error  t value Pr(>[t)
(Intercept) 5.25876 0.32104 16.380 2e-16 ***
log(Labour) 0.05309  0.04625  1.148 0.25194
log(Land) 1.25648 0.06183 20.321 2e-16 ***
log(Equipment) 0.06933 0.02410 2.876 0.00431 **
log(Agrochemicals)  -0.13983  0.06493 -2.154 0.03207 *
log(Fertilizer) 0.05092 0.05449 0.935 0.35076
log(Seed) -0.15117  0.07853 -1.925 0.05518
F-test Sig.
319.3 2.2e-16%**
R-squared
Multiple R-squared ~ 0.865
Adjusted R-squared ~ 0.8623

Sig. codes: “***'p< 0.001, “**p< 0.0, “*p< 0.05
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Similarly, rank-based estimation results of the Cobb-
Douglas regression model presented in Table 3, shows
a significant and positive relationship between land and
equipment as explanatory variables and maize yield as the
dependent variable. Additionally, there is also a significant
but negative relationship between the use of agrochemicals
(weedicides, pesticides, fungicide and insecticide) and seed as
explanatory variables and maize yield as dependent variable.

Table 3: Rank-Based Estimates

Estimate Std. Error  t value Pr(>t])
(Intercept) 5308942  0.331579  16.0111 2e-16 ***
log(Labour) 0.052293  0.047737  1.0954 0.27421
log(Land) 1271812 0.063816  19.9292 2e-16 ***
log(Equipment) 0.060810  0.024877  2.4444 0.01509 *
log(Agrochemicals) -0.136052  0.067015  -2.0302 0.04322 *
log(Fertilizer) 0.049349  0.056235  0.8776 0.38089
log(Seed) -0.181732  0.081055  -2.2421 0.02569 *
R‘educti.on in Sig.
Dispersion Test
163.696 0.000%**
R-squared
Multiple R-squared 07666207

(Robust)

Sig. codes: “***p< 0.001, “*’p< 0.05

Table 4 presents the elasticities and returns to scale for
the OLS estimation and the Rank-based estimation. On the
basis of the rank-based Cobb Douglas model, inputs used
in producing maize (i.e. labour, equipment, agrochemical,
fertilizer and seed) were all inelastic with the exception of
land. This was also the case of the OLS estimation.

Table 4: Elasticity of Production and Returns to Scale (RTS)

OLS Estimation Rank-Based Estimation

Variable Elasticity RTS Elasticity RTS
Labour 0.05309 1.14 0.052293 112
Land 1.25648 1.271812

Equipment 0.06933 0.060810
Agrochemi- 504 -0.136052

cal

Fertilizer 0.05092 0.049349

Seed 20.15117 -0.181732
DISCUSSION

The maximum and minimum yield obtained in Table 1
indicates that there is a large variation in maize output among
farmers in the District. The wide variation in output could
be attributed to differences in technical efficiency levels of
farmers.

In the OLS estimation results of the Cobb-Douglas
regression model presented in Table 2, the significant and
positive relationship between land and equipment as explanatory
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variables and maize yield as the dependent variable suggests
that an increase in each of these explanatory variables will
lead to an increase in the output of maize. The significant
but negative relationship between the use of agrochemicals
(weedicides, pesticides, fungicide and insecticide) as an
explanatory variable and maize yield as dependent variable
suggests that the output level of maize would decline as the
use of agrochemicals increased. The negative relationship
may result from the wrong application of the agrochemicals.
For example excessive use of agrochemicals could lead to a
decline in yield. There is also a negative relationship between
seed as explanatory variable and maize yield as dependent
variable. However, this relationship is not significant.

The significant and positive relationship between land and
equipment as explanatory variables and maize yield as the
dependent variable in the estimation results of the Rank-based
Cobb-Douglas regression suggests that an increase in each
of these variables will lead to an increase in the output of
maize. These results are consistent with the OLS estimation.
Similarly, the significant but negative relationship between the
use of agrochemicals (weedicides, pesticides, fungicide and
insecticide) and seed as explanatory variables and maize yield
as dependent variable in the Rank-based regression suggests
that the output level of maize would decline as the use of
agrochemicals and seed are increased. For example excessive
use of agrochemicals and seeds could lead to a decline in
yield. In effect if the seeds used by farmers are higher than
the recommended seed rate, yield will decline. This may lead
to overcrowding which makes seedlings compete for nutrients,
space and air. This result is consistent with the studies by
Battese and Hassan (1999).

A comparison of the estimation result from the Cobb-
Douglas model using the least squares method and the rank-
based regression approach indicates that the estimates obtained
in the alternative methods are similar. These results are
consistent with Kloke and Mckean (2015) who demonstrated
that the rank-based regression output was similar to that of
the linear model and can be interpreted in the same way.

The productivity level of the farmers were examined by
investigating their output elasticities and returns to scale. If
the farmers increase input (labour, equipment, agrochemicals,
fertilizer and seed) by one percent output changes by less than
one percent whilst if farmers increase input (land) by one
percent output increases by more than one percent. Noticeably,
land which is positive and significantly related to output had
the highest elasticity. This suggest that increasing land used in
maize production will lead to increases in maize output. The
importance of land in production is also noted by Rahman,
Wiboonpongse, Sriboonchitta and Chaovanapoonphol (2009).
On the basis of the rank based estimation, a one percentage
increase in the use of agrochemicals and seed reduces output
by 0.13 and 0.18 percent respectively. These reduction in
output may be due to incorrect application of inputs such as
seeds and agrochemicals.

Noticeably, both the OLS and the rank based estimation
techniques suggest that the maize farmers were exhibiting
increasing returns to scale. Thus output grows more than
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proportionately with any increase in input. This evidence is
consistent with Wu, Devadoss and Lu (2003). This means
the farmers could increase output by using more of the inputs
(e.g. land, equipment and fertilizer).

CONCLUSION

This paper proposes a non-parametric rank-based estimation
method to modelling the Cobb-Douglas production function
as an alternative to the parametric ordinary least squares
estimation approach. A comparison of the result from the
Cobb-Douglas model using the least squares method and the
rank-based regression approach indicates that the estimates
obtained in the alternative methods are similar.

On the basis of rank-based Cobb-Douglas estimation, farm
inputs such as land and equipment had a significant positive
effect on maize output, whilst agrochemicals and seed had a
significant negative effect on output. Furthermore, the rank-
based analysis suggest that the farmers were operating at
an increasing returns to scale. In summary, this paper has
demonstrated that the rank-based non-parametric regression
offers an alternative and a useful approach to estimating
production functions.
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