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AN EM ALGORITHM FOR THE HETEROSCEDASTIC
REGRESSION MODELS WITH CENSORED DATA
Chihwa Kao

Chung-Hua Institution for Economic Research

%

This paper proposes an EM algorithm for the heteroscedastic

regression models with censored data. The uniqueness of the

EM algorithm is discussed. An iteratively reweighted least

squares estimator is proposed.
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MODELS WITH CENSORED DATA
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1. Introduction

This paper is chcerned with the estimation of the
heteroscedastic regressidn models when the data is randomly
riéht censored.  Of course, all results extend to the casé
of left censored models by simply changing the signs of all
variables. The uniqueness of the EM algorithm is discussed.

An iteratively reweighted least squares estimator is proposed.

-

2. Model
Consider the following regression model

Ti = B~ Xi toes i=1, ..., T,

Where the Ei; are independent with unspecified distribution

. . 2 b
F, i,e., mean 0 and variance Gi = exp (oF° Zi),

B and Xi are K x 1, o and’zi are P x 1.

Fore some reason, we are unable to observe Tl”" Tn
14

and instead observe

Y.

i min [Ti, Ci]’

and

Where Ci are the censored values and I[.] is the indicator

function (i.e., &, =1 if T, < C, and §, = 0 if T,> C,).
i i="1i i i” vie




-2 -

Dempster, Laird & Rubin (1977) introduced the EM algorithm
for iterative computation_of maximum-likelihood estimates with
incomplefe data. Each iteration of‘the EM algorithm consists

-of two steps: the expectation step and the maximization step.
First, let's discuss the expectation step. Follow Buekley
and James (1979), we define )
* .
Y, = Y. 8, +E (TilTi >v.) (1 -6;).

Then we have the following lemma.

Lemma 1:

Proof: For example, see Miller (1981, p. 151).

For simplicity,' assume F is normally distributed. Then

the following result can be proved easily.

Lemma 2:

E(TilTi > Y.)

= B'X; + 0, - A (1)

Where ¢ and ¢ are the standard normal density and distribution
function, respectively.

_ . ;
Clearly we. cannot observe all of Yi’ we substitute estimates

for E(TiITi > Yi). We define those estimates as,




Y., - B°X
1 = o —— 1

a>
=N

. ‘ N
Then we have the estimates of Yi,'A

QI = Y8 + T -8, @

The maximizétion step takes the estimated complete data
§: and estimates B and o by maximum likelihood as though the
estimated complete data were thevobserved data. The log-

likelihood function of the complete data is
= l‘z ex; (;aZ )(§* - B°X )2 - (3)
2 ] i i i’ e

_ 1 -
log L = 5 E u‘Zi

Therefore the EM algorithm is defined by cycling back and
férth between (1l)“and (3) till the estimates of B and o converge

to the limiting values.

3. The uniquéness of the EM algoriﬁhm

It is known that multiple solutions occur frequently in
practice for the EM algorithm. It would be interesting to know
about the conditions in which the limiting value waé guaranteed
to be unique.
First we will show that the log-concavity in»(3) is no£

guaranteed in fixed samples. It can be shown that the Hessian

matrix of (3) is given by




) exp (~a Zi)XiXi _ Z exp (-o Zi)(Yi~B Xi)Xizi
i i
H = \
_ - = _' - - l . _ - E _ - 2 c
i exp ( OLVZi)(Yi B Xi)ZiXi ji exp (-a Zi)(Yi-B Xi) ZiZi

Whefe the Hessign is the negative of second derivétiveé matrix.
We note that the Hessian.above is not positive definite, since
for n = 1, the determinant is negative. We are unable to
prove or disprove the uniqueness of the likelihood function
from the Hessign above. Because log—ConcaVity is only a
sufficient condition; not a necessary one, for the uniqueness.
In the next theorem, we will give a sufficient condition

for the log-concavity in (3) in large samples.

Theorem 1:
a2

9 Q
T .
96 096”7 is postive definite almost surely if
r - - 2
exp (og Z) ~— [(Bg - B7)X]™ > 0,
where )
1
(a) Qp = ( T) log L
(b) 6 = (B”, o) and 6, = (B5, ag), where 6, is a vector

of true parameter,
and

(c) X and % are drawn from G, where G is the limiting
distribution of Gp and Gp is the joint empirical distribution-

of X. and Z..
i i

Proof:

A}

Define

Op = % ) log L. Qp may be written as:




1 .o 01 . o P
Op = - 5% Lo’z - 5 i (masZ.)exp [(ag-a )Zi]

(v -Bix) % + [(66—8’)Xi]2}+»% 2 (2;-BiX;) (85570,

Under resonable conditions, it can be shown that (Kao, 1983),

(a) % Lo, —— E(a”Z) wuniformly,
i
’ - - 2
(b) T ; exp(_qozi)(yi—eoxi) _—1 almosF surely

i
and ﬁniformly,
and

' 1 - P !
() 7 (Y,-B3X,) (Bj-B")X; —— 0 almost surely

 and uniformly.
Therefqre combining (a), (b) and (c), we have shown that

Qp. converges almost surely and uniformly to Q given by,

-

[exp (ag-a )E]}.

The first and second derivatives are,

Q
10

75 = E{exp(-a”2) [ (B7-B7)X1X},
1 1 ) ey 2 *
ol B{z Z + 7 exp(-a’2) [(85-67)X1°Z
+ % exp[ (ag-a")2]2},

2

; ) -
8_6"8%’ = -Elexp(-a"2)XX"],

82Q

-Efexp(-a”2)Xz [ (B7-B7) X1},

@

o)

@
Il

Q




and
azg 1
§E§E’= -5 E{exp(agZ)exp(-a’2)22" + exp(-a”Z)
- A~ 2)
[(B5-B")X1722"}.
The matrix of the second derivatives can be written as,
_ 82Q . axXXx bX?7
{ ~9698° bzZX” cz%”
whefe
a = exp(-a72),
b = exp(-a”2)[(Bo-B87)X)1,
and
]'— - - l o - - 2
c = 7 explagz)exp(-a’z) + 5 exp(-a Z) [ (Bo-B7)X]".
o 2 -
Clearly, 3 0 320
- 7| 5e38” ~[ 58367 1  aimost surely and
- uniformly.

-

For any K X 1 vector A and P x 1 vector B we have (e.g.,
Amemiya, 1973),

2

(A%, B[~ () 1 0B

= BEla(A"X)2 + c(B72)% + 2b(A"X) (B"2) ]

» ELax)2 + (B°2)%),

v

wheré A is the smallest eigenvalue of the following matrix M,

-

we note that A is positive if M is positive definite.
, 2 S
Therefore'T%ﬁ%Fr is positive definite if M is positive definite.
Next, we will give a sufficient condition for the positive

definiteness of M.




-

_ 7 -

Clearly, the determinant of M is given by

2y.

Of course, the determinant of M is pdsitive if

|M|= 2 exp(-2072) {exp (a52) -~ [ (B§-B")X]

2

exp(a§2)-[(B5-87)X)“1> 0.

Therefore ) is positive given the same condition above.

Hence,
2

9°Q
-[ Tﬂfﬁfr']‘is positive definite almost surely if
- P - 2 7
exp(agZ2)-[(Bo-B7)X]™ > 0. Q.E.D.
2
9 Qp

9690
surely every where if B~ = Bgj, i.e., when B is at the true

We note that - will be positive definite almost
value Bo, or at the neighborhood of B;, we also note that this
result is nothing to do with the position of a.
4. An iteratively reweighted least squares estimator

In section 2 we note that the maximization step of the
EM algorithm is to maximize (3), which is nonlinear in B and
a. We also note that the uniqueness of the EM algorithm is
not guaranteed. In this section we will propose a computa-
tionally simple method which the maximization step was based

on Harvey (1976). The estimates of Bk+l and Bk+l at the

(k+1) st step are
\

A — - A’ . "l . A‘ ~ %

Bl = [i exp(—ukzi)xixi] i exp (=ay 2. )X, ¥,
and

a =[2 2 z’]'l

k+1 = L2 23231 7 % 2;1log yy,
1 1




where -
A A*

A A* . . .
ny = Yi—BkXi and ¥i is given in (2).

The iteration is continued until Bk and a, converge to

k
the limiting value. With the possibility of non-uniqueness
of the estimates of o and B, therefore, good starting values

are important. For the choice of the starting values both for

the method in section 2 and here, we propose

~

- 7 - _l L,
Bo = [ 2 xixi] i XY

i7i
i
and _
~ - l ] ‘
0 = [ 2 Z'Zi] T2 log«ui, i=1l,:.., T
i i
where
Ui =,Yi—B°Xi' , °

5. Conclusion
In summary,. this papér is an application of the EM

algorithm to the heteroscedastic censoréd.regression in a
parameter form. This paper is also an alternative approach
of the maximum likelihood estimate for the heteroscedastic
ceﬁsored regression. [(proposed by‘Kao (1983) 1. Extensioné
to the nonparametric form of this model may be incorporated
using the nonparametric product limit estimator of F based

on the censored and uncensored residuals, i.e.,

. §.
n-1 1
F_ (e = 1 - _— . :
B( ) .TT ( n-i+1l ) ' i=1,..., T,
1=

where e, = Y, - B’Xi (Kaplan and Meier, 1958). The results
of the nonparametric approach will be reported in another paper

by the author.
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