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AN
ABSTRACT
OF |
APPROXIMATING A GSD-EFFICIENT SET OF
~ MIXTURES OF RISKY ALTERNATIVES FOR
“RISK AVERSE DECISION MAKERS

Conditions for a restricted version of GSD-efficiency of mixtures of risky
alternatives are reviewed. These conditions and other characteristics of the
(restricted) GSD-efficiént set form the basis of a tentative procedure for
approximating this efficient set. Hazell's data are used to illustrate a

critical aspect of the procedure.



APPROXIMATING A GSD EFFICIENT SET OF :
MIXTURES OF RISKY ALTERNATIVES FOR
RISK AVERSE DECISION MAKERS S
| Stochast1c dom1nance cr1ter1a have Iarge]y rep]aced mean-var1ance and mean-
_absolute deviations cr1ter1a for rank1ng mutua]]y exc1u51ve aIternat1ves
' However, stochast1c dom1nance cr1ter1a are not as‘oommonlyrapp]1ed to problems.
involving m1xtures of r1sky a1ternat1ves.: | - “ |
In those cases where stochast1c dom1nance cr1ter1a have been app11ed to
'm1xture problems, they have been app11ed to m1xtures whvch have been randomly or
systemat1ca]1y seIected from the set of all feas1b1e-m1xtures (Anderson). As
Bawa et4a1, suggest,‘this approach can provide a reasonebly good‘approximationv
to stochastic'dominance efficient sets. Its major“shortcoming is re]ated to the
fact that, typiceIIy; moste}of the feasible mixtures ”are not efficient. A
sampling strategy:whichg eproits' the propertfes iof stochastit dominance
efficient sets would often be Tess costly. I |
McCarl et al. discuss conditions}which ean'help determine whether there
exists a mikture of’two,riSky alternatives which dominafes the'"pure“ strategy
of speciaIizing‘in one Of‘the'a]ternatives.' It appears that their corditions
could be extended to]help,gbide the search for;stodhastic dominance-effieient
sets. | L ” '_‘ |
An eIternative approach'is based on ideas'presented by Dybvig and Ross. It
has resulted in a method for identifying the second degree stochastic dom1nance
(SSD) efficient set of m1xtures of r1sky» alternatives (McCamIey and
~ Kliebenstein, 1987) Cond1t1ons for. Meyer S genera11zed stochast1c dom1nance
YI(GSD) eff1c1ency of m1xtures of risky a]ternat1ves have a1so been presented but
on]y pre11m1nary 1deas about 1dent1fy1ng GSD-efficient sets have been d1scussed

(McCamley and Kllebenste1n, 1986).
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The purpose of this papér isvto propose a method f@r ahbroximating fhe
efficient set of mixtures for a restricted versioh 6f the GSD criterion: "To
ensure that thé reader underétand§ the class of prob1em$‘bein§‘considered and
the conditions fbr‘GSD-efficiency,'these matters are reviewed iﬁ-the'next twb
"sections. Then two seétions d{scuss'characteristfcérof the GSﬁ-efffcient‘set;
The final sections present a}procedure for approximating the GSD-efficient set,

illustrate one part of this procedure and offer some COnc1uding remarks.

BASIC ASSUMPTIONS ANﬁ“NOTATION )

The class of probTems considered here is similar to that associated with
Tauer's version of the Tafget MOTAD model. The nUmber'Qf states of nature, s,
is assumed to be finite. A row vector of probabilities, p, is associated with
these states of nature. The elements of the column vector, Yy, ére the (total)
net returns associated with the various states of nature. This net returns
‘vector is a Tinear homdgeneous function df enterprisé activity levels:

(1) y - Cx = 0. |
In (1), x is a column vector bf n activity Tevels and C is a matrix of per unit
net returns associated wifh the activities and the states of nature.
Specifically, Cijbis the net return per unit of activity.j when the ith state of
nature occurs. | v |

| Activity levels are restricted by resource and/or‘technica1 constraints and
nonregativity constraints. |
| (2) Ax b

(3) x=z0 |
in (2), A is a matrix of resource or technical requirements coefficients and b
is a column of resource jeveTS.’ To simplify the discussion in the balance of
the paper, it is assumed that the set of feasible enterprise Tevels is bounded.

0

An enterprise mixture (activity level vector), x , will be regarded as being



GSD-efficient if, ‘and only if, dthe associated net beturns yector; y°, is

GSD-efficient.

CONDITIONS FOR GSD- EFFICIENCY ,
McCam]ey and K11ebenste1n (1986) derived eff1c1enc§‘ eohditions for a
restr1cted version of Meyer's GSD}criferion.' The genere1sversion of the GSD
eritefion assumes thaf the :ebSOIute risk avefsion coefficient, E(m) =
-u"(m)/u'(m), is bounded byftﬁo functions; g(m) and h(m); o% the income or
wealth level, m. McCamley andiK]iebenstein dssuhed,that g(m):is'nonnegative; it
will be assumed to be positive in this paper. To be consfstent with most
applications of the GSD criterion and to simpTify the notatidn;'it'Wi11 also be

assumed here that g and h are constants.

°, and the associated income distribution
= Cx°,‘are GSD-effiCient only if there exist vectors 2°

Any given enterprise mixture, x

0

vector, y and w° such

~ that

(4) 2°y°z 2%
for all y vectors which satisfy (1), (2) and (3),

0 0
(5) 21 p1w1
(6) Wi expl-g(yj - ¥y)1 2 w§ 2§ exp[ h(y - ¥1
0 o
if ij Yy and

(7). w°, 2°>0
When g is positive the foregoing conditions are also sufficient for GSD-
effieiency. | " | - | -

By so]Ving either of two‘linear brogramming problems, it‘is possible to -
determihe whether‘conditions_(4) through (7) are met. Inasmuch‘AS‘both of them
are related to discussion later in thiS»paper, they are‘stated‘be1cw In each
formulation, it is assumed that the states of nature have been permuted so that

the elements of the y vector are in ascend1ng order



The dual is
S 0
(8) minimize b'v - I W3P5Y;3
j=1
subject to
(9) A'v - C'zz20
(10) z; - pjwj =0 for j=1, 2, ..., S
(11) W = 1 _ .
y (] (0] R = -
(12) W exp[-g(yj+1-yj)] - Wi 20 for j=1, 2, ..., s-1
0 0 .
(13) -Ws exp[-h(yj+1-yj)] + Wipp 2 0 for j=1, 2, ..., s-1
(14) v =20

and (7).
The primal is
(15) maximize f
(16) t; expl-g(yp-y])1 - a; expl-h(yp-yD] - pyy; s -pyy}

) _ o _,0 . - o _,0 _
(17) 5 expl-g(y5,y-y5)] = a5 expl-h(yj,q-y5)] - t5_ 1 + 95

J J

0 . _
PsY; < P3Y; for j=2, 3, ..., s-1
0

(18) f - Pe¥s = tgp * G S -PgY
(19) y-Cx =0
(20) Ax £ b

[\

(21) x, t, qz20
The vectors x° and y° are GSD-efficient if and only if the optimal value of f is

zZero.

GENERAL NATURE OF THE (RESTRICTED) GSD-EFFICIENT SET
When g is positive, the (restricted) GSD-efficient set is a subset of the
SSD-efficient set. It is possible to show that the SSD-efficient set of mix-
tures is connected and is the union of a finite number of closed convex subsets.

A simplified version of Dybvig and Ross's proof of their Theorem 3 (pp. 1538-9)



can be used to show that the restricted GSD-efficient set is conneéted. It
appears that it is also the union of a finite number of closed convex subsets.
The most appropriate way to define GSD-efficient subsets is not yet known.
In this paper, each of these subsets is defined as the set of mixtdres for which
a speciffc basis 1is optimal for the the primal 1linear programming problem
reviewed in the previous section. One implication of,thié approach is that each

GSD-efficient subset is a subset of an SSD-efficient subset.

A SIMPLE EXAMPLE
Some characteristics of the GSD-efficient set can be illustrated by

considering a simple example. Let

60 80
C =
100 60
p = (5.5',A = (11),b = 1,9 = .02, h = .08, x> = (.75 .25)
and y% = (65 90)'. It is possible to show that the primal linear programming
problem is solved by f = 0, x = x°, y = y°, and tl’ t2, 9, = 0. The

solution to the dual linear programming problem is v = 110, 20 = (1 .5)" and w°
=(21)'.

Given the connectedness property of the GSD éfficient set, one way of
identifying it would be to "start" at the x® vector considered above and
determine the range(s) in variation in x® for which the optimal value of f, f*,
remains equal to zero. For this simple example, it is possible to exploit the

%*
fact that f will be equal to zero for a set of x? vectors which is at least as

0

large as the set of x~ vectors for which the optimal basis (set of basis

0

vectors) is the same as for the x  vector considered above.

As x° is varied, an alternative basis could become optima] when any of the

following conditions is satisfied:2



1. xg or xg equa]s zero

2. the sum of x1 and x2 is less than 1.0 |
':3. ‘ yg = _y2 (s1nce the 11near programm1ng formulat1on assumes that
Ny - S | |
8, the?ﬁreduced‘cost“lfok t; or Qi becOmésizero_as}fef1ected'by the
status of an iheqUa]ity 1h (12) of (13),'respeCtive1y;‘chahging‘from a
strict 1nequa11ty to an equality. ‘ |
In more general problems, an alternat1ve basis could become opt1ma1 when:
5. the status of a resource constrawnt chanoes from strict 1nequa]1ty to
equa11ty | " v
6. the reduced cost‘for‘a‘honbasic X uariabTehbecomes zehOvas refiected
by the vstatus of,-the“associatedv ineque]ity"in ‘(9)‘ changing from a
strict inequality to an equelity |
7. a basicv variab]e becomes zero.

o, it indicates that

If condition 1, 2, 3 or 5 is satisfied while varying x
a boundary (or an additiona].bouhdary) of the SSD- eff1c1ent subset (as well as a
boundary of the GSD-effitieht‘subset) has been reached. Condwtwons 4, 6 and 7
are more re]evaht for the GSD criterion than‘foh‘the SSD criterion. Of these,

on1v cond1t1on 4 is un1que to the GSD criterion; the others are shared w1th the

~ third degree stochast1c dom1nance criterion.

Condition 4 s eas11y_111ustrated with the problem described.aboue. For
that problem there are three:.SSD-effiCient subsets.‘ hTwo of: them’vare the
individual mixtures (10)" and (1/3 2/3)'. The third subset consists of all
"(weak]y) convex combinations of these mthures and is the subset to wh1ch the x°
-vector presented above belongs 3 It is re]at1ve1y easy 'to determ1ne the
GSD- eff1c1ent port1on of th1s subset. Cond1t1on 4 is sat1sf1ed when y2 - yl, or

equ1va1ent1y, 40x1 - 20x2 equa]s.e1ther 8.66-or 34.66 The 1ntersect1on of the,
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third SSD-efficient subset of mixtures and the setvfof which,8;66 s 4Ox1 - 20x2 |
S 34.66 is the set of all convex combinations of (.48 .52)' and (.91 .09)".
It was easy to identify the GSD-efficient set for this simple problem

0 vector was

because there wasronly one GSD-efficient subset and the sémé‘w
optimal for the whole subset. Fbr most prob1ems,‘there ié more than one GSD-
efficient subset and wo_is a nonlinéar function}of‘x°. Moreover, it appears
that the boundaries of some GSD-efficient subsets may rbe nonlinear and .the
subsets may "overlap". | - s
In principle, it is possible to determine when condition 4, 6 dr 7 s
satisfied for a given basis.‘, In practice, it may be easier to simply
approximate the GSD-efficient portﬁon of any given SSDfeffitient subset by
solving the priha1 (or dual) 1inear programming formulation for selected x°
vectors. | '
A TENTATIVE PROCEDURE FOR APPROXIMATING
THE GSD-EFFICIENT SET .
Qne procedure for identifying the GSD-efficient set invo]vés four steps:
1. Identify & mixture whfch maximizes expected utility for any utility
function for which g s r(m) s h. Since g is greater thén zero, the yo
vector associated with this mixture is GSD-efficient and provides a
starting point for identifying the GSD-efficient set. '
2. Identify an SSD-efficient subset which includes this mixture.
3. Approximaté the GSD-efficiént portion of this SSD-efficient subset by
~solving the 1ineaf progfam discussed earlier in‘ this paper for |
appropriéte1y]se1ected mixtures. |
4. Identify another.SSD-efficient subset which is adjacent ("connected")
. to the portion ‘of ,GSD-efficient‘ set which has thus far been

identified.,>1f none is found, stop; otherwise to go step 3.



The maJor d1ff1cu1t1es in 1mp1ement1ng th1s procedure are keep1ng track of
the portion of the GSD-eff1c1ent set 1dent1f1ed at any stage, determ1n1ng which
| unexamined SSD-eff1c1ent subsets are adjacent to this set' (step 4) and
approx1mat1ng the GSD-eff1c1ent port1on of any g1ven subset (step 3) - Of these,
the first two are essentially Just messy "record keep1ng"'prob1ems. The next

section of the paper illustrates one approach to step 3..

- A MORE COMPLEX EXAMPLE

Data from Haze11 are used For purposes of the 111ustrat1on each state of
nature is assumed to be equa]ly 11ke1y It is also assumed that g_=v.000025 and
h = .000065. To simplify the discussion, only the 'approximetion of the
GSD-efficient portion of one SSD-efficient subset will be considered in detail.

Assume that the mixture, x° = (40 40 60 60)', is known to be GSD-efficient
(i.e., maximizes expected utility for some utility function in the relevant
class of functions) when r(n) belongs to the risk aversion coefficient interval
(.000025, .000065). This x° vector belongs to a two-dimensional SSD-effioient
subset which lies on the face of the set of feasible mixtures associated with
the land and rotation constraints. The line segment ad is one edge of the face.
The line segment.which begins at a and extends upwerd along the vertical axis is
a second edge. Another edge is a line segment which begins atld,and passes
through e and f. The fact that x1 + Xg = 100vand Xo + Xg4 = 100 on the face
being considered means that it is only necessary to plot xllénd Xs coordinates

in figure 1. The SSD-eff1c1ent set to which the initial x°

Vector belongs is
bcefgh.

“There are several ways of approxﬁmating the GSD-efficient portion of
bcefgh. A grid'approachris adopted here but it differs from that proposed by
Bawa et al. in several ways. The 1east significant difference:is that a very

coarse grid is adopted first and then finer grids are used to further refine the
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GSD-Efficient Mixtures on Coarse Grids In Subset bcefgh
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'approximation. Of greater significance is that for any given grid, only those
grid points (mixtures) which are "adjacent" to Vmixtures"khOWn- to be GSD-
efficient and in the same SSD-efficient subset are considered at any given

4 A third differenéevis due to the stochastic dominance test procedure

time.
- rather than the grid itself. The linear programmingkformulations which are used
here effectiveiy compare a givéh mixture (xo vector) with\a11 other feasible
mixtures. Once a mixture has been tested its efficiency status is known.
Changing the grid size may refine the approximation of the efficient set but it
will not provide any additional information about the efficiency Status of a
mixture which has already been tested. By contrast, when the pairwise tests
assumed (at Teast implicitly) by Bawa et al. are employed, each grid point
(mixture) can‘ essentially on]y be classified as dominated or "not yet"
dominated.”

The initial grid involves ten acre increments. Those mixtures which are
both on grid points adjacent to the 1initial mixture and 1in the same
SSD-efficient set have X1s Xy coordinates of (30,30) (30,40), (40,50), (50,50),
and (50,40). Of these, only (50,4C) is GSD-efficient. The untested grid point
mixtufes which are adjacent to (50,40) are (60,40) and (60,50). The mixture
(60,40) is GSD-efficient but the mixture (60,50) is not. Likewise, the only.

‘untested grid points adjacent to (60,40) are (70,40) énd (70,50); neither of
these is GSD-efficient. The tested (as well as the initial) grid points are
represénted in figure 1 by large X or square symbols. The squares denote GSD-
efficient mixtures; X's represent inefficient mixtures.

Thf approximation of the GSD-efficient portion of bcefgh cah,be improved as
much as desired by emp]oyfng successively finer grids. Consider next a gridv

. with increments of five acres. The relevant mixtures on this new grid are
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represented by smaller symbols. As before, the squares represent GSD-efficient
mixtures while the x's represent inefficient mixtures.

Even with the relatively coarse five acre grid, a reasonably accurate
"picture" of the GSD-efficient portion of bcefgh emerges. By reducing the grid
increment to one acre, a better approximation is obtained.v It is shown in
figure 2. In this figure, only thé grid points associated with GSD-efficient
mixtures are represented by symbols. |

The complete GSD-efficient set of mixtures almost certainly includes
mixtures in other SSD-efficient subsets. The SSD-efficient subset which shares
"boundary" bh with bcefgh is an obvious candidate. A less obvious but very
relevant candidate is the three dimensional SSD-efficient subset of which bcefgh

is one face.

CONCLUDING REMARKS

The partial discussion of the Hazell example suggests that it would not be
too difficult to approximate the GSD-efficient set of mixtures for problems of
- that size. The Hazell example involves only four enterprises, three resource
constraints and six states of nature. The number of states of nature for this
example is not much smaller than the numbers used in some application of MOTAD
and Target MOTAD. However, most practical problems have larger numbers of
enterprises and constraints.

The cost of identifying the GSD-efficient set of mixtures depends, in part,
upon the size’ of the risk aversion coefficient interval chosen. With a
relatively short risk aversion coefficiert interval, the restricted
GSD-efficient set of mixtures may be considerably smaller than the SSD-efficient

set and relatively easy to approximate.
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Figure 2. GSD-Efficient Portion of One SSD-Efficient Subset
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FOOTNOTES
1In the ba]ance of‘thé péper, expressions sﬁch as g(y?-y?) (or h(yg-y?))
‘mean the product of g (or h) and yg -'yg. | |
ZNote that when any of these conditions occur both thé "01d" and "new"
bases are optimal. }“
3Since the first two subsets are subsets of the third one, it would be
appropriate, for the pUrpose of describing the SSD-efficiént set, to say that
there is one SSD-efficient subset. Howevér, for the‘purpose of approximating
the efficient sets for the GSD‘criterion, complete enumeration of the collection
of SSD-efficient subsets can be helpful.
4The connectedness pfoperty of the GSD-efficient motivates this strategy.
5Even with pairwise tests; the degree of uncertainty about'a grid pdint's
efficiency status decreases as the grid becomes finer. Another limitaticr of
pairwise tests is that the efficient set may include alternatives (mixtures in
this paper) which no decisioh maker in the relevant class would choose. That
is, they maximize expected utility for no uti]ity' function in the relevant

class. It can be shown that this Timitation also becomes less serious as finer

grids are employed.
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