%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Review of Agricultural and Applied Economics
The Successor of the Acta Oeconomica et Informatica

ISSN 1336-9261, XIX (Number 1, 2016): 3-12
doi: 10.15414/raae/2016.19.01.03-12

RVAVAN=

REGULAR ARTICLE

THE INTEGRATION OF PIGMEAT MARKETS IN THE EU.
EVIDENCE FROM A REGULAR MIXED VINE COPULA

Vasilis GRIGORIADIS, Christos EMMANOUILIDES, Panos FOUSEKIS *

Address:
Department of Economics, Aristotle University, University Campus, Thessaloniki, Greece 54124
*Corresponding author: fousekis@econ.auth.gr;panosfousekis@gmail.com

ABSTRACT

The objective of this work is to investigate the degree of integration of national pigmeat markets in the EU. This is
pursued using monthly wholesale prices from seven major markets and the statistical tool of mixed R-vine copulas. The
empirical results suggest that the markets considered do not constitute a great pool in which prices move, boom, and
crash together. The markets of Belgium, Germany, and the Netherlands exhibit a higher degree of integration relative to
the others, whereas the Italian market exhibits a lower degree of integration. Also, there is an indication that, in certain

cases, the benefits of free trade may be unequally distributed between the trading partners.

Keywords: Pigmeat, EU, Price Co-movement, R-Vine Copulas

JEL: Q13,C10

INTRODUCTION

Price linkages in the physical or in the product space have
long attracted the attention of economists and policy
makers. The interest is grounded in the recognition that the
strength and the pattern of price relationships may provide
information on whether a given set of spatial markets are
integrated or segmented. In well integrated spatial markets
prices tend to co-move. This means that a price shock in
one market stimulates responses in the other markets. In
the long-run, shocks are fully transmitted and the price
difference of a homogeneous commaodity between any two
geographically separated markets becomes (at most) equal
to the trade-related transaction costs (weak version of the
Law of One Price - LOP). Under segmentation, however,
profitability opportunities are not fully exploited and the
result is a loss in economic efficiency (Emmanouilides
and Fousekis, 2012; Reboredo, 2011; Serra et al., 2006;
Asche et al., 1999).

Several empirical works on the integration of spatial
primary commodity markets have focused on the national
(geographically separated) markets of the European Union
(EV) (e.g. Emmanouilides et al., 2014; Emmanouilides
and Fousekis, 2012; Serra et al., 2006). This has not been
accidental. The establishment of a large European market
has been the central policy goal of the EU over the last 30
years. Nevertheless, survey-based evidence from super
markets around Europe suggests that considerable and
persistent price differences for virtually identical food
commodities still exist even between neighbouring or
comparable member states (European Commission,
2013a and 2013b).

Against this background, the objective of the present
work is to assess the integration of the EU pigmeat
markets. This is pursued using monthly data from seven
major players in the intra-EU trade of pigmeat over 1995
to 2015 and the recently developed statistical tool of a

mixed R-vine copula (where R stands for Regular).
Copulas are considered to be very suitable for analysing
co-movement between stochastic processes (such as
prices in space) because they allow the joint behaviour of
these processes to be modelled independently of their
marginal behaviour; they dispense with the need to assume
that marginal distributions belong to the same family; they
are capable of capturing not only linear but also non-linear
co-movement; and they provide information both about
the degree and the structure of co-movement (Patton,
2013 and 2012; Nelsen, 2006; Fermanian and Scaillet,
2004).

Recent applications of copulas in the analysis of price
interrelationships are those by Reboredo (2011) who
investigated price co-movement in four regional oil
markets, by Serra and Gill (2012) who assessed price
linkages between biodiesel, diesel, and crude oil prices in
Spain, by Emmanouilides et al. (2014) who examined
price co-movement in principal EU olive oil markets, by
Emmanoulides and Fousekis (2015) and Panagiotou
and Stavrakoudis (2015) who investigated price
transmission along the meat supply chain in the USA.

The overwhelming majority of copula-based
empirical works on co-movement (including those cited
above) have analysed simple bivariate stochastic
processes. This is a limitation because multidimensional
models are far more appropriate than bivariate ones for the
assessment of spatial market integration (e.g. Goodwin
and Ortalo-Magne, 1992). The works of Joe (1996 and
1997), Bedford and Cooke (2001), Aas et al. (2009), and
Diimann et al. (2013) have extended the application of
copulas to multi-dimensional co-movement structures
using mixed R-vines, special cases of which are the C-
vines and the D-vines. DiBmann et al. (2013), Czado et
al. (2012), Heinen and Valdesogo (2012), Schepsmeier
(2010), and Aas et al. (2009) employed copula vines to
assess co-movement of financial time series; Zimmer
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(2015) employed copula vines to investigate housing price
linkages in four US regions, and Chi and Goodwin (2011)
also relied on copula vines to analyse relationships
between corn prices in five North Carolina regions. The
use of a mixed R-vine here is expected to provide new
insights about the ways EU national pigmeat markets are
related to each other and, in turn, about the success of the
long-standing efforts to integrate them into a single large
European market.

The structure of the present work is as follows: the
next section contains the analytical framework, that is,
presentation of two-dimensional copulas and their
extension to high-dimensional ones and to R-vines. This is
followed by the section that presents the data, the
empirical models and the empirical results (identification
of the appropriate R-vine structure for seven major EU
markets, assessment of the strength and the pattern of price
co-movement). The last section offers conclusions.

DATA AND METHODS
ANALYTICAL FRAMEWORK

Two-Dimensional Copulas

The use of copulas to assess dependence among stochastic
processes has its roots in Sklar’s (1959) Theorem
according to which a d-dimensional joint distribution
function can be decomposed into its d univariate marginal
distributions and a joining function known as copula. In
the simplest case with d=2, let (Y,,Y,) be a bivariate
stochastic process with joint distribution function
F(y,,y,) and marginal distribution functions F,(y,) and
F,(y,), respectively. Consistency with uppercase for

Sklar’s Theorem

F(yp yz) = C{Fl(y1)7 Fz(yz)} (1)

where C is the copula function. Provided that marginal
distribution functions are continuous, C, F, and F, are

completely determined by F(y,,y,). The converse of

Sklar’s theorem also holds meaning that for any pair
(F,F,) and for any copula function C, the function F
given in (Eg. 1) defines a valid joint distribution with
marginals F, and F,.

The copula C is a bivariate distribution function with

uniform margins and it can be obtained from (Eq. 1) as Eq.
2.

Cluy,u,) =F (R (). 7 (¥2) )

with F* and u, (i=12) being marginal quantile
functions and uniformly distributed random variables on
[0, 1], respectively. The copula density function is given
by Eg. 3.

ey =0C - TR RW) _
1, U ou,ou, fl(Flfl(ul)) fz(F{l(Uz))

_ Oy -
f.(y1) £, (Y,)

where f is the joint density function associated with F,
and f and f, are the marginal density functions of Y, and
Y, , respectively. From (Eg. 3) it follows that

f(y1'y2) :C(Fl(Y1)1 Fz(yz)) f1(y1) fz(yz) (4)

suggesting that the density function f (Eg. 4) can be

expressed as the product of the copula density function ¢
and the marginal density functions f and f,.

A standard measure of overall co-movement between
two stochastic processes is Kendall’s 7, that reflects the
difference between the probability of concordance and the
probability of discordance for two independent pairs of
observations drawn from the joint distribution of Y; and
Y,. Given a copula function C, it is calculated as Eq. 5.

oC oC
_1_ o 5
r=1 4.'.-..[0,1]2 ou, ou, du,du, ®)

and it ranges from +1 (perfect concordance) to -1 (perfect
discordance) (e.g. Genest and Favre, 2007; Nelsen,
2006).

Co-movement at the tails of the joint distribution is
assessed by the lower and the upper tail coefficients. The
lower tail coefficient is defined as Eq. 6.

C(u,u)

A =lim__Pr(U, <uU,<u)=lim == (6)

and measures the probability that Y, is below a low
quantile, given that Y, is also below that low quantile. The
upper tail coefficient is defined as Eq. 7.

ﬂU = Iimual’ Pr(U1 > U‘UZ > U) = limuﬁl’ w

(7

and measures the probability that Y, is above a high
quantile, given that Y, is also above that high quantile. In

short, the two tail co-movement coefficients provide
information about the likelihood for the two stochastic
processes to crash and to boom together, respectively (e.g.
Reboredo, 2011).

Higher-Dimensional Copulas and R-vines

The application of copula models to multivariate
stochastic process has been, until very recently, hindered
by a “curse of dimensionality” problem. Specifically,
copula models other than the Gaussian or the t-copula do
not readily extend to d>2 dimensions, while a number of
attempts to generalize Archimedean copulas involved the
imposition of unrealistic assumptions (parameter
restrictions) and/or presented serious difficulties when
applied to data (e.g. Hofert, 2011; Savu and Trede,
2010; Joe, 1997).

To tackle that very important problem, Joe (1996 and
1997) and Bedford and Cooke (2001) proposed the
factorization (decomposition) of a multivariate copula
density function into bivariate unconditional and
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conditional copula densities (called pair-copulas). As a
starting point consider a 3-dimensional stochastic process
with density f (y,,Y,,Ys) . A possible decomposition of

f isEg. 8.
Oy Y2, ¥3) = fL(yD) F (Y2 [ Y) F(Yal 1, Y2)- (8)

Using Sklar’s Theorem (Eq. 9),

f(y1Y2) _ Co (R(1), R (Y2)) i (yn) o (Y2)

f — =
(vz 1) fi(y1) fi(y1)
=Cp (R () R (Y2) f2(Y,) 9)
and (Eq. 10)
f
TATED =% — o (F (Y2 1Y) F (33 1 y2)
2 1

Ciz(F (Y1), Fa(Ys)) f3(ya) - (10)

Substituting (Eq. 9) and (Eq. 10) into (Eqg. 8) one
observes that the 3-variate joint density function is just the
product of the three marginal densities f; (i=1,2,3), the

two unconditional pair-copula densities ¢, and c;5, and
the conditional pair-copula  Cyz. The marginal

conditional distribution functions (transformed variables)
F(y;j I Y1), =23 entering in (Eq. 10) can be calculated

as
oC.. (F,(y), F: (Y _
F(yjlw)= (R0, F ;) (Zimmer, 2015; Aas
oF (Y1)
et al., 2009).

Any d-dimensional process may be expressed as the
product of marginal densities, unconditional pair-copula
densities, and conditional pair-copula densities. The
decomposition, however, is not unique. To see it notice

that vy, Y2, ¥3) = fa(Ya) T (Y2 | Ya) T (Wl Yo, ys) is
another perfectly valid factorization instead of that shown
in (8). As a matter of fact, the number of possible
factorizations grows exponentially with d. Because of this,
the details of a particular factorization are represented by
a graph theoretical construction, termed as regular vine
(R-vine). In the following we present a simple example of
a regular vine with a small number of dimensions.
Exhaustive and highly technical treatments can be found
in DiBmann et al. (2013), Aas et al. (2009), and Bedford
and Cooke (2001).

Consider now a 5-dimensional stochastic process,
Y =(Y1,Y2: Y3 Ya, ¥s) - An R-vine for that process is a

sequence of linked/nested trees (Figure 1). In that Figure,
Tree 1 consists of unconditional pair copulas only. These
are c,, Cy, Cy and cg; for the unconditional pairs of

stochastic processes (y;,¥,): (Y2.¥3): (Ys.Y4), and
(ys, ¥s) , respectively. Tree 2 involves bivariate copulas

conditioned on a single stochastic process only. Drawing
on the information available in Tree 1, these are

Ciapr Coap, and Cygg for the conditional pairs of

(V1. ¥31¥2)s (Y2,¥alys), and

stochastic processes

(Y, Ys | y3), respectively. Tree 3 involves bivariate
copulas conditioned on two stochastic processes. Drawing
on information available in Tree 2, these are C; 403 and

Cy 503 for the conditional pairs of stochastic processes

(Y1, YalY2,y3) and (Y4 ¥s1Yz,y3), respectively.
Finally, Tree 4 involves a bivariate copula conditional on
three stochastic processes. Drawing on the information

available in Tree 3, this is Cjgpgs for the conditional

stochastic process (y;,Ys|Y,,Ys,Y,) . The factorization

of the joint density function of the 5-dimensional
stochastic process is

f= fl' fz' fa' fA ' f5‘(C1z 0y Gy 'CZS)'(CLS\Z 'Cz.A\e '02‘5\3)'(%4\23 'C4,5\zs)'(c1‘5\234) (11)

Extensions to processes with arbitrary dimensions can
be achieved along the same lines with the required
conditional marginal distribution functions being
calculated recursively moving down an R-vine tree.

The empirical application of an R-vine requires
(Difmann et al., 2013; Czado and Aas, 2013):

(a) determination of the vine’s structure (i.e. selection of
the unconditional and conditional bivariate copulas);

(b) selection of the most suitable parametric family for
each bivariate copula; and

(c) estimation of the selected bivariate copula families.

To determine the appropriate structure (factorization)
for a given data set DiBmann et al. (2013) proposed a
sequential top-down approach (algorithm). This involves
selecting successively Tree 1, Tree 2, and continue to Tree
d-1. Each tree is selected in such as a way as to be the
maximal spanning one, that is, the tree achieving the
strongest pair-wise dependencies, as measured by the sum
of absolute empirical Kendall’s tau. Technical details and
the rationale behind the sequential approach are available
in DiBmann et al. (2013). Alternative heuristic algorithms
of similar spirit are available in the literature (e.g.
Kurowicka, 2011; Brechmann, 2013). Given the R-
vine’s structure, the most suitable bivariate copula
families (including the independence copula) are chosen
using an appropriate goodness-of-fit criterion. Given the
best copula family for a given pair of stochastic processes
(conditional or unconditional), the copula’s parameters are
estimated by employing an appropriate statistical method.
Finally, the sequential parameter estimates of the
individual pair-copulas are used as starting values for
estimating the R-vine in a single step via Maximum
Likelihood.

The R-vine is a neat theoretical construction. Its
interpretation, however, may present certain difficulties
since it is made up of different types of copulas (i.e.
unconditional, conditional on a single stochastic process,
conditional on two stochastic processes, and so on). A
relevant question, therefore, is whether an R-vine may
generate additional insights about a multivariate process
under study. To facilitate the discussion, let us assume that
the stochastic processes are prices in geographically
separated markets and the objective is assessment of
spatial price co-movement, as it is the case here.
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Figure 1. A Hypothetical R-vine with five stochastic processes

A piece of information which cannot be obtained through
standard bivariate modelling concerns the so called
central markets. A market may be viewed as a central one
when it has direct linkages with at least two other markets.
With reference to tree 1 (Figure 1), markets number 3 and
number 2 are central. The prices in central markets are the
conditioning stochastic processes for the construction of
Tree 2 (this is how trees are linked). Moreover, an R-vine
may provide information about possible clustering of
markets. A cluster may be viewed as set of markets which
are directly connected to the same central market and they
have certain common characteristics such as the strength
and the pattern of co-movement.

Conditioning on a third stochastic process plays an
important role in assessing the degree of pure co-
movement between two other processes. It is well known
that the influence of a third variable may either make co-
movement between two other variables to appear stronger
or it may cloud it; that is why conditional measures of co-
movement are often computed and presented in empirical
economic studies (e.g. Aguirar-Conraria and Soares,
2014). If one finds that after controlling for a third price,
co-movement between two other prices decreases she (he)
may conclude that their interdependence was due to the
third price; if the opposite happens, she (he) may conclude
that the third price was clouding their relationship. It
appears, therefore, that an R-vine is capable of revealing
aspects of co-movement that bivariate modelling is not.
Because price changes in geographically separated
markets for the same commodity typically exhibit a

positive association, one expects co-movement to become
weaker with conditioning (Dimann et al., 2013).
Therefore, higher numbered trees often become redundant
as they consist of pairs of stochastic process the
dependence of which can be best described by the
independence copula.

DATA, EMPIRICAL MODELS, AND EMPIRICAL
RESULTS

The data for the empirical analysis are monthly wholesale
prices (in Euros per 100 kg) for the period 1995:1 to
2015:5. They have been obtained from the European
Commission and they come from seven major pigmeat
producing countries: Belgium (BE), Germany (DE),
Denmark (DK), Spain (ES), France (FR), Italy (IT), and
the Netherlands (NL). These countries account for more
than 75% of the total pigmeat production in EU-28 (and
for more than 85% in EU-15). Table 1 presents the
respective production shares in EU-28 for the year 2013.
Another important pigmeat producer is Poland, with a
share of 7.7%. However, it is not considered here because
monthly data from that country are available only after
2006. There are trade flows between them both in terms of
fresh and frozen pigmeat and in terms of live animals
(weaners, breeders, and slaughter pigs) and processed
pigmeat (bacon, ham, etc.). The existence of trade flows is
a necessary condition for the smooth transmission of price
shocks from one national/spatial market to another. To
assess the degree and the structure of price co-movement
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we follow earlier empirical works on the topic (e.g.
Emmanouilides and Fousekis, 2015; Emmanoulides et
al. 2014; Serra and Gil, 2012; Reboredo, 2012; and
Reboredo, 2011) by applying parametric copula families
to the rates of price change (i.e. to the price shocks)
calculated as d In p, , where p, is the price of pigmeat in

market i= BE,DE,DK,ES,FR,IT, and the NL at time t.

Table 1. Pig Meat Production Shares (2013) in EU-28 "
Country  Share (%) Country Share (%)

BE 52 FR 8.8
DE 25 IT 7.4
DK 7.2 NL 6
ES 15.6

* Eurostat (2014).

The asymptotic properties of the different copula
estimators have been established for i.i.d. observations
(e.g. Patton, 2013 and 2012; Rémillard, 2010). Time
series data, however, may exhibit autocorrelation and/or
time-varying volatility (ARCH) effects. To account for
this potential problem, as in Emmanouilides and
Fousekis (2015), Serra and Gil (2012), and Czado, et al.
(2012), we have fitted appropriate ARMA-GARCH
models to the individual time series of raw rates of price
change. Table 2 presents the p-values from the application
of the Box-Pierce and the ARCH-LM tests to the resulting
standardized innovations (filtered data), at various lag
lengths. Details on the estimated ARMA-GARCH models
are available upon request. The filtered data are free from
autocorrelation and ARCH effects.

Table 2. p-values of the Tests for Autocorrelation and for
ARCH Effects

Filtered Box-Pierce ARCH-LM
Rates No of Lags No of Lags
of
Price 1 6 12 1 6 12
Change
BE 0.78 0.88 0.09 0.67 0.06 0.4
DE 053 0.87 0.22 0.35 0.24 0.62
DK 031 0.87 0.86 0.12 0.36 0.44
ES 066 0.89 0.98 0.76 0.41 0.27
FR 087 095 0.6 0.87 099 0.96
IT 095 0.76 0.88 0.67 0.72 031
NL 091 094 049 0.82 0.27 054

Source: Authors’ estimations

Table 3. Empirical Kendall’s 1 for the Filtered Data

Table 3 presents the pairwise empirical Kendall’s r,

denoted as 7 ; as well as the sum >’ |z°i,j| as a measure
INE

of the degree of interdependence between a given market

i and all the remaining markets taken together

(Brechmann and Schepsmeier, 2013; Czado et al.,

2012). The empirical value of Kendall’s tau is calculated

as (P, -Q,) n , Where n is the number of observations
n n 2

and P, (Qn) is the number of concordant (discordant)
pairs. There are three markets (DE, NL, and BE) where the
filtered rates of prices changes which, exhibit high degrees
of overall co-movement with each other and considerable
degrees of overall co-movement with the majority of the
remaining. Germany is the largest producer of pigmeat
and its people consume more pigmeat than those in other
member states. In addition, it is the one of the world’s
leading exporters and a significant importer. As such is has
a big influence in pigmeat markets throughout Europe.
Belgium and the Netherlands despite their small size, are
leading pigmeat exporters directing their production
surplus primarily within the EU. The high values of
Kendall’s 7 between NL, BE, and DE implies that
producers in the Netherlands and in Belgium track price
developments in each other as well as in Germany which
is, by far, the most important outlet of their exports. The
filtered rates of price change in France show their highest
degrees of co-movement with those of its close neighbours
(DE,BE, ES, and NL); the filtered rates of price change in
Spain exhibit their highest degrees of co-movement with
those in FR, DE, BE, and NL. Denmark shares common
characteristics with BE and NL (i.e., it is a small country
with a high degree of self-sufficiency and a leading
exporter in intra EU pigmeat trade for fresh and frozen
meat and for live animals). It is, therefore, somehow
surprising that the pairwise empirical Kendall’s t for
Demark are relatively small. The same observation (but to
a larger degree) applies to Italy as well since Italy is the
largest net importer of pigmeat in the EU and, thus, a key
market for many exporting member states.

On the basis of the sum of the absolute values of the
pairwise Kendall’s 7, the German market shows the
highest degree of interdependence with all the remaining
(3.03) followed closely by the Netherlands, and Belgium.
France, Spain and Denmark (in this order) show similar
degrees of interdependence, while Italy shows the lowest
by far.

Country BE DE DK ES FR IT NL ,-;i fi
BE 1 0.72 0.37 0.41 0.46 0.25 0.71 2.91
DE 1 0.39 0.43 0.46 0.25 0.79 3.03
DK 1 0.36 0.38 0.25 0.39 2.12
ES 1 0.46 0.23 0.41 2.29
FR 1 0.33 0.44 2.52
IT 1 0.26 1.57
NL 1 2.99

Source: Authors’ estimations
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The flexibility of mixed R-vines lies in the fact that
they allow each pair-copula family in the factorization of
the multivariate copula density to be chosen independently
from the rest. Here to allow for a variety of possible co-
movement patterns, we have considered for each pair-
copula a number of alternative copula families and we
have selected among them the one that best fits the data.
The 10 families are the Gaussian, the Student-t, the
Clayton, the Gumbel, the Frank, the Joe, the Clayton-
Gumbel, the Joe-Gumbel, the Joe-Clayton, and the Frank-
Joe, which are commonly used in Economics and Finance.

Given that a copula is a distribution function with
uniform margins on [0,1], for the empirical application we
have converted each of the filtered rates of price change
into the so called copula data (i.e. data on [0,1]) using the
empirical probability integral transformation and a scaling
factor equal to n/n+1 (e.g. see Emmanouilides and
Fousekis, 2015; Serra and Gil, 2012; Czado et al,,
2012). To establish that each copula data series is indeed
drawn from the uniform distribution on [0,1] we employed
the non-parametric Kolmogorov-Smirnov (KS) test. Table
4 presents the results. In all cases, the null hypothesis that
the empirical distribution is consistent with the uniform
distribution on [0,1] cannot be rejected at any reasonable
level of significance. Thus, we conclude that the copula
data can be safely used to estimate the components of the
mixed R-vine. For the selection of the most suitable pair-
copulas we have used the AIC information criterion,
shown to perform very well in this context (e.g. DiBmann
et al., 2013; Brechmann, 2010; Manner, 2007).

Figure 2 presents the empirically determined R-vine
structure for our data, its individual components (i.e.
unconditional and conditional pair-copulas), and the
empirical value of Kendall’s 7 for each pair of the
stochastic processes modeled. The selection of the R-vine
structure and its components along with all estimations

Tree 1

Tree 2

DK, DE|NL

Independent

Figure 2. The R-vine Structure for the Pigmeat Prices

and testing have been carried out using package
VineCopula in R by Schepsmeier, U. et al. (2015). Note
that although for seven stochastic processes the
dependence structure may be represented with an R-vine
consisting of a maximum of six trees, in our application
the actual number of trees turned out to be just two. The
reason is that after conditioning with more than one
stochastic processes, the resulting transformed variables
have become independent from each other, rendering the
trees lower in the vine redundant. Independence has been
. L 9n(n-1)
tested using the statistic T = [——~x
2(2n+5)

A

the number of observations and 7 is the empirical value
of Kendall’s tau. The statistic, under the null of
independence, follows the N(0,1) distribution (e.g.
Brechmann and Schepsmeier, 2013).

7|, where n is

Table 4. Results from the Application of the KS Test on
the Copula Data
Empirical Value

Country of the KS Statistic
BE 0.067 (0.578)

DE 0.054 (0.84)

DK 0.063 (0.656)

ES 0.03 (0.999)

FR 0.072 (0.487)

IT 0.043 (0.963)

NL 0.039 (0.989)

Clayton-
Gumbel (0.46)

BE,FR|DE
Normal (0.17)

* Calculated as sup, | F,(x) — F(x) | where x is the data set, Fn is

the empirical distribution and F is the test (null) distribution, here
the Uniform [0,1]; p-values are shown in parentheses.
Source: Authors’ estimations

DE,ES|FR

Clayton (0.22)

DE,IT|FR

Gumbel (0.09)
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Tree 1 is the maximal spanning tree for the
unconditional univariate stochastic processes modelled.
Therefore, the values of the bivariate measures of
dependence (Kendall’s 7) appearing in Tree 1 are exactly
the same as their counterparts reported in Table 3. The tree
indicates that there are three potential central markets,
namely, Germany, France, and the Netherlands; DE is
connected directly to BE, FR, and the NL; FR is connected
directly to DE, ES, and IT, whereas NL is connected
directly to DE and DK. It appears as if the pair of markets
(France, Germany) is the channel through which price
shocks in Belgium, Denmark, and in the Netherlands are
associated with those in Italy and in Spain.

The best fitting copula family for the pairs (DE,NL),
and (DE,BE) is the two-parameter Student-t. This
particular copula is consistent with symmetric tail co-
movement suggesting that extreme positive and extreme
negative price shocks are likely to be transmitted from one
spatial market to the other with exactly the same intensity.
The best fitting copula family for the pair (DE,FR) is two-
parameter Gumbel- Clayton consistent with potentially
asymmetric co-movement at the two extremes. The best
fitting copula family for the pairs (FR,IT) and (ES,FR) is
the one-parameter Gumbel which is consistent with upper
tail co-movement only. Finally, the best-fitting copula
family for the pair (NL, DK) is the one-parameter
Gaussian which is consistent with zero tail co-movement
at the extremes.

Tree 2 is the maximal spanning tree for the conditional
stochastic processes. One observes that the degrees of
overall co-movement are far lower compared to those for
the unconditional ones, reported in Table 3. This is in line
with the relevant discussion in the Analytical Framework.
For the pair (DE|NL, DK|NL), in particular, Kendall’s ¢
dropped from 0.39 to 0 suggesting that co-movement of
prices between DK and DE is completely explained by
price changes in Netherlands. Co-movement for the pair
(BE|DE, NL|DE) is best described by the Gaussian copula,
for the pair (DE|FR, ES|FR) by the Clayton copula which
consistent with lower tail co-movement only, for the pair
(BE|DE,FR|DE) by the Gausssian, and for the pair
(DE|FR,IT|FR) is best described by the Gumbel copula.

Table 5 presents parameter estimates along with their
respective standard errors for the unconditional and the
conditional pair-copulas making up the R-vine structure.
In all cases the parameter estimates are statistically
significant at 5 percent level (or less). Table 6 presents the
point estimates and standard errors of the tail co-
movement coefficients. Their standard errors have been
obtained using the block bootstrap approach of Politis and
Romano (1994). We note that exactly the same approach
has been employed in the earlier works of
Emmanouilides and Fousekis (2015), and Patton (2012
and 2013). The block length for each pair has been
determined optimally as suggested by Patton, Politis and
White (2009). All are statistically significant at the 5
percent level (or less). The magnitude of the tail
coefficients is in line with that of the corresponding
overall measures of co-movement. For example, the tail
coefficients receive their highest values for the pairs
(DE,NL), (DE,BE), and (ES,FR) and the lowest for the
pair (DE|FR,IT|FR). Also, the difference between the two

tail coefficients for the pair (DE,FR) is statistically
insignificant suggesting that extreme positive and extreme
negative shocks between the German and the French
markets are likely to be transmitted symmetrically (that is,
with the same intensity).

The empirical finding that the pairs (DE, NL) and
(DE, BE) exhibit by far the highest degrees of overall co-
movement (7 >0.7) and that the co-movement structure
between price shocks in both the Netherlands and in
Belgium on the one hand and in the central market
(Germany) on the other is best captured by the symmetric
Student-t copula, provides a strong indication that BE, DE,
and NL is a potential cluster of markets. As already
mentioned, NL and BE export primarily in DE and they
follow closely the price developments in it. Also, NL, BE,
and DE share borders with each other and all lie in the
heart of the main pigmeat production basin of the EU
which extends from North-West France (Bretagne) to
Denmark. The result for DE, the NL, and BE, makes
perfect sense and appears to offer support for the method
employed here.

Table 5 One Step Maximum Likelihood Estimation
Results for the R-vine

Pairs of Stochastic Copula Parameters”
Processes Model
DK,NL Normal ~

1 =0.586 (0.037)
DE,NL Student-t A

1 =0.943 (0.007)

> =4.26 (1.41)
BE,DE Student-t A

1 =0.899 (0.013)

> =3.19 (0.856)
ES,FR Gumbel A

1 =1.78 (0.089)
DE,FR Clayton- A

Gumbel 1 =0.499 (0.143)

> =1.422 (0.098)
FR,IT Gumbel ~

) =1.473 (0.073)
NL|DE, BE|DE Normal A

1 =0.339 (0.056)
BE|DE, FR|DE Normal A

1 =0.201 (0.059)
DE|FR, ES|FR Clayton A

1 =0.512 (0.112)
DE|FR, IT|FR Gumblel ~

) =1.08 (0.046)

Source: Authors’ estimations

Extreme positive and extreme negative shocks are
transmitted symmetrically between FR and DE as well. In
this respect, the structure of price co-movement for the
pair (DE,FR) is similar to those for the pairs (DE,NL) and
(DE,BE). The degree of overall price co-movement,
however, between FR and the other three markets is
relatively low (7 < 0.5). Therefore, the empirical evidence
that France is a part of the same cluster with DE, BE, and
the NL is somehow weaker. Denmark is even more
unlikely to belong to the same cluster with DE, BE, and
the NL both because of the relatively low degree of overall
co-movement (7 < 0.4) as well as because of the different
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co-movement structure (Gaussian instead of Student-t
copula). This may be an indication that it takes more than
1 month for price shocks to transmit it between DK and
the rest of the countries. Finally, Tree 1 points to another
possibility, that is, a market cluster consisting of France,
Italy and Spain especially because the price co-movement
structures between France (the central market) on the one
hand and Italy and Spain on the other are identical (best
captured by the Gumbel copula). It should be noted,
however, that asymmetric price co-movement implies a
low degree of market integration (e.g. Emmanouilides et
al. 2014; Reboredo, 2011).

Table 6. Tail Dependence Coefficients

Countries Copula Tail Dependence
DE,NL Student-t A, =4, =0.715 (0.058)
BE,DE Student-t A, =4, =0.661 (0.052)
ES,FR Gumbel A, =0.529 (0.029)
Clayton- A, =0.43(0.099)
DE,FR
' Gumbel 2, =0.36 (0.066)
FR,IT Gumbel 4, =0.4(0.034)
DE|FR, _
ESFR Clayton A, =0.256 (0.086)
DE|FR,
ITlgR Gumbel J, =0.099 (0.046)

Source: Authors’ estimations

DISCUSSION AND CONCLUSIONS

The objective of this work has been to assess the
integration of the EU pigmeat markets. This has been
pursued using monthly data from seven major players in
the intra-EU pigmeat trade and the recently developed tool
of a mixed R-vine copula. The empirical copula-based
assessment of market integration utilizes information on
both the strength as well as on structure of price co-
movement. In particular, a high degree of overall price co-
movement together with a symmetric and a strictly
positive co-movement at the extremes of the joint
distribution are considered to be indicators of well
integrated markets.

The analysis here revealed that substantial differences
exist with respect to the above indicators among the
unconditional pairs of price shocks examined. The degrees
of overall co-movement vary widely while the best fitting
copula families range from the Gaussian (consistent with
zero co-movement at the extremes) to Gumbel (consistent
with co-movement at the upper extreme only). Similar too
are the observations for the conditional pairs of price
shocks.

The empirical results, therefore, suggest that the
markets of the seven major players in the intra-EU
pigmeat trade do not constitute a great pool in which prices
move, boom, and crash together. Germany, Belgium, the
Netherlands, and to a lesser extent France is a potential
cluster where the strength and the pattern of price co-
movement between the central market (Germany) and the
rest are generally the ones expected for well integrated
markets. France, Italy, and Spain constitute another
potential cluster with markets, however, they are not well
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integrated with each other. Denmark does not fit well in
any of the two potential market clusters.

Physical proximity and intensity of trade flows only
partly explain the empirical finding of market
segmentation (regionalization). Belgium, Germany, and
the Netherlands share borders and have intense trade
relations. The same is true for France and Spain. In the last
case, however, extreme negative shocks are not
transmitted from one market to the other.

Asymmetric price co-movement in international trade
of primary commodities is typically attributed to
possession of local market power, asymmetric transaction
costs, consumer preferences for specific attributes of
domestically produced goods (real or perceived quality
differentiation), and differences in information available
between hub and spoke markets (Ghoshray, 2009; Meyer
and von Cramon Taubadel, 2004).

With respect to the possession of market power, pig
slaughtering in the EU has been concentrated in the hands
of few abattoirs; just 5 of them conduct 65% of pig
slaughtering in the EU-28 (Brossard and Montage, 2012).
The activities of the big abattoirs, most of the time are not
restricted to a single member state. For example, VION
(with a share of 19.3%) has its activities in both the
Netherlands and Germany while Tonnies Fleisch (with a
share of 13%) has its activities in both Denmark and
Germany. The operation of the big slaughtering firms in
the main production basin of the EU, however, does not
appear to have been an impediment to symmetric price co-
movement in the German, Dutch, Belgian, and French
markets.

Asymmetric transaction costs are thought to arise due
to the use of non tradable inputs (i.e. inputs, whose prices
are determined by national factors rather than by
international competition) and to the existence of
transportation infrastructure or handling facilities tailored
to unilateral trade (e.g. tailored to importing rather than to
exporting) (Goodwin and Piggott, 2001). Differences in
labour relations (e.g. payments, social security
contributions, working schedules) are still prevailing even
among the oldest member states of the EU-28. The same
holds for taxes applied to services or to production
processes.

With regard to the direction of trade, it is primarily
unilateral for the panel of markets examined. For
example, France is by far a net importer in its relationship
with Spain, Italy is a net importer in its relationship with
the other six countries, while Belgium and Netherlands are
net exporters in their relationship with Germany.
Nevertheless, asymmetric co-movement is relevant only
for the pairs of markets (France, Spain) and (France, Italy).

National preferences may play some role here;
generally speaking, North and Central Europe (including
France) opts for heavy carcasses while Southern Europe
(including Spain) selects lighter animals. The preference
of consumers in France (Spain) for heavier (lighter)
carcasses may prevent extreme negative price shocks in
one of the two markets to be transmitted to the other
market. Finally, asymmetric information between hub and
spoke markets does not appear to be particularly relevant
here since all countries considered are major players in the
EU pork market.
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Asymmetric price co-movement has implications on
the distribution of benefits between trading partners. For
example, consumers in France are likely to be hurt by
price booms but they are not likely to benefit from price
crashes in the exporting country (Spain). Similarly,
consumers in ltaly are likely to feel extreme positive
shocks in France but they are not likely to gain from
extreme negative shocks in the same country.

To the best of our knowledge there have been only
two earlier works that relied on copulas (bivariate or vine)
to investigate spatial price linkages for agricultural
commodities. Chi and Goodwin (2011) found that price
co-movement in North Carolina regions was best
described by Gaussian and/or Frank copulas (both
consistent with zero co-movement at the extremes).
Emmanouilides et al. (2014) in their study on price
relationships in the principal EU olive markets reported
low degrees of overall co-movement and asymmetric co-
movement at the extremes for the two biggest markets
(Spain and Italy).

The evidence of segmentation obtained here probably
implies that removing all trade barriers may be only a
necessary but not a sufficient condition for integrating the
national EU agricultural markets. Of course, this requires
additional empirical substantiation. Further work on the
topic is certainly warranted.
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