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1. Introduction 

The objectives of this paper are three.  First, we survey recent literature using spatial econometric 

techniques, with emphases on bio-economic and land-use modelling.  Second, we highlight 

thematic developments in the literature.  Third, we discuss limitations and propose potentially 

fruitful directions for future research, focussing attentions on one issue that seems particularly 

problematic within this literature.  

 The start point for the investigation is the Special Issue of Agr icultural Economics (2002).  The 

goal of that Special Issue was “to introduce agricultural economists to new analytical approaches 

involving spatial data…” (Nelson, 2002, p.197).  The papers reported there fall into two basic 

categories: those that explicitly use spatial econometric methods and those that use GIS techniques 

(broadly defined).1  By and large, the spatial-econometric contributions in that Special Issue 

generate inferences in the context of a prototypical regression framework, which we represent 

symbolically as  

  z = ρWz + Xβ  + υ ,  

  υ  = λW + ε ,                      (1) 

  ε  ~ ƒMN(ε |0N,σ2IN),          

where z ≡ (z1,  z2, .., zN)′ denotes an N-vector of responses  of interest; ρ depicts correlation across 

the responses; W denotes an N-dimensional spatial weight matrix; X  ≡ (x1, x2, .., xN)′ , x1 ≡ (x11, 

x12, .., x1K)′, x2 ≡ (x21, x22, .., x2K)′ , .., xN ≡ (xN1, xN2, .., xNK)′ denotes observations on the covariates; 

β ≡ (β1, β2, .., βK)′ denotes the corresponding K-vector of response coefficients; υ  ≡ (υ1, υ2, .., υN)′ 

denotes a N-vector of random disturbances; λ depicts correlation across the disturbances; ε  ≡ (ε1, ε2, 

.., ε N)′ denotes another N-vector of random disturbances; and ƒMN(ε |0N,σ2IN) denotes the 

multivariate normal probability distribution function defined over the vector ε , with mean 0N and 

covariance σ2IN.  In some contexts, the response variable z will be observed, in which case z ≡ y ≡ 

(y1, y2, .., yN)′, an N-vector of observable quantities.  In other contexts z will be latent and will 

relate in some way to the observed data y.  In either case, one feature of the setup in (1) that is 
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fundamental to the analysis is that the indices defining the subunits in question, {}N
1ii = , contain 

spatial information.  The investigator observes data X, W and y and makes inferences about the 

unobserved parameters θ  ≡ (β ′, ρ, λ, σ)′.    

 The majority of the papers that we survey employ particular specializations of this setup and it is 

therefore useful to present it as a point of reference.   For example, Holloway, Shankar and Rahman 

(2001) observe adoption behaviour among Bangladeshi rice producers using farm-level data.  

Parameter λ is constrained a priori to equal zero; parameter σ is constrained to equal one; the 

observed y ≡ (y1, y2, .., yN)′ are binary values, equalling one if the farmer adopted a high-yielding-

variety rice technology and equalling zero otherwise; and the elements of z are latent responses 

constrained to be non-negative if adoption occurs and constrained to be negative otherwise. 

 Early work with spatial regression commenced with Cliff and Ord (1975).  The methodological 

literature has witnessed many advances since then, with important collections of these advances in 

Anselin (1988, 1999, 2003) LeSage (1999, 2000, 2002) and Smith and LeSage (2004).  

2. Environmental Resources, Forestry and Conservation  

An early application of spatial regression techniques in ecology is Pinel-Alloul et al. (1988) who 

examine the effects of body size, depth, and sampling scale on the spatial heterogeneity of 

zooplankton in Lake Cromwell, Quebec, Canada.  The importance of incorporating spatial 

information into statistical analyses of conservation biology is a recurrent theme in the literature re-

emphasized by Carroll and Pearson (1999).  Modern methodological advances, especially the Gibbs 

sampler and the advent of more general MCMC methods permit Hertzberg et al. (2000) to study the 

effects of spatial habitat configuration on recruitment growth and population structure of arctic 

Collembola.  Their Bayesian methodology employs a finite -mixture distribution (Lavine and West, 

1992; Diebolt and Robert, 1994) to model heterogeneity in densities of the species in question.  

Dennis et al. (2002) employ the Getis-Ord distance-statistic to calculate the smallest distance 

ensuring that each sample point of upland beetles has at least one neighbour.  They make inferences 

about how patterns of habitat heterogeneity affect the distribution of representative ground and rove 
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beetles sampled at an upland site of varied landform.  The complex spatial heterogeneity of 

ecological systems is a common theme in the respective applications of Newbold and Eadie (2004), 

Polasky et al. (2005), Rangel et al. (2006) and Shi et al. (2006).  These contributions are also linked 

by their overriding theme which is “predicting the probability of persistence of a species given a 

land-use pattern (Polasky et al., 2005).”  C laessens et al. (2006) investigate the problem of 

incorporating spatial autocorrelation among a sample of kauri using logistic regression.  They 

discover that thresholds are significant in explaining the age distribution and the geographic 

dispersion and ecology of the kauri species in the Waitakere ranges of New Zealand.   Laband and 

Nieswiadomy (2006) also use spatial autocorrelation techniques to examine the impact of 

environmental and political factors affecting the risk of extinction of species in 49 US states.  

Finally, two contributions to the conservation literature deserving special mention are Newburn et 

al. (2006) and McPherson and Nieswiadomy (2005).  In the former spatial autocorrelation 

techniques are used to derive inferences about targeting strategies for land conservation in the 

presence of heterogeneous land costs and heterogeneous probabilities of land-use conversion.  In 

the latter, spatial autocorrelation techniques are applied on a global scale to measure the (Grossman 

and Krueger, 1995) conjecture of a Kuznets-type (approximately U-shaped) relationship between 

threatened bird and mammal species and the level of per -capita income in 113 countries at various 

stages of development.  They find that significant spatial autocorrelation exists, with shocks spilling 

over, geographically, into neighbouring countries. 

 Heterogeneity is, again, an overriding theme in the conservation literature focused on genetic 

resources.  Early work that is noteworthy for its methodological contributions are Epperson (1990) 

and Epperson (1993), both of which focus on the geographic distribution of genetic variation in 

plants.  In the former a spatial-autorregressive regression (SAR) is used and in the latter a STAR 

(space-time autoregressive) model is employed.  In Bjørnstad et al. (1995) population genetic drift 

and genetic mappings are assessed taking explicit account of the fact that both the genetic makeup 

and the environmental conditions of a population are spatially correlated.   And in He et al. (2000) 
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spatial autocorrelation is used to study the spatial distribution of genotypes and gene frequencies at 

in three stands of the a tropical rainforest endangered perennial in Southwest China. 

 Contributions related to forestry can be broadly classified into two categories: those that employ 

a spatial regression model as the main focus of the work (Pattanayak and Butry, 2005; Mena et al., 

2006) and those works (Roberts et al., 2000; Kohlin and Parks, 2001), in which the spatial 

regression is ancillary.  The target focus is reducing rates of fragmentation and deforestation of 

naturally forested areas.  Frequently, the deforestation rate is the observed dependent variable.  

With the exception of Mena et al. (2006), who use a spatial lag regression model, the SAR model 

predominates. 

 Kerr et al. (2003) employ classical and Bayesian spatial regression techniques to make 

predictions of land use and carbon storage on a large geographic and temporal scale.  On a smaller 

scale, spatial correlation among heavy-metal contaminated soil sites is at issue in Schnabel and 

Tieje (2003).  Kim et al. (2003) improve the methodology for estimating hedonic price functions in 

the presence of spatial dependence.  They apply a spatial-hedonic housing-price model to the Seoul 

metropolitan area and measure the marginal value of improvements in concentrations of sulphur 

dioxide and nitrogen dioxide.  Diagnostics suggest that the spatial-lag, rather than the spatial 

autocorrelation model, is preferred. Finally, an innovative methodology combing both the spatial 

lag and spatial aurotcorrelation models (as in (1) above) is presented in Atasoy et al. (2006) .  Using 

panel data they relate the density of residential development and the change in residential land use 

to three measures of water quality.  

 Deserving special attention is the contribution by Assunção (2003), which develops innovative 

alternatives to the traditional framework in (1), above.  At issue is the notion that regression 

covariate coefficients may vary as they would in a traditional random-coefficients framework 

(Hildreth and Houck, 1968), with two peculiarities.  First, the variation arises in response to 

variation in space.  Second, the differences across regions is not discrete but, rather, varies smoothly 

as a function of the area location.  The model is implemented using Gibbs and Metropolis-Hastings 
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sampling and is highlighted in applications to the adoption of new technologies by Brazilian 

farmers; the diffusion of a zoonotic disease in Bel Horizonte, a large Brazilian metropolitan area; 

and the study of women’s fertility statuses in Minas Gerais, a Brazilian state.  

 Additional works employing explicitly spatial statistical techniques are available from the survey 

articles Vaughn (1994), Bateman et al. (2002), Nilsson et al. (2003) and Batabayal and Nijkamp 

(2004).    

3. Marine Resources 

Recent contributions in marine resources were given impetus by the commissioning of a Special 

Issue devoted to Spatial Modelling in Fisheries Economics.  The works presented there (Holland et 

al., 2004; Wilen, 2004; Holland, 2004; Sanchirico, 2004, Dalton and Ralston, 2004; Smith and 

Wilen, 2004; Hicks et al., 2004; Curtis and McConnell, 2004; and Strand, 2004) cover an eclectic 

range of issues, all related in some way to the spatial organization of marine resources.  Topics 

include making use of increasingly abundant spatial information to enhance the efficiency of 

management of coastal fisheries; designing cost-effective marine reserves; analysing the effects of 

spatial closures in a fishery; enhancing realism in bio-economic models by endogenizing port 

choice; assessing the welfare losses arising from spa tial set asides; modelling fishermen’s spatial 

decisions; and comparing estimates of fishermen’s risk preferences  between spatially aggregated 

and spatially disaggregated models.  Five of the nine papers appearing in the Issue are inherently 

empirical, wit h formal econometric procedures being applied.  Surprisingly, formal spatial 

econometric modelling of the type espoused in (1) is absent.   

 Another collection of papers devoted to Spatial Models in Fisheries Economics contains four 

papers devoted to the topic of developing formally spatial econometric models of fisheries.  

Mistiaen and Strand (2000) develop and test a short-run, expected-utility maximizing model of 

fishermen’s location choices.  Using the random-parameters logit model in their empirics, they are 

able to incorporate heterogeneity in risk preferences across subunits of the sample.  Curtis and 

Hicks (2000) investigate the cost of area closures mandated by regulations designed to conserve sea 
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turtle populations.  Their empirica l application is the Hawaiian pelagic longline fishery and they 

implement their site -choice analysis using the logit specification.  Smith (2000) discusses aspects of 

modelling information processing by fishermen, including the choice between structural and 

reduced-form models, decay in information transmission during search, and complexities 

encountered in modelling spatial search and information sharing.   Fleming (2000) emphasizes the 

significance of spatial heterogeneity in fisheries and compares the utility of discrete-choice models 

of fishermen’s site preferences with alternative techniques.  Once again, formal spatial econometric 

models of the type engendered in (1) are absent. 

 Of the remaining papers surveyed in this category, two (Sanchirico and Wilen, 2004; Sanchir ico, 

2005) are conceptual.  Broadly speaking, they relate to the spatial management of renewable 

resources in general and the management of marine reserves in particular.  In contrast, an additional 

two works are empirical and are deserving special attention.  Smith (2002) presents two 

econometric approaches for predicting the spatial behaviour of renewable resource harvesters and 

assesses empirically spatial patterns of exploitation in the California sea urchin fishery.  At issue is 

the desire to understand how the magnitude and the spatial distribution of fishing effort respond to 

biological, economic and oceanographic factors.  Two models are investigated.  One, which is 

macro in nature, and combines count-data and seemingly unrelated regression techniques; and 

another, which is micro in orientation, and employs discrete-choice techniques to model 

fishermen’s site preferences.  The macro-model, by its very structure, incorporates correlation 

across space; the micro-model, a nested-logit  regression, does not.  Significantly, in the context of 

present attentions, the former “outperforms” the latter (Smith, 2002, p. 524).   

 Finally, in this section, Su et al. (2004) present an innovative methodology for modelling stock 

recruitment of pink salmon in the Northeast Pacific ocean.  Specifically, they model the number of 

adult recruits produced per spawner (the survival rate) from a specific stock in a given brood year.  

Their objective is to improve the understanding of the effects of environmental factors on spawner-

to-recruit survival rates.  For this purpose they construct alternative spatial hierarchical Bayesian 
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models and compare them.  Hierarchical modelling, which has roots in the early work of Lindley 

and Smith (1972) and is now commonplace in many fields , has, perhaps, enjoyed less frequent 

application in the bio-economic and agricultural-economic sciences.  We conjecture that the 

Bayesian hierarchical methodology offers enormous scope for enhancing the dexterity with which 

to model spatial heterogeneity.  In this regard, one important contribution of Su et al. (2004) is the 

introduction of distance-based, spatially -correlated  prior distributions for stock-specific parameters.   

Significantly, they find that the spatial hierarchical Bayesian methodology produces more consistent 

and precise estimates of the effects of sea-surface -temperature on productivity than does a 

conventional single -stock approach. 

4. Agricultural Resources and The Land 

More than other categories, agricultural-resource and land studies witness the most intensive use of 

the prototypical spatial econometric structures.  Examples include studies of the spatial organization 

of commodities (see, for examples Roe et al., 2002; Isik, 2002), in which the spatial lag model is 

employed, as well as studies of spatial relationships between commodity prices (see, for example, 

Florkowski and Sarmiento, 2005), in which the spatial autocorrelation model sees frequent 

employment.  Beyond the studies examining the geographic make-up of industry, two collections 

dominate this group, namely studies examining crop yield and studies examining land-use.  Each of 

eight studies surveyed relating generally to spatial yield prediction (Voortman, et al., 2004; Anselin 

et al., 2004; Lambert and Lowenberg-DeBoer, 2004; Dark, 2004; Persson, et al., 2005; Miller, 

2005; Wang et al., 2005; Yiu et al., 2006) contain explicit use of one, and in most cases two, of the 

prototype s in (1).  A general theme emerges.  This theme is improving inferences about yield and 

crop response in the presence of site-specific heterogeneity.   

 Irwin and Geoghegan (2001) survey the literature on spatially-explicit land-use change prior to 

2000 and Parker et al. (2003)  survey the literature on multi-agent-system models of land-use 

change.  In contrast to the crop-yield studies, many studies of land use and land-use change use 

methods alternative to those in the standard spatial frameworks.  Pelkey et al. (2000) consider 
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vegetation change in Tanzania using a large-data sample that prohibits inversion of an N-by-N  

matrix required to implement the Gibbs sampler.  Nelson et al. (2004) study infrastructural 

congestion and deforestation using multinomial-, nested- and random-parameters logit techniques 

that preclude spatial-weights matrices.  Cho and N ewman (2004) extend a two-stage discrete-choice 

modelling procedure (Bockstael and Bell, 1998) to permit estimation of land development densities. 

Robertson et al. (2006) use spatial regression tree analysis to reference water quality within streams.  

The remaining articles surveyed in the land-use category (Walker et al., 1999; Crocker and 

D’Souza, 2002; Munroe  et al., 2004; and Polsky, 2004) exemplify the versatility of the spatial lag 

and spatial autocorrelation frameworks in a wide and broader set of circumstances, including 

studies of the relationship between climate change and land-use classification change in the central 

and eastern United States and in western Honduras.  Finally within this category, Verburg et al. 

(2004) survey methodologies employe d in land-use-change studies.  In assessing progress and 

looking to the future they propose development of models that “better address the multi-scale 

characteristics of the land-use system, implement new techniques to identify neighbourhood effects, 

explicitly deal with temporal dynamics and achieve a higher level of integration between 

disciplinary approaches and between models studying urban and rural land-use change (p. 309).” 

 Other papers in this general category provide further examples of the spatia l autocorrelation and 

spatial lag models to unifying the mathematical foundations of regional science (Griffith, 1999), 

better implementing integrated regional econometric and input -output modelling (Rey, 2000), 

improving understanding of farm-land values decomposition (Plantinga et al., 2002; and Huang et 

al., 2006)  and  better understanding the drivers of change in the relationship between environmental 

amenities and human settlement patterns in the rural-urban fringe in the midwestern United States 

(Gustafson et al., 2005). 

 In closing this section, it is relevant to comment on the use of discrete-choice technologies used 

extensively in location-choice studies.  Without exception the  surveyed works employ classical 

statistical procedures.  They rely almos t exclusively on variations of logit methodology.  Likely this 
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arises due to computational problems encountered in classical estimation of the multinomial probit.  

However, the logit methodology suffers a significant disadvantage because it prohibits explicit 

spatial regression analysis.  Such is not the case with probit estimation, and incorporation of explicit 

spatial weight matrices and associated correlation parameters follows naturally from the binary- or 

multinomial-probit specifications.  Fleming (2004) surveys techniques for estimating spatially 

dependent discrete -choice models; Bayesian estimation of multinomial probit models and 

comparisons with classical methodology are reviewed in Geweke et al. (1994); and Autant-Bernard 

et al. (2006) model spatial dependence explicitly in the multinomial probit. 

5. Thematic Developments and Extensions  

Because spatial econometric modelling in the bio -economic and land-use categories is eclectic, it is 

only with difficulty that thematic developments emerge.  Yet closer inspection reveals some fairly 

clear orientations and preoccupations.  Broadly described, an over-arching theme in this diverse 

literature appears to be loosening the constraints of our prototype models in order to engender 

added realism to the modelling environment.  In this way research aims to close the gap between the 

realities of the data-generating environment and the modelling context that the research employs to 

depict it.   ‘Heterogeneity’ is ever-present.  It overarches and underpins each of the literary divisions 

we have chosen.  For example , in the contexts of forming site -specific yield predictions, (Voortman 

et al., 2004; Anselin et al., 2004), utilising satellite imagery of the Ngorogoro crater (Pelkey et al., 

2000), or mapping appropriate covariates to conservation biology measures (Claessens et al., 2006; 

Shi et al., 2006), the researcher confronts the problem of better incorporating heterogeneous, site -

specific factors that have a fundamental impact on the biological- and natural-resource process.  In 

Anselin et al. (2004) heterogeneity arrives in the form of the unobserved nutrient status of a yield 

site; in Pelkey et al. (1999) it is present in the unobserved behaviour of predatory mammals and 

migratory species; and in Shi et al. (2006) it arises due to the unobserved complex spatial 

heterogeneity of ecological systems.  In each case heterogeneity is fundamental to the data 

generating environment.  In this context it is not surprising that many of the innovative 
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developments in spatial-econometric  methodology arise as direct responses to the desire and the 

need to better incorporate heterogeneity in the biological, agricultural or land-use process.  

Therefore, in suggesting extensions and potentially fruitful directions for new research we focus 

attentions on heterogeneity in the modelling of bio-economic and land-use resources. 

 Several directions identify themselves from the innovative methodologies in Assunção (2003) 

and Su et al. (2004).  These studies make efficient use of the Bayesian hierarchical methodology.  

Hierarchical modelling of processes in order to adequately represent heterogeneity is common in 

Bayesian inference.  Koop and Tobias (2004), for example, illustrate the methodology’s advantages 

in the context of modelling returns to schooling.  Tsionas (2002) proposes a stochastic frontier 

model with random coefficients to separate technical inefficiency from technological differences 

across firms, and free the frontier model from the restrictive assumption that all firms must share 

exactly the same technological possibilities.  Other examples can be found in the literature , 

particularly in the medical sciences.  In the context of our spatial prototypes in (1), above, a natural 

question arising is the type of modification required in order to adequately incorporate 

heterogeneity in the bio-economic and land-use process.  Where it is observable among covariates 

we are able to condition inferences by simply including the relevant covariate information in the 

econometric exercise.  This point is important.  Only unobserved heterogeneity is problematic .  

Unobserved, heterogeneous factors that impact the modelling environment may be present in any of 

the parameters about which we make inferences.  Thus, heterogeneity may impact the regression 

coefficients, β , or the sampling standard error, σ.  However, because it delimits so many 

methodological differences over a standard regression framework, in the space that remains we 

focus attentions only on the spatial weights matrix, W, and the parameter depicting correlation 

among contiguous geographic units, ρ.  Durlauf (2004) surveys the settings in which phenomena 

give rise to spatial dependence, termed ‘neighbourhood effects.’ Many of the settings he surveys 

differ markedly from the one depicted in (1), which is a homogeneous set of correlations between 

contiguous regions within the sample.   The many assumptions embedded in this overly simplistic 
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framework beg some obvious questions.  The hierarchical extension of the basic spatial relations hip 

posits a distributional assumption across subsets of the sample, say, i = 1, 2, .., N, concomitantly 

replacing ‘ρW’ in (1) with alternative assumptions  ‘ρ 1W1’, ‘ρ2W2’, .., ‘ρ NWN’ across subsets and 

assuming, simultaneously, that ρ1, ρ 2, .., ρN are linked as draws from some common distribution, 

ƒ(ρ1, ρ 2, .., ρN|ρ) with ‘ρ’ the over-arching ‘hyperparameter’ depicting correlation throughout the 

sample.  Notwithstanding its attractiveness, non-hierarchical alternatives exist.  

 A first question about the relationship ‘ρW’ is the magnitude of the geographic space within 

which dependence exists.  When there is good reason to question the size, but not the pattern, of 

contiguity in the sample it is natural to combine contiguous regions forming successively larger 

neighbourhoods in which spatial dependence might exist.  Subsequently one can test for the 

neighbourhood size that is most appropriate among the given alternatives.   Holloway and Lapar (in 

press) implement this modification to a model of northern-Philippino smallholders and determine 

that, across the twelve geographic units comprising the sample, a significant, positive, 

neighbourhood effect exists and that it spans a three-unit radius.  Despite its attractions, one 

potential shortcoming of this approach is that the model selection procedures required to implement 

it (Chib, 1995; Chib and Jeliazkov, 2001) are computationally intensive  and may be prohibitive 

when the number of geographic units is large. 

 Second, the assumption that the relationship ‘ρW’ is homogeneous across the entire sample can 

be relaxed.  Alternatively, one may posit a relationship that is additive and of the form ‘∑ρiWi’, for 

an exhaustive set of subunits, i = 1, 2, .., N, across the sample.  Using ‘∑ρiWi’ in place of ‘ρW’ is 

appropr iate when there is reasonable belief that intrinsic factors within the data-generating 

environment give rise to heterogeneous neighbourhood effects.  Moreover, despite its 

complications, implementation follows easily and naturally by extending the basic Gibbs algorithm 

in the standard spatial regression (LeSage, 2002).  Experiments (available upon request) suggest 

that the extended Gibbs-sampling algorithm works extremely well, predicting accurately upwards of 

ten correlation components in a sample of only one-hundred observations.  Nevertheless, the 
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procedure suffers from drawbacks.  The most significant drawback is that the researcher must know 

a priori the division of respective subunits across the sample, which are implied by the weight 

matrices ‘W1, W2, .., WN.’ 

 A third modification designed to overcome the informational demands of the former procedure is 

a mixture -modelling approach based on Bayesian classification and discrimination.  Bayesian 

implementation of finite mixtures (Lavine and West, 1992; Diebolt and Robert, 2004) is simple, 

intuitive and attractive.  And when the number of components within the mixture is unknown, a 

modification (Richardson and Green, 1997) facilitates inference.  Mixture modelling is attractive in 

the context of (1) because it allows the data itself to sample select and designate observations into 

the most appropriate classification, namely the one corresponding to a particular form of spatial 

dependence.  Work is currently underway to implement such a model in a sample of US 

congressional votes on proposed agricultural legislation. 

 Finally, depicting dependence of the correlation parameter on possible sets of covariates offers 

potential for better understanding the relationship between spatial dependence and observable 

factors upon which the investigator  may condition inferences.  To our knowledge such work has not 

yet been attempted.  Nevertheless, it is conceivable that one could implement such a model by 

extension of generalized linear model methodology (Dellaportas and Smith, 1993) and that such 

extension offers considerable scope for improving our understanding of the nature of the forces 

effecting spatial dependence in bio-economic and land-use modelling. 

6. Conclusions  

Despite some ‘embarrassment of riches ’ in the burgeoning and innovative literature that we survey, 

considerable scope appears to exist for improving the robustness of inferences derived from spatial 

models of bio-economic and land-use change.  

Footnotes 

1 This survey reports the research of a subset of papers from a broader search that, tangentially, 

relates to agriculture, the land, land-use, and bio-economic and natural-resource modelling.  Space 
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prohibits reports of papers from omitted sections entitled ‘Public Choice Toward the Environment, 

the Land and Agricultural Trade;’ ‘Housing, the Economics of Real Estate, and the Rural-Urban 

Fringe;’ and papers contained in the Special Issue of Agricultural Economics showcasing Spatial 

Analysis for Agricultural Economists.  An extended version of the paper containing these reports is 

available upon request.  
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