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A Monte Carlo Study of Multiplicity Fluctuations
in Pb-Pb Collisions at LHC Energies

Ramni Gupta∗

Department of Physics & Electronics, University of Jammu, Jammu, India

Abstract

With large volumes of data available from LHC, it has become possible
to study the multiplicity distributions for the various possible behaviours of
the multiparticle production in collisions of relativistic heavy ion collisions,
where a system of dense and hot partons has been created. In this context
it is important and interesting as well to check how well the Monte Carlo
generators can describe the properties or the behaviour of multiparticle pro-
duction processes. One such possible behaviour is the self-similarity in the
particle production, which can be studied with the intermittency studies and
further with chaoticity/erraticity, in the heavy ion collisions. We analyse the
behaviour of erraticity index in central Pb-Pb collisions at centre of mass
energy of 2.76 TeV per nucleon using the AMPT monte carlo event gener-
ator, following the recent proposal by R.C. Hwa and C.B. Yang, concerning
the local multiplicity fluctuation study as a signature of critical hadronization
in heavy-ion collisions. We report the values of erraticity index for the two
versions of the model with default settings and their dependence on the size
of the phase space region. Results presented here may serve as a reference
sample for the experimental data from heavy ion collisions at these energies.
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1 Introduction

Dynamics of the initial processes, that is the distributions and the nature of inter-
actions of quarks and gluons, in the heavy ion collisions affect the final distribution
of the particles produced [1]. Of the various distributions, multiplicity distributions
play fundamental role in extracting first hand information on the underlying particle
production mechanism. If QGP is formed at these energies the QGP-hadron phase
transition is expected to be accompanied by large local fluctuations in the number
of produced particles in the regions of phase space [2]. Thus the study of fluctua-
tions in the multiplicity is an important tool to understand the dynamics of initial
processes and consequently the processes of strong interactions, phase transition
and also to understand correlations of QGP formation [3].

A comprehensive theoretical model which can explain and give answers to all
the complexities of the physics involved at high energy and densities, as is created
in the heavy ion collisions, is still not available. A successful model focussed on one
aspect of the problem may not say much about the other aspects, but at least should
not contradict what is observed. The measures which are studied in the present
work rely on the large bin multiplicities. At LHC energies multiplicities are high
and it is possible to have detailed study of the local properties in (η, φ) space for
narrow pT bins and thus to explore the dynamical properties of the system created
in the heavy ion collisions. Thus as an initial attempt to understand the nature of
global properties, as manifested in local fluctuations, here we develop and test the
methodology and effectiveness of the analysis, analysing simulated events for Pb-Pb
collisions at √sNN= 2.76 TeV using A Multi-Phase Transport (AMPT) model.

Study of charged particle multiplicity fluctuations is one of the sensitive probes
to learn about the properties of the system produced in the heavy ion collisions.
Factorial moments are one of the convenient tools for studying fluctuations in the
particle production. The concept of factorial moments was first used by A. Bialas
and R. Peschanski [4] to explain unexpectedly large local fluctuations in high mul-
tiplicity events recorded by the JACEE Collaboratin. Advantage of studying fluctu-
ations using factorial moments is that these filter out statistical fluctuations. The
normalised factorial moment Fq is defined as

Fq(δ
d) =

〈n!/(n− q)!〉
〈n〉q

(1)

where n is the number of particles in a bin of size δd in a d-dimensional space
of observables and 〈. . .〉 is either vertical or horizontal averaging. q is the order of
the moment and is a positive integer ≥ 2. Then a power-law behaviour

Fq(δ) ∝ δ−ϕq (2)

over a range of small δ is referred to as intermittency. In terms of the number
of bins M ∝ 1/δ, Eq. 2 may be written as

Fq(M) ∝Mϕq (3)

where ϕq is the intermittency index, a positive number.
Even if the scaling behaviour in Eq. 2 is not satisfied, to a high degree of

accuracy, Fq satisfies the power law behaviour

Fq ∝ F
βq

2 (4)
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Figure 1: (a) Multiplicity distribution (b) pT (c) η and (d) φ distributions of
charged particles generated in Pb-Pb collisions at

√
sNN =2.76 TeV using the

DF and SM AMPT.

This is referred to as F-scaling. In attempts to quantify systems undergoing
second order phase transition, in Ginzburg-Landau (GL) theory [5], it is observed
that

βq = (q − 1)ν , ν = 1.304, (5)

the scaling exponent, ν, is essentially idependent of the details of the GL pa-
rameters.

Factorial moments (Fq’s) do not fully account for the fluctuations that the
system exhibits. Vertically averaged horizontal moments, can gauge the spatial
fluctuations, neglecting the event space fluctuations. On the other hand, horizon-
tally averaged vertical moments lose information about spatial fluctuations and only
measure the fluctuations from event-to-event. Erraticity analysis introduced in [6],
where one finds moments of factorial moment distribution, takes into account the
spatial as well as the event space fluctuations. It measures fluctuations of the spatial
patterns and quantifies this in terms of an index named as erraticity index (µq). In
a recent work [7], µq is observed to be a measure sensitive to the dynamics of the
particle production mechanism and hence to the different classes of quark-hadron
phase transition.

In erraticity analysis, event factorial moments are studied, defined for an eth

event as

F eq (M) =
feq (M)

[fe1 (M)]q
(6)

wherein,

feq (M) = 〈nm(nm − 1)......(nm − q + 1)〉h (7)

where nm ≥ q is the bin multiplicity of the mth bin, and 〈. . .〉h is the average
over all bins such that for M2 cells

feq (M) =
1

M2

M2∑
m=1

nm(nm − 1) . . . (nm − q + 1) (8)
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Figure 2: dNch/dη versus Npart plot for DF and the SM AMPT, compared with
the ALICE and CMS data

Now if F eq (M) fluctuates from event-to-event, then the deviation of F eq (M) from
〈F eq (M)〉v (〈. . .〉v is for averaging over all events) for each event can be quantified
using pth order moments of the normalised qth order factorial (horizontal) moments
that can be defined as

Cp,q(M) = 〈φpq(M)〉v (9)

where p is a positive real number and

φpq(M) =
[F eq (M)]p

〈Fq(M)〉pv
(10)

To search for M -independent property of Cp,q(M) one looks for a power-law be-
haviour of Cp,q(M) in M ,

Cp,q(M) ∝Mψq(p) (11)

this is referred to as erraticity [6]. If ψq(p) is found to have a linear dependence on
p, then erraticity index µq can be defined as

µq =
dψq(p)

dp
(12)

in the linear region so that it is independent of both M and p. µq is a number
that characterizes the fluctuations of spatial patterns from evevt-to-event. µ4 is ob-
served [7] to be an effective measure to distinguish different criticality classes, viz.,
critical, quasicritical, pseudocritical and non-critical, having low value for critical
hadronization compared to those having random hadronization. To a good approxi-
mation, it is observed [7] that for the model with contraction owing to confinement,
µ4(critical and quasicritical case) = 1.87±0.84 and for models without contraction
µ4(pseudocritical and noncritical) = 4.65±0.06. These model values are suggestive
of the significance of erraticity index to characterize dynamical processes.

2 Data Analysed

Charged particles in |η| ≤ 0.8 and full azimuth, generated using two versions of
A MultiPhase Transport (AMPT) model [8, 9], in Pb-Pb collisions at √sNN =
2.76 TeV are analysed. AMPT model is a hybrid model that includes both initial
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pT Default String Melting
window < N > < N >

0.2 ≤ pT ≤ 0.3 285.2 434.8
0.3 ≤ pT ≤ 0.4 279.2 355.5
0.4 ≤ pT ≤ 0.5 243.7 271.6
0.6 ≤ pT ≤ 0.7 163.3 155.5
0.9 ≤ pT ≤ 1.0 80.5 66.1

Table 1: Average Multiplicity of the Simulated Data sets analyzed in different
pT windows
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Figure 3: (X(η), X(φ)) phase space of an event with M = 32 in DF and SM
case

partonic and the final hadronic state interactions and transition between these two
phases. This model addresses the non-equilibrium many body dynamics. Depending
on the way the partons hadronize there are two versions, default (DF) and the string
melting (SM). In the DF version partons are recombined with their parent strings
when they stop interacting and the resulting strings are converted to hadrons using
Lund String Fragmentation model. Whereas in the SM version, a quark coalescence
model is used to obtain hadrons from the partons.

We have generated 23424 DF and 19669 SM events with impact parameter,
b ≤ 5, using the model parameters, a = 2.2, b = 0.5, µ = 1.8 and α = 0.47 .
Multiplicity, pT , pseudorapidity and φ distributions of the simulated events is shown
in the Figure 1. Charged particles generated in the |η| ≤ 0.8 and full azimuth having
pT ≤ 1.0 GeV/c in the small pT bins of width 0.1 GeV/c are studied for the local
multiplicity fluctuations in the spatial patterns. Five pT bins are considered in the
present analysis, as tabulated in the Table 1, along with the average multiplicity of
the generated charged particles in the respective pT bins.

Though AMPT does not contain the dynamics of collective interactions that are
responsible for critical behaviour, but it is a good model to test the effectiveness
of the methodology of analysis for finding observable signal of quark-hadron phase
transition (intermittency analysis) and the quantitative measure of critical behaviour
of the system (erraticity analysis) at LHC energies.
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Figure 4: Average bin multiplicity dependence on M for the five pT bins, in
case of DF and the SM AMPT model

3 Analysis and Observations

For an ‘eth’ event, the qth order event factorial moment (F eq (M)) as defined in Eq.
(6) are determined so as to obtain a simple characterization of the spatial patterns
in two dimensional (η, φ) space in narrow pT windows. However we first obtain flat
single particle density distribution using cumulative variable X(η) and X(φ) [10],
which are defined as

X(y) =

∫ y
ymin

ρ(y)dy∫ ymax

ymin
ρ(y)dy

(13)

here y is η or φ, ymin and ymax denote respectively the minimum and maximum
values of y interval considered. η and φ is mapped to X(η) and X(φ) between 0
and 1 such that ρ(y) is the single particle η or φ density. (X(η), X(φ)) unit square
of an event in a selected pT window, is binned into a square matrix with M2 bins
where the maximum value that M can take depends on the multiplicity in the ∆pT
interval and the order parameter, so that the important part of the M dependence
is captured.

To give a visualization of the binning in the (η, φ) space in narrow pT bin, alego
plot for an arbitrary event from DF AMPT data, in 0.2 ≤ pT ≤ 0.3 window, with
M = 32, is shown in Fig. 3.

As value of M and pT increases, the (η, φ) space becomes empty, as is observed
from Figure 4 which shows the dependence of the average bin multiplicity (〈n〉) on
M . Because of the denominator in Eq. (6), a cluster of particles with multiplicity
n ≥ q in an event would produce a large value for F eq (M) for that event. On the
other hand, if the particles are evenly distributed, F eq (M) would be smaller. Thus
the spatial pattern of the event structure should be revealed in the distribution of
F eq (M) after collecting all events.

Study of the event factorial moment distributions, (P (Fq)) reveal that the dis-
tributions become wider as M increases and develop long tailsat higher q, especially
at higher M values. Further the peaks of the distributions shift towards left with
increase in M leading to decrease in 〈F eq 〉 (referred to as Fq hereafter) with M
whereas the upper tails move towards right, at higher q values as M increases. It
means that in small bins the average bin multiplicity 〈n〉 is so small that when there
is a spike of particles in one such bin with n ≥ q, the non-vanishing numerator in
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Figure 5: P (F eq ) distributions for order moment q = 2 and q = 4 for DF and
SM (0.3 ≤ pT ≤ 0.4). M values in multiples of 2 are shown only.

Eq. (6) results in a large value for F eq (M) for that eth event.
Dependence of Fq on M can be studied in log-log plots as shown in Fig. 6 for

various pT cuts. From the plots, it is observed that Fq’s decrease as the bin size
decreases or in other words, as M value increases. We observe for both the DF and
SM in AMPT that relationship between Fq(M) and M is inverse of that in the Eq.
(3); that is

FAMPT
q (M) ∝Mϕ−

q , ϕ−
q < 0 (14)

Hence, with negative ϕ−
q it is found that the charged particles generated by the

default and the string melting version of the AMPT model exhibit negative inter-
mittency.

Eq. (14) suggests that FAMPT
q (M) → 0 at large M and q, implying that in

AMPT there are too few rare high-multiplicity spikes anywhere in phase space. Eq.
(14) is a quantification of the phenomenon exemplified by Fig. 3 for one event, and
is a mathematical characterization after averaging over many events. This same
behaviour was observed in [7] for the events belonging to the non-critical class.

We plot Fq versus F2 in Fig. 7 to check F-scaling. For each set of pT bins
linear fit has been performed to determine the value, βq, the slope, as exemplified
by the straight lines in Fig. 7 (a). The dependence of βq on (q − 1) is shown in
Fig. 8, which exhibits good linearity in the log-log plots. Thus we obtain a scaling
exponent, denoted here as ν−. In Table 2 are given the value of the negative scaling
exponent for different pT windows and for both versions of the AMPT model studied
here. Since the scaling that is there in Eq. 3 is different to that we observe here for
AMPT data, thus the scaling exponent obtained here cannot be compared with the
ν = 1.304 for the second order phase transition, as obtained from the GL theory.

Since large fluctuations result in the high Fq tails of P (Fq), as exemplified in
Fig. 5 (b) and (d), it is advantageous to put more weight on the high Fq side in
averaging over P (Fq). That is just what the double moment Cp,q(M) does. We
have determined Cp,q(M) for q = 2, 3, 4, 5 and p = 1.0, 1.25, 1.5, 1.75 and 2.0.
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Figure 7: F-Scaling for DF as well as SM mode of AMPT

The number of bins, M , takes on values from 2 to the maximum value possible
while having reasonable 〈nm〉 such that Fq 6= 0. To check whether Cp,q(M) follows
the scaling behaviour with M , Cp,q is plotted against M . Fig. 9 (a) to (d) shows
respectively, for q = 2, 3, 4 and 5, the Cp,q versus M plot in the log-log scale
for the window 0.6 ≤ pT ≤ 0.7 GeV/c, and for various values of p between 1 and
2. As expected for all values of q, for p = 1.0, the Cp,q = 1. For p > 1.0, Cp,q
increases with M and q values. Similar calculations are also done for the other pT
windows. In the high M region linear fits are performed for each q and p value so as
to determine ψq(p). We see in Fig. 10 that for 0.6 ≤ pT ≤ 0.7 ψq(p) depends on
p linearly for each q. Thus the erraticity indices defined in Eq. (12) are determined.
Similar plots are obtained for the other pT windows also and the values of µq are
given in Table 3. It can be seen from the table that as pT value increases, the
erraticity indices increase for both versions of the AMPT model.

Comparing the µq values for the DF and SM data within the same window and
for the same values of q, it is observed that µq has higher values for the DF version
in comparison to SM for the pT windows below 0.6 GeV/c. That phenomenon
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Figure 8: βq versus (q − 1) plot for determination of the scaling exponents.

pT ν− ν−
(Default) (String Melting)

0.2 ≤ pT ≤ 0.3 1.738± 0.008 1.753± 0.004
0.3 ≤ pT ≤ 0.4 1.774± 0.007 1.793± 0.005
0.4 ≤ pT ≤ 0.5 1.758± 0.006 1.755± 0.006
0.6 ≤ pT ≤ 0.7 1.824± 0.008 1.869± 0.016
0.9 ≤ pT ≤ 1.0 1.778± 0.013 1.781± 0.011

Table 2: Scaling exponents for negative intermittency in the Default and String
Melting versions of the AMPT Model

is related to the average multiplicities of the two versions reversing their relative
magnitudes at higher pT . However it is to be noted from Fig. 10 that the dependence
of ψq(p) on p is better distinguishable for the two versions of the AMPT for only q
= 4. Coincidentally, as observed in [7], µ4 seems to be a good measure to compare
the erraticity indices of the different systems and data sets at these energies.

We observe that the values of µDF4 and µSM4 for all pT windows are larger
than those obtained for the critical data set in [7], on the same side as the non-
critical case. We have found ϕ− to be negative because P (Fq) broadens, as M
increases, with 〈Fqe〉 shifting to the lower region of F eq , thus resulting in negative
intermittency. We did notice that the upper tails move to the right, suggesting
the presence of some degree of clustering. To emphasize that part of P (Fq) we
have taken higher p-power moments of φq(M), which suppress the lower side of
Fq while boosting the upper side. The scaling properties of Cp,q(M) therefore
deemphasize what leads to negative intermittency. Thus the erraticity indices µq
reveal a different aspect of the fluctuation patterns than the scaling indices ν−.
Our study here has revealed interesting properties of scale-invariant fluctuations
that should be compared to the real data.

4 Summary

Fluctuations in the spatial patterns of charged particles and their event-by-event
fluctuations, as are present in the events generated using the default and string
melting version of A MultiPhase Transport (AMPT) model are studied. This is a first
attempt to study intermittency and erraticity at such high energies. It is observed
that as the bin size decreases, the factorial moments decrease. This behaviour is in
contrast to usual properties of intermittency observed at lower energies indicating
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Figure 9: M dependence of Cp,q for the pT window 0.6 ≤ pT ≤ 0.7 GeV/c in
case of DF and SM versions of the AMPT model
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Figure 10: The ψq dependence on the p for DF and SM AMPT in the 0.6 ≤
pT ≤ 0.7 GeV/c window.

that events with localization of even moderate multiplicities in the small bins, at low
pT are not present in the AMPT. Further the erraticity analysis of the model shows
that the systems generated in it is not near criticality. The µq values determined
here give the quantification of the event-by-event fluctiations in the spatial patterns
of the charged particles in the midrapidity region, which can be used effectively to
compare with other models. More importantly comparison of the values with that
from the LHC would help to get a better understanding of the particle production
mechanism at high energies.
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