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1 Introduction 

While weather derivatives become more and more important in the risk management of 

energy companies, this innovative financial instrument is hardly used in agriculture. They 

serve as a financial coverage of weather related business risks which play an important role  in 

agriculture. These risks relate to the revenues as well as to the costs of livestock, crop and 

horticultural production.  

Depending on the production programme, greenhouse production is characterised by high 

heating energy demand especially in wintertime. During this period greenhouses have to be 

heated at low outdoor temperatures to keep a constant temperature inside. Thus, changing 

temperatures lead to a significant variability of costs which, in turn, cause reverse fluctuations 

of returns on the part of the energy supplier.  

Thus, it is worth to analyse the effect of weather derivatives in greenhouse production. 

Therefore we explain the characteristics of weather derivatives in a first step. Based on a 

greenhouse model we analyse the energy cost variations. Finally we check whether the 

financial risk can be reduced with a weather derivative based on a temperature index.  

2 Characteristics and construction of weather derivatives 

Generally speaking, a weather derivative is “a derivative whose payoff is based on a specified 

weather event, for example the average temperature in Chicago in January” (CFTC, 2005). 

Other underlyings like precipitation, snowfall, wind velocity or solar radiation are possible as 

well. Thus, weather derivatives have no tradable asset as underlying. Their main objective is 

to convey a compensation payment if the underlying develops unfavourable. Most of the 

weather derivatives are traded “Over the counter” (OTC). Contrary to financial exchange 

trading the OTC market is less formalised and is characterised by individual agreements 

between contract partners. 
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In addition to the underlying, other contract parameters like duration (monthly or seasonal) 

have to be determined. The strike is the index value where a payment is exercised. The 

payment is determined by the tick size. This is the amount to be paid per index point. The 

underlying fixed in the contract is measured at a predefined weather station (Cao and Wei, 

2003). 
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Figure 1: payoff structure of different option types and positions  

Although different kinds of future transactions are possible, options dominate the market as 

they are particularly appropriate to reduce downside risk (Becker and Bracht, 1999). 

Generally, the buyer and seller of an option are in the following situation: the buyer (long 

position) purchases a right and pays a premium for it. The seller (short position) accepts an 

obligation and receives the premium. Depending on the content of the right, options are 

distinguished into two basic types: in the case of a call option the buyer purchases the right to 

buy an underlying at a certain price and at a certain time. Contrary the buyer of a put option 

purchases a right to sell the underlying at a certain price and time.  

The buyer of a call option hedges against increasing market prices of the underlying that he 

wants to buy in the future. If the market price exceeds the strike price, the option will be 

exercised. If the market price falls underneath the strike the buyer loses the premium. In both 

cases the difference between market price and strike price determines the payoff of the option. 

The payoff structure of the respective option at maturity is depicted in figure 1. The positions 

“long” and “short” represent the buyer and seller. K marks the strike level that corresponds to 
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the strike price of a traditional underlying (e.g. stock prices). P is the premium or price of the 

option to be paid. The payoff is determined by the positive difference between the observed 

index value at maturity and the strike level K. The difference is multiplied by the tick size V 

that corresponds to the payment per index point. Deducting the premium P from the the 

payoff leads to the profit or loss of the option. The buyer’s profit (long position) for a call 

option is: 

[ ] C
L PKxMaxVKxG
C

−−⋅= )(,0),(  (1)  

The buyer’s profit for a put option is: 

[ ] P
L PxKMaxVKxG
P

−−⋅= )(,0),(  (2) 

Symmetrical to the long position the profit of the seller is: 

[ ] C
S PKxMaxVKxG
C

+−⋅−= )(,0),(  (3) 

[ ] P
S PxKMaxVKxG
P

+−⋅−= )(,0),(  (4) 

The fair premium of the option corresponds to the discounted expected value of the payoff. 

The fair premium is defined in the way that the expected profit of both parties is zero and no 

transaction costs accrue. It is calculated by multiplying the tick size V by the negative 

deviation of the index x from the strike level K and the probability ω that the index x is 

underneath the strike level. Finally the factor e-r T  discounts the payment over the duration T 

using the interest rate r.  

( )[ ] rT
P eVKxKxxEKP −<<−=   )( )|( ϖ  (5) 

The fair premium of a call option is calculated analogously: 

( )[ ] rT
C eVKxKKxxEP −>−>=   )( )|( ϖ  (6) 
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3 Definition and distribution of the underlying 

In this section we describe the basis variable first and then we analyse its stochastic 

characteristics.  

3.1 Definition of the temperature index 

Since up to date weather derivatives are mainly used in the energy sector where revenues 

heavily depend on the temperature during a season, temperature based weather contracts have 

the highest market share with 89 %. They are mostly based on the concept of so called degree 

days (Deutsche Bank Research, 2003). This base variable is calculated according to how 

many degrees a daily average temperature varies from a reference value. The day’s average 

temperature is based on the maximum and minimum temperature from midnight to midnight 

(Ellithorpe and Putnam, 2003). Because there is a loss of information in the concept of degree 

days, derivatives whose underlying is based on the average temperature of a period, become 

more and more important. This parameter can be picked from the homepage of 

guaranteedweather.com for different locations all over the world. Most of the heating energy 

in a greenhouse is needed during the winter season from November 1st (i=1) till March 31st 

(i=N). Thus we have chosen this period as duration for the weather index x.  

∑
=

+
=

N

it

tt TT
N

x
2

1 minmax   (7) 

Temperature indices have some particularities that we explain in the next section. 

 

3.2 Nature of the seasonal temperature index 

Generally speaking there are two ways to obtain the distribution of the base variable or the 

index derived from it. On the one hand the index can be calculated from the historical values 

for each year (Brody, 2002, p. 198; Turvey, 2001, p. 5; Dornier and Queruel, 2000, p. 1). 

Since the index is usually a continuous  random variable we can estimate a distribution from 
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historical data. This approach is very simple but one precondition is that the contract partners 

fix the price at the beginning of the contract and that they do not trade the derivative before 

maturity. With regard to the problem described in this paper this limitation seems to be 

acceptable because as a result of the high specificity there is no liquid market expected. 

However, a large number of years is needed to estimate the probability density function 

properly and we only obtain one index value per year. From figure 2 that depicts the 

frequency of the average temperature from November till March for the years 1980 to 2003 

we cannot be sure that the normality assumption is correct. The distribution seems to be left 

skewed. More data are needed to arrive at a certain conclusion.  
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Figure 2: frequency distribution of the average temperature  in Berlin from November 

till March from 1980 till 2003; source: http://www.dwd.de  

The second approach is to simulate the development of the daily temperature during the 

season to obtain the probability distribution. The average temperature is the computed over 

the simulation time. Repeating the simulation many times finally yields the distribution of the 

average temperature. For the simulation we need a stochastic model of the seasonal 

temperature. The stochastic process reflecting the temperature dynamics of the period has the 

following characteristics: 
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• Daily temperatures fluctuate seasonally. A positive linear trend is usually added to the 

seasonal figure. 

• Daily temperatures correlate with temperatures of the days before. 

• Daily temperatures follow a mean reversion process. They can only deviate from the 

long time seasonal average for a short time and move back again then. 

• The standard deviation of the temperature time series changes over the season.  

 

Generally temperature is a continuous time value. Thus, the process in principle should be 

modelled as a continuous time diffusion process. However, since only daily averages of 

temperature are available the parameter estimation has to be done with discrete variables.  

Following the approach used by Cao and Wei (2000), Alaton et al. (2001), Tigler and Butte 

(2001) and Schirm (2001) a time series analysis was carried out using the model below: 

ttttt UYY εσ++=  (8) 

with 

) cos() sin( 3210 tatataaYt ω+ω++=  (9) 

332211 −−− ++=−= tttttt UUUYYU φφφ        and (10) 

) cos() sin( 210 tbtbt ω+ω+σ=σ  (11) 

tY  is composed of a time dependent trend and a seasonal component. Ut is a third order 

autoregressive process for the detrended and seasonally adjusted values. t is the time variable 

starting with 1 on January 1st 1980. εt is a white noise process whose standard deviation σt is a 

sine function of the season. The frequency is 365 days (leap years remain unaccounted). Thus 

ω is 2π/365. The coefficients are estimated using the least squares method. They are listed in 

table 1.  
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Table 1: estimated values and standard error for the coefficients of the regression 

equation 

coefficient 
0a  1a  2a  3a  1φ  2φ  3φ  0σ  1b  2b  

estimated value 9.25 0.0001 3.34 -9.07 0.966 -.251 0.095 2.132 0.125 0.112 

standard error 0.08 0.00002 0.06 0.06 0.011 0.015 0.011 0.019 0.026 0.026 

 

The residuals are approximately standard normally distributed. Because of the third order 

autoregressive process there is no autocorrelation of the residuals.  
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Figure 3: frequency distribution of the residual error 

 

We used equation 8 to simulate 10000 temperature paths from November 1st 2005 till March 

31st 2006. The start value is the trend value. In figure 4 we compare the distribution of the 

model’s average temperature with the normal distribution of the historical data. The mean of 

the empirical data (2.65°C) is 0.59°C lower than the mean of the model (3.24°C). Also the 

standard deviation is about 0.6°C higher (1.54°C empirical and 0.95°C simulated). 
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The lower mean can be explained by the trend increase of the temperature. It is also possible 

that extreme values distort the lower tail. We could also doubt the symmetry of the empirical 

distribution. The deviations could, however, also be caused by specification errors of the 

temperature model. Since both distributions contain information we base the following 

calculations on a normal distribution whose mean and standard deviation are formed as the 

average of both distributions. Thus the mean is µ = 2.95°C and the standard deviation is σ = 

1.29°C. 

 

0

0,1

0,2

0,3

0,4

0,5

-2 0 2 4 6 8
 temperature index

pr
ob

ab
ili

ty
   

historical data
temperature model

 

Figure 4: comparison of the probability density function estimated from historical data 

and the temperature model 

 

4 Model calculations  

4.1 Calculations of the heat energy demand 

The greenhouse operation used for the calculations of the heating energy demand has 10 

compartments of 1000 m² each. The side height is 4 m . The outer walls consist of insulated 

glass and the roofage is of single glass. An energy screen is installed that is closed at night. 

Oil is used as energy source to heat the greenhouse.  
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The main crops are begonias and poinsettias. They need a temperature of 18°C during the day 

and 16°C at night (Lange et al., 2002, p. 29). The weather data required for the energy model 

are provided by the Institute of Vegetable and Fruit Science of the University of Hanover. 

Thus, the greenhouse model farm is situated near Hanover.  

We use Hortex-Light, a computer based decision support system for the design and operation 

of greenhouse heating systems, to estimate the heating energy consumption. The thermal 

demand is calculated using arithmetic calculations. The calculations are based on a surface 

related k’-model. The fuel consumption results from the energy that is needed to raise the 

inside temperature of the greenhouse to the designated target value (Rath, 1992). We assume 

a constant fuel price.  

( ) ( )∑ ∑
=

•

∈










⋅










−−⋅⋅⋅∆−−=

8760

1n
SinIW n ES

HFr
ran Spn oHi,n  iSeg tEE1Ak'Q Q

a

υυυ  (12) 

where 

QSeg  = annual heat energy consumption of a greenhouse section [Wh] 

n = hour of a year 

?i n = actual inner temperature of a greenhouse section at hour n [°C] 

?i,oH n = notional inner temperature of a greenhouse section at hour n without heating [°C] 

? ?Sp n = inner temperature increase caused by the heat accumulation in a heated greenhouse 

[°C] 

k’a = heat consumption coefficient of the outer surface [
m²K
W

] 

HFa = outlying surfaces [m²] 

EEES = economy of energy by use of an energy screen [-] 

Q
•

IW = heat energy supplied / conducted by inner walls [W] 

tSi = time increment 
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Hortex-Light needs hourly outside temperature and solar radiation values as input. The values 

enter formula (12) via the fictitious inside temperature of the greenhouse division without 

heating. The output of the software is the hourly fuel demand given by the quotient of the 

heating energy demand and the heating value of heating fuel. One litre of heating oil provides 

about 10 kWh. The estimation error of the model revolves around 5 % compared to 

effectively measured consumption.  

In figure 5 the annual heat oil consumption from November to March from 1987 until 2003 is 

depicted along with the index. The negative correlation of -0,983 between both values is 

evident. Since we keep other influence factors constant the outside temperature is the  only 

explanatory variable.  
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Figure 5: heat oil consumption and temperature index 

 

With the calculated heating oil demand we use linear regression analysis to explain the 

heating oil demand H by the index: 

xmmH 10 +=  (13) 

In the above equation m0 is the intercept, m1 is the slope of the straight line and x is the index 

distribution. The result of the regression is m0 = -2,830,124 and m1 = 24,654. That means that 



  12 

if the index declines by 1 point 24,654 additional litres of heating oil are needed. This context 

is depicted in figure 6.  
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Figure 6: regression of the heat oil consumption depending on the temperature index 

The calculations of the heating energy demand for the model greenhouse do not deliver 

enough values to estimate the demand distribution. We simulate the heating oil demand using: 

2110  εσ++= xmmH  (14) 

where m0 is the absolute term and m1 the slope of the heat oil demand estimated by x. σ1 is 

the standard deviation of the regression and ε2 is a normally distributed random variable. The 

index x is the distribution of the average temperature. We also account for the fact that the 

energy demand model does not precisely estimate the energy demand.  

From the comparison between measured and simulated energy demands of four farms we 

derive a standard deviation σ2 of 5 % of the relative estimation error. Assuming that the price 

for 1 litre heating oil is k the following energy cost distribution can be derived: 

( ) )
2
 

1(   1 32
Tr

kHC −+= εσ  (15) 
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We assume that heating costs accrue continuously. Thus we discount the average capital to 

the starting date. The frequency distribution resulting from (15) is compared with the cost 

distribution after having signed a put option. According to (2) and (15) the following formula 

results: 

[ ] P
TrL

PPut PexKMaxV
Tr

kHGCC +−⋅−−+=−= −  
32  )(,0)

2
 

1( )1( εσ  (16) 

The payoff of the put option is also discounted to the starting date. The distributions are 

derived from a sample of 10000 random simulation runs. 

 

4.2 Simulation results 

We do not have any restrictions for the strike level or the tick size. Thus we keep them 

variable and optimize them for the greenhouse model. Knowing the regression coefficients for 

the heat oil demand and the assumed price k = 0.35 € we calculate the optimal tick size V: 

kmV  1−= = 8629 € (17) 

The optimal strike level depends on the farmer’s attitude towards heating energy cost risk. 

Thus we calculated different risk measures at varying strike levels (Martin et al., 2001). In 

addition to the variance and standard deviation describing the volatility, we used risk 

measures describing the downside risk. They provide better results if the distribution is 

asymmetric.  

In a final step we still have to determine the premium of the put option. Therefore we need the 

conditional expected value and the probability ω. Since the index x is normal distributed we 

calculate the premium as follows: 

)(

)(

)()|(
Kx

xEK

xEKxxE
<







 −

−
+=<

ϖ
σ

φ
σ  (19) 
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





 −

Φ=<
σ

ϖ
)(

)(
xEK

Kx  (20) 

where ( )⋅Φ  is the standard normal distribution, )(⋅φ  its density function and σ the standard 

deviation of the index x. 

Table 2 depicts statistics of the heating oil cost distribution reduced by the payoffs from the 

put option plus the premium. It is evident that the probability of a payoff increases if the strike 

level increases. At the same time the premium rises because it corresponds to the expected 

payoff of the option. If we choose a strike level of 6, the probability that a payment is 

exercised is 99 %. Therefore we pay the relative high premium of 25842 €. With an 

increasing strike level the standard deviation diminishes. The downside risk measures like 

semi standard deviation and the percentiles also illustrate a risk reduction whose effect 

decreases with increasing strike level. Nevertheless a complete coverage against the energy 

cost risk is not even possible at the maximum strike. Another idea is that the greenhouse farm 

should not exceed a certain cost threshold. If we assume a value of -110000 € for such a 

threshold, the probability without option is 23 % whereas the probability of an option with a 

strike of 4 is 8 %. 
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Table 2: effects of different strike levels on the distribution of the heat oil costs of the 

modelled greenhouse 

Strike 

Level mean 

Prob. of 

payment premium 

standard 

deviation 

semi std. 

deviation 

5% 

percentile 

10% 

percentile 

threshold     

-110000 

- -101167 - - 12000 8759 -121513 -116560 23% 

0 -101167 1% 32 11925 8663 -121324 -116587 23% 

1 -101167 6% 267 11532 8221 -120050 -116109 23% 

2 -101167 22% 1359 10301 7042 -116917 -113905 20% 

3 -101167 52% 4434 8259 5494 -113526 -111005 13% 

4 -101167 80% 10078 6505 4494 -111514 -109254   8% 

5 -101167 95% 17584 5790 4136 -110727 -108542   6% 

6 -101167 99% 25842 5648 4062 -110609 -108427   6% 

 

5 Conclusions 

The energy cost risk of a greenhouse farm can be reduced with the weather derivative 

developed in this study. However a complete coverage against high energy consumption is 

not possible. An important precondition for an advantageous application of weather 

derivatives is a high correlation between the weather index and the operating profit. Hence a 

weather derivative can be constructed that reduces the profit risk. The flexibility of the 

derivative type and the weather index on the OTC market can develop a broad field of 

applications especially in agriculture. The main problem of a case adapted construction is the 

knowledge of the relation between the probability density function of the parameter 

determining the profit and the weather index. Afterwards the probability density function of 

the weather index has to be determined to determine the fair premium. The optimal hedge 

position depends on the risk perception of the decision maker.  
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