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Abstract

We propose a novel framework for the economic assessment of climate-

change policy. Our main point of departure from existing work is the adoption

of a “satisficing”, as opposed to optimizing, modeling approach. Along these

lines, we place primary emphasis on the extent to which different policies meet

a set of goals at a specific future date instead of their performance vis-a-vis

some intertemporal objective function. Consistent to the nature of climate-

change policy making, our model takes explicit account of model uncertainty.

To this end, the value function we propose is an analogue of the well-known

success-probability criterion adapted to settings characterized by model uncer-

tainty. We apply this decision criterion to probability distributions constructed

by Drouet et al. (2015) linking carbon budgets to future consumption. The

main result that emerges is the superiority of “medium” carbon budgets in

line with a 3◦C target (i.e., 2000-3000 GtCO2) in preventing large future con-

sumption losses with high probability. Insights from computational geometry

facilitate computations considerably, and allow for the efficient application of

the model in high-dimensional settings.
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1 Introduction

Policy makers want direct answers to simple questions, yet such demands are fre-

quently at odds with the complexity of economic analysis and forecasting. The

economic assessment of climate change policy, an enterprise vexed by multiple layers

of uncertainty, provides a salient case in point.

The economics of climate change are characterized by two fundamental chal-

lenges. First, there is deep uncertainty regarding the dynamic response of the climate

to emissions, the damages higher temperatures will cause to economic activity, and

the costs of climate-change mitigation and adaptation. The uncertainty surrounding

these crucial modeling inputs falls under the category of model uncertainty (Mari-

nacci [18]), meaning that it cannot be captured by unique Bayesian priors. Second,

there is strong disagreement regarding the underlying ethical objective that policies

should strive to meet. These are manifested in vigorous debates regarding the func-

tional form of the objective function, its coefficients of intertemporal substitution and

risk aversion, and the magnitude of future discount rates (for a particularly vehement

exchange between two eminent economists see Roemer [23, 24] and Dasgupta [9, 10]).

Preferences over such parameter values tend to reflect different fundamental ethical

stances. As illustrated by the Roemer-Dasgupta conflict, adjudicating between them

is a matter of subjective judgment and/or political debate that cannot be resolved

via empirical analysis.

Despite these difficulties, the current paper rigorously engages with policy mak-

ers’ concerns for clarity and simplicity. It does so by posing the following question,

versions of which recur in the global negotiations regarding climate change: Given

the deep uncertainty surrounding climate-change estimates, which policy ensures that

adverse future impacts are avoided with highest confidence? To address this ques-

tion, we adopt a so-called satisficing, as opposed to optimizing, modeling framework.

First introduced by Herbert Simon in the nineteen-fifties [25, 26], satisficing models

assume that people reason in terms of meeting a goal (or, alternatively, respecting a

constraint), not of optimizing some objective. Over the years they have been shown

to hold significant descriptive power [6] as well as normative appeal [7, 4, 17]. The

3



specific decision-making criterion we propose can be viewed as an analogue of the

well-known success-probability criterion [7, 4] adapted to settings characterized by

model uncertainty. The uncertainty sets that form the backbone of our analysis are

the convex hulls of already existing probability distributions, a choice that is suit-

able for our practical purposes and often discussed in the theoretical literature (e.g.,

Ahn [1], Olszweski [22], Danan et al. [8]). We exploit results from computational ge-

ometry [5, 15] to propose an efficient method of exactly computing the value function

of this decision criterion. Under certain linearity assumptions on the constraint set,

our geometric technique can accommodate high-dimensional problem domains and

multiple goals and indicators.

In the paper’s numerical section we apply our theoretical model to data by Drouet

et al. [14]. Combining comprehensive data from the most recent IPCC AR5 reports

with a novel statistical framework, these authors derived a range of plausible proba-

bilistic estimates connecting carbon budgets to climate-change impacts given latest

scientific knowledge. These differing estimates correspond to different, but plausible,

assumptions regarding mitigation costs, climate dynamics, and climate damages. As

such, they reflect the multiplicity of expert opinion on these issues, embodying the

model uncertainty alluded to earlier. The main result which emerges from our anal-

ysis is the superior performance of middle-of-the-road carbon budgets (ranging from

2000 to 3000 GtCO2) in containing future consumption losses to non-catastrophic

levels with high probability.

Related work in environmental economics has applied satisficing concepts to dy-

namic models of sustainable resource management. De Lara and Martinet [11] pro-

posed a stochastic, dynamic-satisficing (referred to also as “stochastic viability”)

framework for resource management and computed optimal control rules under an

extensive set of monotonicity assumptions on dynamics and constraints. Beyond its

adoption of a satisficing as opposed to optimizing framework, a distinctive feature

of their model is its focus on multiple criteria of economic and environmental per-

formance. Martinet [19] and Doyen and Martinet [12] made an explicit connection

between stochastic-viability models and sustainability concepts such as the maximin

criterion. Doyen et al. [13] and Martinet et al. [20] applied similar ideas to a setting
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of sustainable fishery management. In the stochastic component of this work, em-

phasis was placed on calculating the probability of different policies respecting the

various sustainability constraints. Where applicable, this was done via Monte Carlo

simulation.

Our work differs from the above papers in substantive ways. First, our model

accounts for model uncertainty by considering multiple probability distributions that

link policy choices to future economic and environmental outcomes. Second, it does

not rely on simulation as a tool for calculating success probabilities, as it exploits the

problem’s structure to provide exact numbers for these probabilities. Along related

lines, the geometric techniques we employ allow us to efficiently study the implications

of an (uncountably) infinite set of plausible probability distributions linking current

policies to future impacts. Another important difference is our work’s primary focus

on one-shot future goals (e.g., sustainability guarantees for the year 2100) as opposed

to dynamic constraints in optimal-control settings.

The paper is organized as follows. Section 2 introduces the model and formally

defines the decision making criterion we adopt. It also discusses the suitability of

convex hulls to the economic assessment of climate change and addresses important

issues having to do with computation. Section 3 applies the model to climate-change

data by Drouet et al [14]. Section 4 concludes and an Appendix collects all Figures

and supplementary analyses.

2 Theoretical Model

The model’s decision variable is the carbon budget, which we define as cumulative

CO2 emissions up to and including year 2100, indexed by b. Carbon budgets enjoy

favor within the climate-modeling community for their robust statistical relation to

global warming [21] and clear translation into policy [16].

There are m = 1, 2, ...,M different models linking carbon budgets to future con-

sumption, and we denote this set of models byM. Conditional on carbon budget b,

model m implies a probability distribution πm
t (·|b) on relative consumption losses in

year t compared to a world in which there are no climate damages. Collecting these
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distributions across models we define the set1

Πb ≡ {πm(·|b) : m ∈M}, (1)

summarizing the uncertainty of future consumption losses conditional on carbon bud-

get b, as captured by all available models.

Convex hulls. In the analysis we pursue, we go beyond set Πb by considering not

only the distributions that make it up, but also the set of all their convex combina-

tions. That is, for each carbon budget b we introduce and focus on the convex hull

of Πb, which we denote by CHb. Formally,

CHb ≡

{
M∑

m=1

λmπ
m(·|b) : λ ≥ 0,

M∑
m=1

λm = 1

}
. (2)

We assume that the set CHb encapsulates the entire universe of uncertain beliefs

regarding the effect of carbon budget b on future consumption losses. Is this a

sensible choice? An oblique way of addressing this question is to imagine examples

in which the consideration of convex combinations is problematic. Such examples

tend to involve cases in which there is some prior knowledge restricting the range

of the “true” distribution. For instance, suppose we wish to make a decision on the

basis of our shower’s temperature. There are two experts, one of which claims that

the water is freezing and the other that it is boiling hot. Suppose, further, that we

know that one of the two experts must be correct (this may be because our water

mixer is broken and unable to modulate between the two extremes). Then it is clear

that if we consider the set of convex combinations of the two experts’ beliefs, we will

be taking into account a whole set of estimates implying that the water is tepid, in

clear contrast to the binary nature of the true temperature. In such cases the use of

convex hulls of probability distributions is ill-advised and should be avoided.

Do the socio-economic effects of climate change policy fall into the above cate-

gory? We do not see how they could. Probabilistic projections of consumption losses

are such that no expert (or model, or set of assumptions) is expected to be exactly

“right”. Like most questions in social science, the economic impact of carbon budgets

1Since the analysis will concentrate on year 2100, in what follows we omit the subscript t.
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on future consumption patterns cannot be neatly summarized with unique probabil-

ity distributions, even if the latter are updated over time with Bayesian methods.

Instead, it seems reasonable to assume that the truth lies in some middle-of-the-road

estimate that splits the difference between the various existing probabilistic models.

If we accept this proposition, then it makes sense to consider the convex hull of all

probability distributions as defining a probabilistic “realm of the possible” that can

be used to guide decision-making.2

A satisficing framework. A recurring feature of climate-change negotiations is

policy makers’ reluctance to engage with traditional economic analysis. The in-

tertemporal optimization models used by economists are deemed esoteric and overly

dependent on assumptions that laymen cannot fully grasp. In addition, the false

sense of determinism that a single optimal solution provides may be a source of

well-justified suspicion. Still, as alluded to in the Introduction, policy makers seek

simplicity. In the context of our paper’s focus on carbon budgets as instruments for

climate change policy, we translate this need into the following question:

Q1: If carbon budget b is chosen, is the probability that future consump-

tion losses are no greater than L% at least p?

In climate negotiations, policy makers tend to gravitate towards this kind of goal-

oriented mindset when weighing the relative merits of different policies. Indeed, the

much vaunted 2◦C target is an example of a non-optimized goal policy makers seek

to meet. It satisfies some requirements on the prevention of major natural disasters,

but certainly it is not the result of any conscious optimization effort.

For any given distribution of future consumption losses, we can definitely answer

the above question with a simple yes or no. Such clarity is impossible in an environ-

ment of model uncertainty where multiple distributions of future consumption losses

conditional on b need to be taken into account. This means that the preceding ques-

tion must be modified to reflect probabilistic ambiguity. We propose the following

2Note that such polyhedral uncertainty sets are often encountered in the decision-theoretic liter-

ature (e.g., Olszewski [22], Danan et al. [8]) and its applications to environmental policy (Athanas-

soglou and Bosetti [3], Danan et al. [8]).
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adaptation:

Q2: If carbon budget b is chosen, what proportion of distributions in CHb

keep future consumption losses to at most L% with probability at least p?

The parameters L and p are real numbers satisfying L ∈ [0, 100] and p ∈ [0, 1].

Let’s now add some formalism to make the above a little more precise. We focus

on future consumption losses with respect to a world without any climate change

damages. This is clearly a continuous random variable with support [0, 1]. For

tractability we discretize consumption losses in intervals of length 1/I where I is

a natural number. Let ∆I−1 denote the (I − 1)-dimensional simplex, i.e. ∆I−1 =

{π ∈ <I : π ≥ 0, e′π = 1}.3 Given a distribution π ∈ ∆I−1, let π(i) denote the

probability of a consumption loss of i%. Then, the set of distributions satisfying the

sustainability requirement outlined above is given by the following expression:

Π(L, p) =

{
π ∈ <I : π ≥ 0,

I∑
i=1

π(i) = 1,
∑
i≤L

π(i) ≥ p

}
. (3)

The intersection of CHb with Π(L, p), denoted by CHb(L, p) includes all distributions

of CHb satisfying the constraint of set (3). Formally, it is given by:

CHb(L, p) ≡

{
π ∈ <I : π ∈ CHb,

∑
i≤L

π(i) ≥ p

}
. (4)

With the above definitions and Eqs. (2) and (4) in place, we assume that the perfor-

mance of a carbon budget b is measured by the following ratio:

V p
L (b) ≡

∫
<I

1{π ∈ CHb(L, p)} dπ∫
<I

1{π ∈ CHb} dπ
≡ V ol(CHb(L, p))

V ol(CHb)
, (5)

where V ol denotes volume in I-dimensional space.

Thus, given a carbon budget b, the quantity V p
L (b) calculates the proportion of

distributions belonging to CHb that ensure consumption losses of no more than L%

with probability at least p. The greater this quantity is the better, for any choice of

L and p.

3e is an I-dimensional vector of all 1’s.
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The decision-making criterion of Eq. (5) is a particular kind of satisficing criterion

adapted to a setting of model uncertainty. The goal that decision-makers want to

meet (or, alternative, the constraint they want to satisfy) is that of ensuring that

consumption losses do not exceed a threshold L. Translated to an environment with

multiple probability distributions, this requirement is recast as a lower bound on

the proportion of such “virtuous” probability distributions. As such, it is similar to

satisficing measures that focus on so-called success probabilities [7, 4, 17]. In addition,

this criterion can be viewed as an approximate special case of the one proposed and

axiomatized by Ahn [1].

Computation. Granting that criterion V p
L provides a sound basis for comparing

alternative carbon budgets, is it computationally tractable? In engaging with this

question, it is immediately clear that the high-dimensional integrals in Eq. (5) pose

a formidable challenge. The usual way of proceeding is via approximations based on

Monte Carlo simulation. This approach however can be both computationally costly

as well as inaccurate, especially when working in high-dimensional settings such as

ours.4

We thus take a different approach that draws on results from computational

geometry (Bueler et al. [5]). This enables us to efficiently calculate the exact value

of V p
L (b), without resorting to any approximations whatsoever. The key trick is to

exploit the uncertainty sets’ CHb and CHb(L, p) polyhedral structure and reduce

the computation of Eq. (5) to a smaller problem, which in turn can be tackled by

standard volume-computation algorithms. Essential to this result is the linearity of

the constraint in Eq. (3).

To this end, suppose that I ≥ M , i.e. that the dimension of the consumption

space is greater than the number of models. This is an innocuous assumption since

consumption losses are a continuous variable, typically discretized in intervals of

(arbitrarily) small length (e.g., intervals of 1%), and the number of climate models is

generally no more than 10 or 20.5 Define the I×M matrix (the πi(·|b)’s are implicitly

4Any meaningful discretization of consumption losses -a continuous variable- will be high-

dimensional.
5If for some reason we wanted to impose M > I (so that our problem is effectively already
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assumed to be column vectors)

Πb ≡
[
π1(·|b), π2(·|b), ..., πM(·|b)

]
collecting all the distributions in set Pb. We assume the matrix Πb has full column

rank, i.e., that the elements of Πb are linearly independent (if this is not the case,

we drop one of the linearly dependent distributions at random and continue). Let us

define now the linear transformation Tb : <M 7→ <I , where

Tb(x) = Πb · x =
M∑

m=1

πm(·|b)xm.

Now, consider the sets

Λ =

{
λ ∈ <M : λ ≥ 0,

M∑
m=1

λm = 1

}
,

Λb(L, p) =

{
λ ∈ <M : λ ∈ Λ,

M∑
m=1

λm

(∑
i≤L

πm(i|b)

)
≥ p

}
.

Clearly, CHb and CHb(L, p) are equal to the images under Tb of Λ and Λb(L, p),

respectively.6 Since matrix Πb is assumed to have full column rank, elementary

linear algebra implies:

V ol(CHb) =
√

det[Π′b ·Πb] V ol(Λ) (6)

V ol(CHb(L, p))) =
√

det[Π′b ·Πb] V ol(Λb(L, p)). (7)

As a result, Eqs. (6)-(7) yield

V p
L (b) =

V ol(Λb(L, p))

V ol(Λ)
. (8)

This is very good news because it means that the problem’s dimensionality has

been reduced from I, typically a large number, to M , the number of different models.

Since Λ = ∆M−1, where ∆M−1 denotes the (M − 1)-dimensional simplex, we have

V ol(Λ) =
√
M

(M−1)! . Furthermore, we can use the equality constraints in Λ and Λb(L, p)

to eliminate a variable and reduce their dimension to M − 1. After this elimination,

low-dimensional), we would proceed directly without reducing Eq. (5) to Eq. (8).

6Note how
∑

i≤L

(∑M
m=1 λmπ

m(i|b)
)

=
∑M

m=1 λm

(∑
i≤L π

m(i|b)
)

.
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the denominator of Eq. (8) becomes 1
(M−1)! . Conversely, we can compute the value of

the numerator using insights from computational geometry and volume computation

(see Bueler et al. [5]). In this paper’s numerical exercise, we use an efficient Matlab

implementation of state-of-the-art volume computation algorithms due to Herceg et

al. [15].

Extensions. The power and efficiency of the volume-computation algorithms we

employ mean that the decision-making criterion of Eq. (5) can be extended in a

number of meaningful directions. In particular, the following enhancements can be

made to the basic model of Section 2:

(i) multiple linear (in π) constraints. For instance, we could add to set CHb(L, p)

a constraint imposing that the expected value of future consumption losses not

exceed some limit. Analogously, we could include similar bounds on higher

moments of future consumption losses.7 In addition, if we had data on the dis-

tribution of consumption across and within countries, we could have used them

to impose “equity” requirements of various types. As long as the additional

constraints are linear in π, the underlying structure of the problem does not

change. We can perform a similar reduction of the problem’s dimensionality

as in Eq. (8) and subsequently use the same algorithm as before to calculate

volumes.

(ii) multiple indicators. For example, staying within the climate-change setting,

we could consider not only probability distributions on future consumption

but also on pure temperature increase. Setting bounds on the latter could

be considered a sort of “ecological” constraint, similar in spirit to the ones

considered in the stochastic viability literature (e.g. [11, 19, 20]). Such an

operation would increase the problem’s dimensionality considerably, but it can

be addressed, so long as the total number of distributions across indicators is

not excessive.

7Note that moment constraints can be made linear by raising both sides of the inequality to the

corresponding inverse power.
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3 Application

In this section we apply the decision-theoretic criterion of Eq. (5) to climate-change

data from Drouet et al. [14]. Using the most recent modeling output from the three

IPCC AR5 working groups, Drouet et al. developed a novel statistical framework to

derive a set of probability distributions linking carbon budgets to future damages,

consumption, and welfare. These probability distributions are built on the basis

of different (but plausible) modeling assumptions regarding (i) mitigation costs, (ii)

temperature dynamics, and (iii) climate damages. For the purposes of our analysis we

disregard uncertainty in temperature dynamics and retain six of Drouet et al.’s [14]

modeling assumptions corresponding to the different combinations of mitigation costs

(top-down and bottom-up) and climate damages (quadratic, exponential, and sextic

damage function).8 We do so because we find that the latter two factors account for

a much greater proportion of the variation in 2100 consumption levels.9

In the present paper we draw from the part of Drouet et al.’s analysis that

connects carbon budgets to consumption losses in year 2100. To be clear, we are

referring to per capita consumption as defined in the second page of the Methods

section of Drouet et al. [14]. This formulation is standard in the climate-change

economics literature. We focus on year 2100 because of its symbolic and substantive

status as a future date in which the effects of climate change will begin to be seriously

felt. Furthermore, 2100 is the farthest in the future that integrated assessment models

can reasonably reach. Finally, carbon budgets (i.e., our model’s decision variable)

are defined as total greenhouse-gas emissions up to year 2100 so our emphasis on

2100 is appropriate in this sense as well.

Consistent with the range of carbon budgets examined by Drouet et al., we

examine nine carbon budgets ranging from 1000 to 5000 GtCO2 in increments of 500.

A carbon budget of 1000 GtCO2 represents the adoption of an extremely stringent

policy that rapidly accomplishes a complete transition from fossil fuels to renewable

8Specifically, looking at Section S12 of Drouet et al.’s supplementary information, we assume

temperature is fixed to “climate-all” and consider all combinations of {mitigation-BU, mitigation-

TD} and {damage sextic, damage quadratic, damage exponential}.
9Details available upon request.
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energy sources. Conversely, a carbon budget of 5000 GtCO2 represents a business-

as-usual energy trajectory that takes no special measures to reduce fossil-fuel use.

We start by focusing on 2100 global consumption losses that are between 5 and

20 percent, i.e. we consider L ∈ [5, 20]. Losses in this range are considered very

grave, to the extent that they are comparable to major economic calamities such

as the Great Recession of 2008 and the Great Depression of the United States in

the 1930’s. As such, policy makers should seek to avoid them with high probability,

which is why we focus on high values for p, namely p ∈ [.8, 1].

Figure 1 summarizes the value of V p
L for this range of L and p for the nine

carbon budgets under consideration. A clear pattern emerges. High carbon budgets

(especially those equaling or exceeding 4000 GtCO2) do uniformly worse for all values

of L and p. The best-performing carbon budget is among the middle-of-the-road

choices, ranging from 2000 to 3000 GtCO2.

Table 1 provides additional evidence of this finding. It compares the performance

of three carbon budgets (1000-3000-5000 GtCO2), representing stringent, “medium”,

and business-as-usual climate policies, across a range of L and p.

L \ p .80 .85 .90 .95 .99

5 [0, .01, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

10 [1,1,.63] [.66, 1, .32] [0, .96, .07] [0, .29, 0] [0, 0, 0]

15 [1, 1, 1] [1, 1, .91] [1,1,.58] [.32, 1, .12] [0, .28, 0]

20 [1, 1, 1] [1, 1, 1] [1, 1, .96] [1, 1, .46] [0, 1, 0]

25 [1, 1, 1] [1, 1, 1] [1, 1, 1] [1, 1, .82] [.45, 1, .03]

Table 1:
[
V p
L (1000 GtCO2), V

p
L (3000 GtCO2), V

p
L (5000 GtCO2)

]
evaluated at different lev-

els of L and p (truncated at two significant digits). A medium carbon budget of 3000 GtCO2

uniformly outperforms its very stringent (1000 GtCO2) and business-as-usual (5000 GtCO2)

counterparts. Moreover, business-as-usual is by far the worst option.

It becomes clear that a medium carbon budget uniformly outperforms the two

extremes, occasionally significantly so. In fact, for all the L−p combinations appear-

ing in Table 1, it is the highest-performing carbon budget among the nine examined

(oftentimes uniquely so). This is because its middle-of-the-road approach guards
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against consumption losses that are due both to high mitigation costs and high cli-

mate damages. The differences can occasionally be striking: consider for instance

L = 10 and p = .9. Here, a medium carbon budget does exceedingly well, as 96% of

all pdfs in CH3000 manage to contain losses at 10% with probability at least .9. The

corresponding figures for the very stringent and business-as-usual policies are 0 and

7% respectively. Finally, it should be mentioned, even though it does not appear in

the Table, that a carbon budget of 2500 GtCO2 is always at least the second-best

choice after 3000 GtCO2 (occasionally tying for first), for these combinations of L

and p.

The dominance of medium carbon budgets is borne out even more strongly when

we take a closer look at the results. Table 2 reports the results of direct head-

to-head comparison for all pairs of carbon budgets. That is, given a pair of carbon

budgets (bi, bj), it reports the proportion of (L, p) ∈ [5, 20]× [.8, 1] for which V p
L (bi) >

V p
L (bj). In other words, it calculates the percentage area within the L− p rectangle

[5, 20]× [.8, 1] in which carbon budget bi strictly outperforms bj according to criterion

V p
L (·). Formally, given L ⊆ [0, 100] and P ⊆ [0, 1], we are referring to this quantity

Ebibj(L, P ) =

∫
(L,p)∈L×P 1{V p

L (i) > V p
L (j)}dL dp∫

(L,p)∈L×P dL dp
.

Table 2 summarizes the values of Ebibj([5, 15], [.8, 1]) for all pairs of carbon bud-

gets considered in this analysis.10 If Ebibj > Ebjbi , then the former appears in bold.

Clearly, Ebibj + Ebjbi ≤ 1 with equality if and only if the two carbon budgets yield

equal values of V p
L over a region of zero Lebesgue measure.11 A cursory look at Fig-

ure 1, with its sizable 0-1 regions shows this not to be the case, so that Ebibj +Ebjbi < 1

for all pairs of carbon budgets. Table 2 provides additional evidence for the qualita-

tive results that were discussed earlier. A carbon budget of 3000 GtCO2 is shown to

dominate all others, while the situation is completely reversed for a choice of 5000

GtCO2.

10To reduce clutter from now on we drop the argument of Ebibj (·), unless necessary.
11We note in passing that the pairwise-dominance information encoded in the E matrix can be

used to determine an optimal policy via the application of methods from the social-choice literature

(see, e.g., Athanassoglou [2]).
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carbon

budget

1000 1500 2000 2500 3000 3500 4000 4500 5000

1000 0 0 0 0 0 0 0.11 0.33 0.49

1500 0.43 0 0 0 0 0.07 0.29 0.55 0.71

2000 0.53 0.44 0 0.02 0.04 0.25 0.55 0.73 0.84

2500 0.58 0.49 0.42 0 0.08 0.53 0.65 0.79 0.90

3000 0.59 0.50 0.41 0.37 0 0.54 0.66 0.79 0.90

3500 0.58 0.46 0.28 0 0 0 0.65 0.78 0.89

4000 0.51 0.33 0.08 0 0 0 0 0.76 0.86

4500 0.39 0.17 0.01 0 0 0 0 0 0.82

5000 0.29 0.07 0 0 0 0 0 0 0

Table 2: Ebibj (L, P ) for all pairs of carbon budgets and L = [5, 20] and P = [.8, 1]

(truncated at two significant digits). “Winning” performances are highlighted in bold.

The dominance of the medium carbon budget of 3000 GtCO2 becomes apparent.

Next, we investigate these nine carbon budgets’ potential of meeting stronger

guarantees on consumption losses. In particular, we zero in on losses ranging from

1 to 5 percent. Containing losses to such modest levels would represent a very good

outcome for the world. Yet, current estimates suggest it may be too late to attain,

at least with a reasonable degree of confidence.

Figure 2 depicts the relevant results and Table 3 summarizes a set of corre-

sponding V p
L values for the same three carbon budgets (very stringent, medium, and

business-as-usual) mentioned before. The patterns previously observed in Figure 1

are still present in Figure 2. It is evident that middle-of-the-road carbon budgets

(2000-3000 GtCO2) offer the best chance of containing consumption losses to modest

levels. The only exception to this statement applies to very low damages. For exam-

ple, in Table 3 we see that a little more than a fifth of the pdfs in CHb for b = 1000

GTCO2 imply losses of L ≤ 1 with probability at least .05, whereas no other carbon

budget achieves losses this low with probability at least .05. That said, p = .05 is a

low probability offering little insurance against such losses, so it would be wise not

to make too much of this fact.
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L \ p .05 .10 .20 .40 .60 .80

1 [.21, 0, 0] [0, 0, 0] [0, 0, 0] [0,0,0] [0, 0, 0] [0, 0, 0]

2 [.95, 1, .92] [.72, .80, .32] [.10, .03, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

3 [1, 1, 1] [1, 1, 1] [.95, 1, .59] [.02, .10, 0] [0, 0, 0] [0, 0, 0]

4 [1, 1, 1] [1, 1, 1] [1, 1, 1] [.87, .98, .25] [0, .10, 0] [0, 0, 0]

5 [1, 1, 1] [1, 1, 1] [1, 1, 1] [1, 1, .93] [.22, .87, .03]] [0, .01, 0]

Table 3:
[
V p
L (1000 GtCO2), V

p
L (3000 GtCO2), V

p
L (5000 GtCO2)

]
evaluated at different lev-

els of L and p (truncated at two significant digits).

4 Conclusion

This paper has presented a model for decision-making under model uncertainty. Its

main conceptual departure from existing work is the integration of ideas from the

literature on satisficing (Simon [25, 26]) into an ambiguity-aversion framework. The

value function that we propose is an adaptation of the success-probability criterion

(Castagnoli and LiCalzi [7]) to a setting of non-unique probability distributions link-

ing actions to consequences. This connection between the model-uncertainty and

satisficing literatures is (to the best of our knowledge) novel, as is the application of

results from computational geometry to facilitate calculations.

We apply our decision criterion to a set of distributions derived by Drouet et

al. [14] linking carbon budgets to future consumption losses. The main finding of

our analysis is the superiority of medium carbon budgets (2000-3000 GtCO2) in pre-

venting grave consumption losses with high probability. Such medium-sized carbon

budgets also perform best when imposing more stringent consumption-loss targets.

The intuition for this result is that medium carbon budgets are able to significantly

decrease climate damages without imposing very high mitigation costs.
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Appendix

A1 Comparison with Monte Carlo simulation based on Latin

hypercube sampling

It is reasonable to ask how our geometric technique compares to the results of an

equivalent simulation exercise. To answer this question we performed the exact same

computations by using Latin Hypercube sampling to sample 10000 points in the

5-dimensional simplex. This leads to roughly similar running time. Figure 3 summa-

rizes the relevant results. Comparing it to Figure 1, we notice qualitatively similar

patterns regarding the superior performance of medium carbon budgets and poor

performance of business-as-usual scenarios. However, we also see that the simulation-

based method doesn’t fully capture the true range of the V p
L criterion, as it tends

to expand the area of the L − p graphs with binary 0-1 values. This imprecision

is relatively harmless in the current example but could become problematic when

there is greater divergence between the pdfs whose convex hull we are considering.

Higher dimensionality could also pose significant hurdles for a pure simulation-based

approach due to the “curse of dimensionality”.
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A2 Figures

Figure 1: Applying criterion V p
L (b) to nine carbon budgets using the data of Drouet et

al. [14], in the range L ∈ [5, 20] and p ∈ [0.8, 1]. Medium carbon budgets (2000-3000

GtCO2) are shown to be superior in containing catastrophic consumption losses with high

probability.
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Figure 2: Applying criterion V p
L (b) to nine carbon budgets using the data of Drouet et

al. [14], in the range L ∈ [1, 5] and p ∈ (0, 1]. Medium carbon budgets (2000-3000 GtCO2)

are shown to be superior in containing mild consumption losses with low, but non-zero,

probability.
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Figure 3: Monte Carlo simulation estimates (using Latin Hypercube sampling) of V p
L for

nine carbon budgets using the data of Drouet et al. [14], in the range L ∈ [5, 20] and

p ∈ [0.8, 1]. Compared to Figure 1, some of the true uncertainty has been suppressed, with

a greater proportion of 0-1 values appearing in the graphs.
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