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Simulating multivariate distributions with sparse data: 

a kernel density smoothing procedure 

 

Abstract 

Often analysts must conduct risk analysis based on a small number of observations. This 

paper describes and illustrates the use of a kernel density estimation procedure to smooth out 

irregularities in such a sparse data set for simulating univariate and multivariate probability 

distributions.  

 

JEL classification: Q12; C8 

Keywords: stochastic simulation: smoothing; multivariate kernel estimator, Parzen 

 

1. Introduction 

All businesses face risky decisions, such as: enterprise mix, marketing strategies, and 

financing options. Agricultural producers face production risks from weather, pests, and 

uncertain input responses so production risk remains a significant consideration for 

agricultural business managers. Hence, risk should be explicitly considered in studies of 

agricultural production choices (e.g., Reutlinger, 1970; Hardaker et al., 2004).  

Agricultural businesses are often best studied in a system context, implying a need to cast 

the risk analysis in a whole-farm context. Several methods exist for whole-farm analysis 

under uncertainty. One frequently and increasingly used approach is whole-farm stochastic 

simulation. In stochastic simulation, selected input variables or production relationships 

incorporate stochastic components (by specifying probability distributions) to reflect 
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important parts of the uncertainty in the real system (Richardson and Nixon, 1986; Hardaker 

et al., 2004).  If stochastic dependencies between variables are ignored for ease in modelling, 

the distribution of the output variable(s) may be seriously biased (Richardson et. al., 2000). 

Probabilities for whole-farm stochastic simulation should ideally be based on reliable 

farm-level histories for the stochastic variables. In practice, the required historical data may 

not be available for the farm to be analyzed. In particular, there will seldom be extensive and 

wholly relevant historical data for all stochastic variables. The typical situation is that the 

available, relevant data are too sparse to provide a good basis for probability assessment (e.g., 

Hardaker et al., 2004, ch. 4.).   

In the case of sparse data the underlying probability distribution which generated the 

observations cannot be easily estimated. For example, three samples of sparse data were 

generated at random from a normal distribution with a mean of 100 and a standard deviation 

of 30 (or N(100,30)) and depicted in Figure 1. The known distribution is depicted as a 

probability distribution function (PDF) with the sparse samples shown as points on the X axis. 

With such few data points one cannot reliably estimate the frequency that a value will be 

observed. It is evident from the three sparse samples that it is extremely difficult to 

consistently estimate both the form of the probability distribution and the parameters which 

generated the sample.   
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Figure 1.  Example of three sparse samples generated at random from a  
normal distribution with mean 100 and standard deviation 30. 

 

Hardaker and Lien (2005) suggest that in the case of sparse data, one should use the best 

probability judgments about the uncertain variables so the analysis can proceed. Sparse 

historical data are obviously useful in forming such judgments but only in conjunction with 

careful assessment of their relevance and of how to accommodate the limitations of the data 

in seeking to make the probability estimates more consistent. There are often irregularities in 

sparse data due to sampling errors, and it is useful to smooth them out by fitting a distribution 

(Schlaifer, 1959, ch. 31; Anderson et al., 1977, pp. 42-44). Further, it is usually reasonable to 

assume that the upper and lower bounds of a distribution, if they exit, will be more extreme 

than those observed from a sparse data set, due to the under sampling of the tails endemic in 
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most sampling regimes. It may be possible to use expert opinion to assess the likely upper and 

lower bounds of the distribution, and sometimes such opinions can be used to identify other 

features of the distribution. Such assessments and augmentations can be included before 

smoothing is attempted.  

Although the kernel density smoothing estimator is extensively used in many fields to 

estimate probability distributions prior to simulation, it is not widely used in agricultural 

economics simulation studies. The aim of this paper is to illustrate the use of a kernel density 

estimation procedure to smooth out irregularities in a sparse data set for simulating univariate 

and multivariate probability distributions. 

2. Alternative smoothing procedures 

It is generally safe to assume that the marginal cumulative density function (CDF) of some 

continuous uncertain quantity is a smooth sigmoidal curve (Anderson et al., 1977; Hardaker 

et al., 2004). So one smoothing option is to fit a parametric probability distribution (such as 

the normal) to the sparse data based on statistics computed from the sample. As demonstrated 

in Figure 2 this procedure may not produce a reasonable approximation of the underlying 

distribution. In Figure 2 the assumed normal distribution estimated from the sparse samples’ 

moments was plotted along with the known distribution which generated the sparse sample of 

nine dots. The simulated distribution very closely follows and smoothes out the sparse sample 

points. However, the smoothed distribution estimated from the sparse sample’s moments 

would significantly under sample the tails and over sample the mid-section of the known 

distribution.   
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Figure 2.  The CDF of a sparse sample of nine points plotted against the  
known CDF and the assumed normal CDF. 

 

A better option might be to use distribution-fitting software such as BestFit or Simetar to 

fit a parametric distribution and test its appropriateness in simulation of the random variable 

(e.g., Richardson, 2004; Hardaker et al., 2004). However, it may be unsafe to assume that a 

sparse sample conforms adequately to some unimodal parametric distributional form. 

Moreover, with sparse data it is often impossible to statistically invalidate many reasonable 

parametric distribution forms (Ker and Coble, 2003), making choice among them difficult. 

Yet different functional forms may lead to quite different results in simulation, especially in 

the tails of the distributions. 

Another option is to plot the fractile values, and to interpolate linearly between the 

empirical point estimates to get a continuous empirical probability distribution (Richardson 

et al., 2000), as illustrated in Figure 3. Obviously, this method does not fully smooth out the 

CDF, especially with small samples and additionally it underestimates the frequency with 

which the end points are simulated (Figure 3). Therefore a better, although more subjective, 

choice may be to draw a smooth curve approximating these points by hand (Schlaifer, 1959, 

ch. 31; Hardaker et al., 2004, pp. 69-71). Hand smoothing a CDF curve through or close to 

the plotted fractile estimates gives the opportunity to incorporate additional information about 

the shape and location of the distribution, which is not always possible with computer-based 

approaches. Nonparametric estimation methods can be used as a formalization of hand 
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smoothing. Several spline-fitting methods exist, such as penalized least-square and piecewise 

polynomial (e.g., cubic) least-square procedures (see, for example, Silverman, 1985; 

Yatchew, 1998). 
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Figure 3.  CDF of a sparse sample of nine points plotted as a discrete  
empirical vs. the fractile values for the sample. 

 

Instead of minimizing the sum of squared residuals, the classical nonparametric kernel 

density estimation method weights observations based on relative proximity to estimate a 

probability. The basic idea is that one slides a weighting window along the number scale, and 

then estimate of the probability at a given point depends on a pre-selected probability density. 

The smoothed estimate is a result of the individual observations that are weighted based on 

their relative positions in the window. In that way the kernel estimator is analogous to the 

principle of local averaging, by smoothing using evaluations of the function at neighbouring 

observations (Yatchew, 1998). Several kernels are available that control the shape of the local 

distribution, e.g., uniform, triangular, Parzen, Epanechnikov, and Gaussian. A smoothing 

parameter, also called the window or bandwidth, dictates the weighting frequency of 

smoothing, i.e. how much influence each observation point has. A large bandwidth will put 

more significant weight on many observations while a small bandwidth will only put weight 

on neighbouring observations in calculating the probability estimate at a given point. The 

bandwidth can also be varied from one point observation to another. The smoothed curve in 

Figure 4 shows the CDF for a Parzen kernel smoothed distribution of the same sparse sample 
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used in Figures 2 and 3. The Parzen kernel fit a smooth curve thought the sample points rather 

than linearly interpolating between the sample points and does not in this case under sample 

the frequency observed for the end points. 
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Figure 4.  Smoothed Parzen kernel distribution CDF and a linear interpolated  

CDF for a sparse sample drawn from a known normal distribution. 
 
 
3. Application of kernel distribution to sparse samples 

Three sparse samples of crop yields are summarized in Table 1. The data were analyzed 

with Simetar to estimate the parameters for alternative kernel distributions and simulated 

using an empirical distribution estimate of the 500 points generated by the Parzen kernel 

smoothing procedure (Parzen, 1962).1 The Parzen kernel was selected after determining that it 

produced the smallest root mean square error (RMSE) of residuals (êi = F(xH) – F(xj)) 

between the histogram kernel cumulative probabilities, F(xH), and those for the jth kernel, 

F(xj), in the following list of kernels:  (1) cosines, (2) Cauchy, (3) double exponential, (4) 

                                                 
1 In practice, in cases with such small samples as nine observations it is very important to evaluate the usefulness 

of the data before using them in a stochastic simulation model. The first step should be to consider how 

representative and relevant these data are likely to be to describe the uncertain quantity to be modelled. Is there a 

need to correct for any trend, due, for example, to technological change or to price responses? One should check 

whether the seasonal conditions in these nine years were reasonably representative of the general climatic 

conditions in the area. If not, it would be appropriate to assign differential probabilities to the observations. And 

the possible bias in the data needs to be addressed. If the simulation model represents commercial farming 

conditions and the data are from an experiment, it might be necessary to account for the fact that experimental 

yields are often higher than farm yields. In this illustration with synthetic simulated data we assume that any 

such adjustments are unnecessary. 



 

 

 

 8 
  

Epanechnikov, (5) Gaussian, (6) Parzen, (7) quartic, (8) triangle, (9) triweight, and (10) 

uniform.  

Table 1. Sparse samples of yields for three crops with suggested subjective minimums and 
maximums 

Yield 1 Yield 2 Yield 3
1991 6,870.6    6,897.1    31,430.0  
1992 6,070.6    5,467.6    40,800.0  
1993 6,323.5    6,111.8    42,650.0  
1994 4,688.2    5,226.5    30,740.0  
1995 2,717.6    4,905.9    31,520.0  
1996 3,658.8    5,502.9    27,290.0  
1997 5,358.8    3,811.8    26,230.0  
1998 5,670.0    4,710.0    27,390.0  
1999 3,800.0    5,910.0    19,500.0  

Subj. Max 8,700.0    8,600.0    49,000.0  
Subj. Min 1,600.0    1,800.0  15,000.0  

 
 

Three sparse samples were used to demonstrate how a Parzen kernel density can be used to 

smooth actual samples. The samples represent nine years of actual crop yields (Table 1). 

Expert opinion can be used to augment a sparse sample by adding minimum and maximum 

values that extend the observed distribution. Once the augmented minimum and maximum are 

specified, the Parzen kernel can be used to estimate the parameters to simulate the augmented 

distribution. The three sparse samples of yield data were augmented using expert opinion 

(Table 1) and simulated using the smoothing effect of a Parzen kernel (Figure 5). The 

resulting CDFs from simulating the random variable with 500 iterations suggest that the 

augmented distributions were indeed smoothed in the process. For all three distributions the 

Parzen kernel sampled the extreme points with about the same frequency as they were 

observed in the original sample which results in vertical end points in the CDFs. The 

remaining frequency is spread over the remaining points in the sample using the bandwidth 

chosen for the Parzen kernel. For all three distributions the Parzen kernel smoothed over the 

effect of outliers and produced a smoothed approximation of the CDF for the distributions. 
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Figure 5.  Examples of the Parzen kernel to simulate three sparse sample  

distributions augmented using expert advise. 
 

The Parzen kernel smoothing procedure appears to work well in the univariate case, 

however, to be useful for whole farm simulation modelling the procedure must be applicable 

in the multivariate case. The next step is to extend Parzen kerned smoothed distributions to 

the multivariate case, as illustrated in the next section. For more details about kernel density 

methods, see Silverman (1986) and Scott (1992).  

4. The multivariate kernel density simulation procedure 

The general version of the multivariate empirical (MVE) distribution estimate procedure 

described by Richardson et al. (2000) is generaized for a smoothed multivariate distribution. 

The procedure uses a kernel density estimation (KDE) function to smooth the limited sample 

data of variables in a system individually, and then the dependencies present in the sample are 
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used to model the system.2 The resulting stochastic procedure is called the multivariate kernel 

density estimate (MVKDE) of a random vector. The steps in specifying a MVKDE 

distribution are described below: 

1.  The starting point is the matrix of (often historical detrended) observations (often yields or 

prices): 
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where ni ,...,1=  observations or states and kj ,...,1=  variables.  

2.  The estimated correlation matrix used to quantify the (linear) correlation among the 

variables is calculated using ji×X  as: 
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where ijr  is the sample correlation coefficient between the vectors jX ⋅  and jX ⋅  for 

kj ,...,1= . The ijr  coefficients are typically product-moment correlations, but a similar 

procedure can be used for rank-based methods.  

3.  The correlation matrix is factored by the Cholesky decomposition: 

kkR ×  such that TRRP =  (3) 

                                                 
2 The model presented has been programmed in Excel using the Simetar Add-In (http://www.simetar.com/). This 

user-friendly software makes implementation easy. The simulation, risk analysis, and econometric capabilities of 

Simetar are described in Richardson (2004). 
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4. The minimum, jMinX , , and the maximum, jMaxX ,  bounds for each variable, k  are 

determined. The cumulative probabilities for these are assumed to be ( ) 0, =jMinXF  and 

( ) 1, =jMaxXF .  

5.  For each variable, k , a new vector, A
sjX , of dimension S  ( )Ss ,...,2=  is created with 

given minimum jMin
A
j XX ,1 =  (i.e. 1=s  for the minimum observation) and maximum 

jMax
A
Sj XX ,=  by the formula: 

( ) ( )
A

jsjMinjMax
A
sj XXX

S
X 1,,1

1
−+−⎟

⎠
⎞

⎜
⎝
⎛

−
=  (4) 

6.  The smoothed percentiles for each A
sjX  between the extreme bounds ( ) 0, =jMinXF  and 

( ) 1, =jMaxXF  are based on a kernel density estimator (Silverman, 1986; Scott, 1992). For 

the thj  variable, the smoothed percentile is evaluated at a given point A
sjX  as: 
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where ( )⋅K  is the cumulative kernel function associated with a symmetric continuous 

kernel density ( )⋅k  such that ( ) ( )dttkxK
x

∫
∞−

= , and jh  is the bandwidth. 

The MVKDE of the random vector jX~  is simulated as follows for each iteration or 

sample of the possible expanded states of nature: 

1. Generate a k-vector, 1kz × , of independent standard normal deviates (ISNDs). 
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2. Pre-multiply the vector of ISNDs by the factored correlation matrix to create a k-vector, 

*
kx1z , of correlated standard normal deviates (CSNDs): 

zRz*
kx1 =  (6) 

3. Transform each of the j CSNDs to correlated uniform standard deviates (CUSDs) using 

the error function: 

( )*
jj zERFCUSD =  (7) 

The error function, ( )zERF , is the integral of the standard normal distribution from 

negative infinity to z , which is the z-value from a standard normal table. The result of the 

function will be a value between zero and one. 

4. The quantile from the thj  smoothed empirical distribution function is found by applying 

the inverse transform method. Given the jCUSD  along with the respective vectors A
sjX  

and ( )A
sjXF̂ , interpolate among the A

sjX  to calculate a random vector jX~ . The procedure, 

as described by Richardson (2004), is as follows: First, a jCUSD  vector is generated 

(from step 3 above). Second, the generated jCUSD  is matched into its interval on the 

probability ( )A
sjXF̂  scale (including ( )jMinXF ,  and ( )jMaxXF , ) between the nearest lower 

( )A
LjL XF̂  and the nearest upper ( )A

UjU XF̂ . Third, match up the corresponding interval, 

between A
LjX  and A

UjX  (including the extremes jMinX ,  and jMaxX , ). Fourth, generate one 

vector of simulated MVKDE variables using the formula: 

( ) ( )( )
( ) ( )( )A

LjL
A

UjU

A
LjLjA

Lj
A

Uj
A
Ljj

XFXF

XFCUSD
XXXX ˆˆ

ˆ
*~

−

−
−+=  (8) 
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Three points should be noted. First, the first three steps that account for the dependency of 

the stochastic variables are the way random variates are generated from a normal (or 

Gaussian) copula (e.g., Cherubini et al., 2004). In agricultural economics, Richardson and 

Condra (1978) and King (1979) pioneered the normal copulas in their simulation models. 

Copulas other than the normal (e.g., t-copulas, skewed t-copulas) could have been used to 

deal with stochastic dependency. However, since the parameters in the copulas are estimated 

from the data set, the estimation procedures are problematic with sparse data. Second, our 

MVKDE procedure differs from conventional MVKDE procedures, since minimum and 

maximum bounds are included in the simulation procedure. Third, by choosing S in Eq. (4) 

large enough, the simulation procedure in step (4) will give so many points in the linear 

interpolation function that the approximation error will be minimal. 

5. Application of MVKDE 

The steps described to simulate a MVKDE distribution were applied to the sparse sampled 

yield data in Table 1. The correlation matrix for the three random variables was estimated 

without the subjective minimums and maximums. The MVKDE defined by the Parzen 

kernels for the augmented distributions and the correlation matrix was simulated for 500 

iterations. Four statistical tests were performed on the simulated values for validation of the 

MVKDE procedure. 

The first validation test is a series of Student–t tests, suggested by Vose (2000, p. 54), to 

test whether the simulated values are appropriately correlated. Adjusting the overall 95% 

confidence interval for multiple testing, the critical t-value is 2.40 at the individual 98.3% 

level and the four off-diagonal t-test statistics are all less than 1.5 (Table 2). This result 

indicates that the historical correlation coefficients observed for the three variables in 

MVKDE distribution were not statistically different from their respective correlation 

coefficients in the simulated data. 
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Table 2. Statistical validation tests to determine if the MVKDE procedure appropriately 
simulated the augmented yield distributions 

Student-t Test of the Correlation Coefficients
Confidence Level 98.3048%
Critical Value 2.40

Yield 2 Yield 3
Yield 1 0.51 1.45
Yield 2 0.72

Comparison of Sparse Data Multivariate Distribution to the Simulated
Values for a MVKDE Distribution 
Confidence Level 95.0000%

Test Value Critical Value P-Value
Two Sample Hotelling T2 Test 0.01 7.90 1.000
Box's M Test 6.51 12.59 0.368
Complete Homogeneity Test 10.33 16.92 0.324

 
 
 

The augmented mean vector of the three yield variables was not statistically different from 

the mean vector for the simulated data at the 95% level, according to the Two Sample 

Hotelling T2 Test (Table 2) (Johnson and Wichern, 2002, pp. 210-220). The Box’s M Test 

(Box, 1953) was used to test if the historical covariance matrix for the multivariate 

distribution was statically different from the covariance matrix observed for the simulated 

values. The null hypothesis that the two covariances are equal at the asymptotic 95% level is 

not rejected. The Complete Homogeneity Test simultaneously tested the historical mean 

vector and covariance to their respective statistics in the simulated data. The statistical test 

results fails to reject the hypothesis that the simulated means vector and covariance differ 

from their historical values at the 95% level (Table 2).   

These four statistical tests indicate that the MVKDE procedure simulated the smoothed 

Parzen kernel distributions appropriately, in that it did not change the dependencies of the 

variables, did not change the means of the variables, and did not change the variance of the 

variables. Using the MVKDE procedure with a Parzen kernel distribution, it is easy to 
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simulate a sparse multivariate sample and ensure that historical correlation is maintained as 

long as the correlation matrix is not singular. 

6. Summary, discussion and conclusion 

It is always important to consider the reliability and the temporal and spatial relevance of 

data to be used in risk assessment, and to decide how to accommodate data imperfections. 

These matters are especially important when risk analyses must be based on sparse samples. 

Often the data are too few to provide a good basis for consistent probability distribution 

assessment. Several procedures for smoothing the CDF of a sparse sample are available in the 

literature; however, each procedure has its limitations. The use of kernels to smooth sparse 

samples is demonstrated in the paper. To expand the usefulness of kernel smoothing for 

whole-farm simulation modelling, a multivariate kernel smoothing procedure has also been 

illustrated.  

The result provided for use of the multivariate kernel estimator to smooth out irregularities 

in sparse data show that this method is a useful methodological advance. The MVKDE 

method is more flexible than strictly parametric probability methods, and intuitively better 

than a simple linear interpolation of the empirical distribution.  

The study also leads to a number of ideas for further research. The proposed smoothing 

method is only one of many alternatives for use in farm-level analysis. It would be useful to 

conduct a comprehensive study using Monte Carlo simulation to generate a synthetic, 

uncertain farm-level case in order to compare alternative smoothing methods. In the statistical 

field there is extensive discussion about choice of kernel function and bandwidth. Hence, for 

farm-level simulation models there is a need to explore the effect of choice of kernel function 

and bandwidth on model results. More generally, it seems that more work is needed to 

compare different smoothing techniques in combination with more advanced stochastic 

dependency modelling.  
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