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Estimating input allocation from heterogeneous data sources: A
comparison of alternative estimation approaches

Kamel Louhichi’, Florence Jacquet and Jean Pierre Butault

Abstract

This paper proposes the use of the Generalized Maximum Entropy (GME) method to
estimate input allocation in multi-crop systems using heterogeneous data sources (farm
accountancy data and cropping practices survey data). The aim is to explore the role of
well-defined a priori information in improving the accuracy of GME estimation. The
performance of the GME method is compared afterward to a Bayesian approach—
Highest Posterior Density (HPD)—to assess their accuracy when reliable non-sample
(prior) information is used and investigate their usefulness for reconciling
heterogeneous data sources. Both approaches are applied to a given set of farm
accounting data which reports information on input allocation between alternative
input uses. The estimation results show that the use of well-defined prior information
from external data source improves GME estimates even though this performance is not
always significant. It also appears that the Bayesian (HPD) approach could be a good
alternative to the GME estimator. HPD provides results that are close to the GME
method with the advantage of a straightforward and transparent implementation of the
a priori information.

Keywords: Input allocation; prior information, Generalized Maximum Entropy,
Highest Posterior Density

Introduction

Over the last decade, there has been a substantial increase in the demand for tools to
assess the impact of EU (European Union) policies and technological innovations on
agricultural sustainability. In fact, knowing how farmers’ decision making would
impact crop-level input use and which policy instrument could be used to influence this
decision are important issues from a policy-maker perspective. However, the
information on input output coefficients (or cost-allocation coefficients) needed to
capture policy impacts and to represent technologies in an explicit way is not available
from the Farm Accountancy Data Network (FADN). FADN data provides only total
costs and total input use per input category, without indicating the input use (and unit
costs) of each (crop and animal) output. To overcome this lack of information, most
studies in the EU have used either linear programming, based on the minimisation of the
sum of the absolute residuals (Koenker and Basset, 1978), or regressions approaches
(multiple-regression, OLS technique or Generalized Least Squares)' (Ray, 1985;
Errington, 1989; Bureau and Cyncynatus, 1991). The difficulty of linear programming
is that it leads to unacceptable and corner solutions or zero values. The limit of
regression approaches, as pointed out by Midmore (1990), is their incapacity to ensure
the non-negativity of the estimated input coefficients. To deal with this, Moxey and
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Tiffin (1994) suggested applying the Bayesian estimation while Léon et al. (1999)
argued the use of the Generalised Maximum Entropy (GME) estimation. Both
approaches are based on the application of a set of restrictions to ensure the non-
negativity and the adding up of input coefficients (Gocht, 2008). Léon et al. (1999)
compared these two approaches and found that is difficult to discriminate between
them. They also pointed out that the GME estimated coefficients are very sensitive to
the design of either parameter and/or error support set and further encouraged
researchers to be very careful about selecting suitable support values. Along these same
lines, Paris and Caputo (2001) indicated that if the parameter estimates are sensitive to
the a priori information (i.e., support points), then it is probable that policy implications
will be affected too.

In this paper, we further investigate this issue by using additional information from
an external data source to set informative® (more reliable) a priori expectations about
the estimated parameters. The aim is to explore the role of well-defined a priori
information in improving the accuracy of GME estimation. More specifically, we test if
the use of non-sample information from existing cropping practice surveys to set
support points sufficiently improves the reliability of the input allocation estimation
from FADN data, or, on the contrary, is the improvement negligible, in which case it
might be better to define vague (ad hoc) support points to save time and resources. In
fact, if the use of additional information from a data source external to FADN plays a
role in improving the accuracy of estimation, this procedure could be duplicated
throughout the EU, relying on already existing cropping practice surveys at the national
level in most EU member states. The second aim of this paper is to compare the
performance of the GME method to the Highest Posterior Density (HPD) estimator
which makes it possible to incorporate a priori information into the estimation process.
We seek to evaluate the accuracy of these two approaches when informative a priori
information is used and to investigate their usefulness for reconciling heterogeneous
data sources in a theoretically sound way.

In section 2, the two alternative estimation approaches are described. In section 3,
the GME approach is applied to a given set of farm accounting data in a French region
(a sample of 533 farms located in the Department of Meuse, France) to examine the
sensitivity of model outcomes to the design of support values and illustrate the
robustness of the GME approach when informative a priori information is available.
Two sets of supports values were tested: the first one involves uninformative (i.e., ad
hoc) a priori information and the second one is based on informative a priori
information from the Cropping Practices Survey Data  (Agreste, 2006). The
incorporation of the prior was done only through the support points (i.e., not as new
constraints in the system) in order to increase the impact of sample data on the
estimation process. In section 4, the outcomes of the GME approach are compared with
those derived from HPD estimator. In the final section, we discuss the interest of
informative a priori information in making estimation potentially more efficient and the
usefulness of the GME approach to reconcile heterogeneous data sources.

> An informative prior expresses specific, definite information about a variable. In the opposite, an
uninformative prior expresses vague or general information about a variable (Gelman et al, 2003).
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Estimation approaches: specification and formulation

A literature review has revealed that numerous modelling approaches have been
developed to predict crop-specific input information from data involving farm-level
input use and crop-level land use (Chambers and Just, 1989; Just et al., 1990; Shumway
et al., 1984; Just et al., 1983; Ray, 1985; Errington, 1989; Midmore 1990; Moxey and
Tiffin, 1994; Lence and Miller, 1998a; Lence and Miller, 1998b; Léon et al., 1999;
Hansen and Surry, 2006; Gocht, 2008). The common used form for representing
input-output relationships in these approaches is the linear form with noise represented
as follows:

x=Ay+u (1)
where x is a (mX1) vector of total input use in monetary terms, y is a (nx1) vector of
monetary output, A is a (m>n) matrix of unknown input output coefficients (defined by
a;; which represent the amount of input i required per unit of output j), and u is an (nx1)
vector of noise or error term distributed randomly (Errington, 1989). This linear
function imposes a common technology on the whole sample.

In some cases, expenditures on some input uses are equal to zero (or missing) for
certain farms. In this case Golan et al. (1996) advise the use of Tobit variant of the
linear static model in which the observations are ordered as follows:

x:Ay+u:>{X Ay+u ifx>0 )

x>Ay+u ifx=0

To solve this linear inverse problem with noise, several modelling approaches have
been developed. In this investigation, we have focused on two alternative approaches:
Generalized Maximum Entropy (GME) and Highest Posterior Density (HPD)
estimators. The common specification of both approaches is the incorporation of a
priori information into the estimation process. The problem is that this a priori
information is often limited or unavailable and in such cases the analyst has to decide to
use uninformative (ad hoc) prior or apply subjective a priori expectations defined as a
weighted average of support values’. Our purpose is, therefore, to assess the
consequences of these different ways of setting priors on model outcomes, and, in turn,
to show how well defined a priori information can improve the accuracy and the
reliability of forecasting.

Generalized Maximum Entropy (GME)

The Maximum Entropy (ME) principle is used in a wide variety of fields to estimate
and make inferences when information is incomplete, highly scattered, and/or
inconsistent (Kapur and Kesavan, 1992). The philosophy underlying this approach is to
uses all, and only the information available for the estimation problem at hand (Jaynes,
1957). It provides a more flexible framework that can handle the use of all available
information, regardless of how scarce and incomplete it is, along with empirical
knowledge to predict the most reliable outcome (De Fraiture, 2003). Golan et al. (1996)
have proposed the Generalized Maximum Entropy (GME) approach based on the ME
principle to overcome two empirical problems that hamper traditional econometrics for

? Generally, prior expectations are defined as a weighted average of support values. In the GME case, the
weights are probabilities following a uniform distribution (Heckelei and Britz, 2000).
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parameter estimation: multi-collinearity and ill-posed problems (i.e., when the number
of parameters to estimate is greater than the number of observations). This approach
allows empirical specification and estimation of underdetermined models as well as
inclusion of prior knowledge in a technically straightforward way, making estimates
potentially more efficient (Jansson, 2007). Apart from solving traditional estimation
problems, the GME approach has been used to deal with three well-known issues. The
first one is to allocate input to production activities from data involving total input use
(Lence and Miller, 1998a; Miller and Plantinga, 1999; Zhang and Fan, 2001). The
second is to disaggregate technological and economic data (e.g., Howitt and Reynaud,
2003) and the last one is to fill gaps and reconcile conflicting data sources (Robillard
and Robinson, 2003).

The application of the GME to the linear estimation problem is based on the re-
parameterization of the unknown vectors as:

u=wV

where Z and V are the matrix of parameter and error support points provided by the user
based on previous research, economic theory, researcher intuition or other knowledge
sources, and p and w are the vector of unknown probabilities which are determined by
solving the following maximum entropy measure:

H[p, w]|=—p'Inp - w'Inw (4)
Subject to

X =y(pZ)+(WV) (4.1)

I'p, =1Vk; [I'w,=1 Vk (4.2)

p. 20 Vk; w20 VK (4.3)

where K and K’ are the number of support points associated to unknown parameters
and error term, (4.1) is the data-consistency constraint, (4.2) is the adding-up or
normalization constraint which ensures that probabilities appropriately sum to one and
(4.3) is the non-negativity condition. The objective function (4) attains an unconstrained
maximum when all elements of p and w have, respectively, the value 1/K and 1/K’, that
is to say when the probabilities are uniform.

The general formulation of the linear Tobit model using the GME formalism can
now be stated as:

max H(p,w,,w,) = _Zklzzpmj lnpkij —;;way lnwlfk'i _Zf:;zwzﬂc'j lnwz_fk'i (5)
i Y f v

Subject to:
Data-consistency constraints

X =Za,-jyﬁ tu, Vi and f =1,... F,
J

. (5.1)
Xy 2 Zaijyﬁ tu,, Viandf =1,..,F,
J
Ay = 2 PrijZii Vi, j
ij ; kij < kif (5.2)
Uyp :;Wl/k'ivl_/k'i Viandf =1,....F (5.3)
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Uy, = ;WZ_/kivsz'i Viandf =1,...,F, (5.4)

Adding-up or normalization constraints
=1 Vij

; ki (5.5)

D Wiy =1 Viandf =1,..F

=

(5.6)
Wya =1 Viandf =1,...,F.
; ¥ 2 (5.7)
Accounting restriction
IZ% =1 (5.8)
Non-negativity conditions
a;20; p,; 20w, 20,w,,, 20 (5.9)

where xy is the total cost of input 7 paid by farm f, yg is the total value of output j
produced by farm f, a;; is the unknown input output coefficients which represent the
amount of input i required per unit of output j, ug (i.e., uy and u,) is the error term which
is specific to each input i and to each farm f. Fy are the farms with positive observations
for input i, F, are the farms with zero observations and F; + F; = F. K and K’ are the
numbers of discrete support points, zsx and vgye (i.€., v1 and v3) are the matrices of the
support points and p; and wg (i.e., w; and wy) are their unknown probabilities,
respectively. The two extreme support values for each parameter and error term
constitute the support bounds. This model runs under the assumption of common
technology for whole sample farms (i.e., a;; are common across all farms even for those
with zero input expenditures).

The principle of Maximum Generalized Entropy consists of selecting values of A
and u whose distributions p and w maximize the function H in (5), subject to the data-
consistency constraints (5.1-4), the normalization constraints (5.5-7), the accounting
constraint (5.8) and the non-negativity condition (5.9). The additional accounting
restriction (5.8) is imposed for each type of output j in order to ensure that total cost and
total revenue at farm level are equal. Doing so means that all the inputs are taken into
account simultaneously’. This is achieved by introducing a residual input category
‘value added’ as suggested by Léon et al. (1999) with corresponding monetary input
coefficients equal to the difference between the total revenue and the sum of all other
monetary input coefficients across input categories. Similar to other input categories,
value added is restricted to be positive, assuming that, for each type of output j,
averaged (across all farms) total cost cannot exceed total revenue. The solution of this
optimization problem yields values for p and w, which are used to compute the
unknown parameters A and the error term u.

The main advantages of using GME estimation method are its desirable properties
such as: it does not require distributional error assumptions; it may be used with small
samples and with many highly correlated covariates; it allows imposing nonlinear and
inequality constraints. Despite these advantages, the performance of GME approach

* Considering the linear models in (1) simultaneously, for each farm f implies that we assume that the
errors u are “contemporaneously” correlated (i.e., for each individual farm), but uncorrelated across the
farms (Peeters and Surry, 2000).
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remains extremely sensitive to the design of support points (i.e., the number and the
value (or “spacing”) of supports) as it can strongly impact estimation results. In this
study, we attempt to tackle this problem by using transparent and informative a priori
information to define support points.

Highest Posterior Density (HPD)

The Highest Posterior Density estimation was proposed by Heckelei et al. (2005) as
an alternative to entropy methods for deriving solutions to underdetermined system of
equations. They argued that the main advantage of this approach is that it allows a more
direct and straightforwardly interpretable formulation of available a priori information
and a clearly defined estimation objective. HPD estimation is a Bayesian approach, in
which the model parameters are treated as stochastic outcomes. In this context, the
method distinguishes between the prior density p(A), which summarizes a priori
information on parameters and the Likelihood function L(Alx), which represent
information obtained from the data in conjunction with the assumed model. The
combination of the prior density and the Likelihood function results in posterior density
which can be expressed as (e.g. Zellner 1971, p.14).

h(A[x)ec(p(A)L(A[x))
where h denotes posterior density, oc is the proportionality, A is the coefficient matrix to
estimate and x is the vector of total input use.

The value of A that maximizes h(A|x) taking into account the data-consistency
constraints (5.1) is the Highest Posterior Density (HPD) estimate of A. Thus, the main
difference between entropy approaches and the Bayesian approach (HPD) is that the
entropy techniques do not need to pre-specify and regularize a Likelihood function.

Empirical data: sample and non-sample (prior) information

The given two approaches are applied to a sample of 533 farms located in the
Department of Meuse (France) for the year 2006. The advantage of this dataset is that
the input costs per production activity are available (Table 1). These input costs are used
to validate the results of estimation methods and are not included in the estimation
process. As can be seen in Table 1, the data is distinguished according to five input
categories, including value-added (I = 5) and eight outputs (J = 8). All input costs and
outputs are expressed in monetary terms (in Euros).

Table 1. Observed input costs (as an average across all sample farms)

Wheat  Winter Spring Maize Peas Rape Sunflower  Rape for

barley barley grain biodiesel
Input 144(37) 136(36) 111(41)  120(54) 35(39) 165(49) 59(34) 165(51)
Seed 52(21)  55(23) 56(18) 150(49) 52(40) 29(16) 96(32) 29(15)
Pesticide 135(41) 133(39) 74(30) 78(36) 90(43) 188(52) 87(36) 185(50)
Insurance 7(5) 8(5) 8(5) 9(8) 11(8) 23(12) 16(13) 23(12)
Note: Standard deviations of variables are given in parenthesis Source: Meuse database, 2006

To make GME estimation of the input coefficients operational, we need to define
support points for the unknown input output coefficients as well as for the error vector.
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As pointed out by several studies (Golan et al, 1996; Paris and Howitt, 1998; Heckelei
and Britz, 2000), the determination of support points in the context of GME is an
important issue, as it can strongly affect model outcomes. To define the number of
support points, their bounds, spacing, and the implied prior expectation, we have made
the following assumption:

For the error term u (i.e., u; and u;) we use the common assumption where three
support points (i.e., K’ = 3) are symmetrically defined around zero and bounded by
the so-called “three-sigma rule” (Pukelsheim, 1994).

v, =[-36,,0,+36,] Vi

Where (6)

6 : sample standard deviation of each input category i

For the residual “added value” input category (i.e., i=added value), we follow the
Léon et al’ (1999) proposal in which 11 support points (i.e., K=11) are chosen,
bounded between zero and one and equally spaced with a distance of 0.1 (i.e., we
assume a priori expectation of 0.5 because this category incorporates the
remuneration of all fixed factors which can easily account for up fifty percent of the
total revenue for each products).

Z"add _value",j = S"add _value",j

where (7)
=[0,01,02,03,04,05,0.6,0.7,08091] Vj,i=add value

For all other input categories, 11 discrete support points with uniform distribution
are selected. The corresponding values for these support points are defined in two
different ways in order to compare GME outcomes with and without informative
priors.

o Firstly, termed GME_NP, the support values are arbitrary defined with wide
bounds following the Golan et al. assumption when no prior knowledge is
available. They argue that “wide bounds may be used without extreme risk
consequences if our knowledge is minimal and we want to ensure that Z
contains A. Intuitively, increasing the bounds increases the impact of the data
and decreases the impact of the support” (Golan et al., 1996; p.138). Hence, the
selected support values are bounded between zero and one and equally spaced
with a distance of 0.1, since the unknown parameter A falls within this interval.

o Secondly, termed GME_WP, we use information on input allocation from data
source external to sample data to define the support values. This data source is
the Cropping Practices Survey Data “Enquétes pratiques Culturales” (CPSD). It
is a French survey and database that contains information on input use for major
field crops taking into account the heterogeneity in terms of soil type. It has been
carried out by the SSP (Service de la statistique et de la prospective; Ministere
de I’Agriculture et de la Péche) every four years since 1986. In 2006, this survey
covered around 11 arable crops grown in 18,000 fields located in 21
administrative regions (Agreste, 2006). As no input prices are included in this
database, a calculation procedure was developed to compute input costs by crop
using average input prices drawn from Teyssier (2005). The calculated averaged
input costs, reported in Table 2, are then used to compute the averaged input

S

"add value",j
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output matrix A° (i.e., a%;) of the CPSD sample. This matrix is, in turn, used as
informative prior to set: the center of the support points at a®; (i.e., expected
values of the estimated parameters; also called a priori expectations); the bounds
at [aoij + GJ; and the spacing at [(a"ij + o-)/SJ. The standard deviation (o) was set
to 0.5 for all inputs and products as the CPSD does not provide straightforward
means to calculate it. To assess the impact of this value on model outcomes, a
sensitivity analysis was carried out and presented in the results section.

Z; =5,,4°%

where

5,10.5,0.6,0.7,08,09,1,1.11.2,13,14,15] V},i # add_value ®)

o}

a®,: expected input output coefficients derived from CPSD

Table 2. Input costs derived from Cropping Practices Survey

Wheat  Winter Spring Maize Peas Rape Sunflower  Rape for
barley barley grain biodiesel
Input (€/ha) 145 138 124 144 44 167 58 167
Seed 50 65 65 125 80 37 86 37
Pesticide 99 138 178 81 121 158 93 158
Insurance 7 8 8 9 11 23 16 23

Source: Cropping Practices Survey Data

To apply the HPD estimation to our case we followed the Heckelei et al., (2005)
assumption. Furthermore, in order to make methods comparable we used the same prior
information as in GME estimator. Let us assume that the matrix A° (i.e., a%;) drawn
from the CPSD is the prior mean and that the prior density function has the following
form: vec(A) ~ N(vec(A®),X). The covariance matrix X is set equal to a diagonal matrix
with elements (vec(A®)o), the square taken element-wise. o is the standard deviation
and it was set to 0.5 for all inputs and products to ensure consistency with GME
approach. Taking natural logs and restricting the objective function to terms that are
relevant for the optimization leads to the following estimation problem:

min [vec(A - A°)| X' [vec(A - A°)]

subject to:
Xx=Ay+u if x>0 ©)
X > Ay+u ifx=0

I'A=1
where Y. 'is the covariance metrics, A is the coefficient matrix to estimate, A° is the

prior and u is the error term. The solution of this optimization problem yields values for
the unknown parameters A and the error term u.
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Estimation results and discussion

This section presents the results of the estimation experiments in relation to the
different hypotheses formed in the previous section. These experiments were
programmed in GAMS (General Algebraic Modeling System) language and were solved
numerically using the solver CONOPT". Three estimation experiments were performed
and compared: (i) GME estimation - with informative a priori information (GME_WP);
(i1)) GME estimation — with uninformative a priori information (GME_NP); and (ii1)
HPD estimation - with informative a priori information.

First, we compare the results of GME models with and without informative a priori
information to show the role of well-defined prior in improving the reliability of
estimation. Then, the sensitivity of the GME WP outcomes to support bounds is
presented. Finally, the prediction accuracy of the two alternative estimators (GME and
HPD) with informative a priori information are assessed and discussed.

Accuracy criterions

To examine the prediction accuracy of the alternative estimation approaches, we use
three familiar criterions: the Weighted Absolute Percentage Error (WAPE), the
Pearson's correlation coefficient (R) and the Normalized entropy criterion. Their general
specifications and formulas are presented below.

1. Weighted Absolute Percentage Error (WAPE) measures the accuracy of fitted
values. It has been widely used as a performance measure in forecasting since it
is easy to interpret and understand. Since, this is a weighted measure; it does not
have the same problems as Mean Absolute Percentage Error (MAPE) such as
over-skewing due to very small or zero observed values. It usually expresses
accuracy as a percentage, and is defined by the following formula.

SIE AR
X

i

WAPE ==~ *100

where (10)
x, : predicted value
X, : observed value

N : number of observations
Forecasting is best when WAPE is close to 0.

2. Pearson's correlation coefficient (R) is a measure of the strength and the
direction of the linear relationship between two measurable variables. It is
always between -1 and +1, where -1 means a perfect negative, +1 a perfect
positive relationship and 0 means the perfect absence of a relationship. Pearson's
correlation is calculated according to various formulas. In this application, we
apply the commonly used formula that follows:

* Full details are available from the authors.
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X

i

\/{@(mz - (z];‘f))@o@)z - (Z;"))

where (11)

>k - szzx

R=

X, : predicted value
X, : observed value

N : number of observations

. Normalized entropy (information) criterion (S) is a measure of the relative

information content of the estimated parameters. The normalized entropy
measure for IxJ unknown parameters (I inputs and J outputs) and K the number
of support points, is defined by Golan et al. (1996b, p. 93) as follows:

- zpijk anijk
Sp)=—"2=L
v LJLn(K)
where (12)
s(p) € (0,1)

IJLn(K) represent maximum uncertainty

where p is the probabilities of supports for parameters a; and K the
corresponding number of support points. S(p) ranges between zero and one; S(p)
= 0 reflects perfect knowledge in the parameter distribution and S(p) = 1
corresponds to an uninformative uniform distribution (i.e., it reflects complete
ignorance about the parameter distribution). Similar normalized measures
reflecting the information in each one of the 7, j distributions can also be defined.
According to Léon et al. (1999), the greater the normalized entropy measure
S(p), the better the estimator. This means that the “superior” model would yield
a solution for the recovered cost-allocation coefficients that is more “uniform”
or closer to the a priori expectations defined by the support values.

Along similar lines, the informational content of the noise or error
component can be assessed through the normalized entropy measure, for /xF
errors (/ inputs and F farms) and K’ the number of support points for the error
term, defined by Golan et al. (1996b, p.93) as follows:

— ;wﬁklnwﬁk.
SO = k)
Where (13)
s(w) € (0,1)

IFLn(K") represent maximum uncertainty

The normalized entropy criterion (S) cannot be computed for the HPD
approach, as it does not employ the principle of support points.
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These indicators are complementary, as they measure at the same time the deviation
(WAPE), the strength and the direction of the relationship (R) as well as the degrees of
uniformity of distribution (S) between the observed and the predicted values.

GME results with and without informative prior

The results of GME estimations with and without informative prior are presented
in Table 3. In line with our expectations, the GME with informative a priori information
(GME_WP) performs better, measured by the sum of the Weighted Absolute
Percentage Error (WAPE) over all input categories and products (i.e., outputs). The
generated WAPE from GME_ WP model is smaller by around 17%. The performance of
GME_ WP model prevails as well when attention is paid to individual input categories.
It has lowest WAPE for all input categories, except for pesticide.

Table 3 also depicts the Pearson's correlation coefficient between estimated and
observed input allocation. It appears that the two models provide good fits, as they
outcome strong positive correlations for all input categories exceeding 0.85. It illustrates
as well that the generated correlations by input category are very close across models; it
is thus difficult to judge their relative performance using this criterion at this aggregated
level.

Table 3. Performance of the two GME models in predicting input allocation

Weighted Absolute Percentage Error (WAPE) Pearson's correlation coefficient (R)

GME_WP GME_NP GME_WP GME_NP
Fertilizer 25.9606 30.3481 0.9425 0.9443
Seed 37.5651 51.8074 0.8728 0.8773
Pesticide 313911 28.6614 0.9337 0.9379
Insurance 33.9981 45.3990 0.8720 0.8762
Added value 16.5267 19.8749 0.9765 0.9772
Sum 145.4417 176.0907 4.5975 4.6128

Source: model results

Despite mixed results at the aggregated levels, we can infer a consistently superior
performance of the GME WP model regarding the single input category and product.
This is shown in Table 4 which reports the deviation of estimated coefficients by input
category and product averaged across all farms from their observed counterparts. From
this Table, it appears that the WAPE are smaller for the GME WP model in 32 out of
the 40 cases (i.e., 80% of the cases).
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Table 4. Weighted Absolute Percentage Error between observed and estimated input
coefficients by input category and product

Observed Input Weighted Absolute Percentage Error
Coefficients (WAPE)
GME WP GME NP
Fertilizer Wheat 0.172 27.11 30.61
W. barley” 0.194 39.79 54.03
S. barley 0.166 31.57 27.40
Maize grain’ 0.166 35.52 46.39
Peas 0.066 16.85 18.76
Rape 0.206 25.82 29.23
Sunflower” 0.110 37.59 53.83
Rape for biodiesel 0.226 29.68 26.92
Seed Wheat 0.064 34.10 42.68
W. barley 0.079 16.45 18.28
S. barley 0.084 25.67 28.93
Maize grain 0.258 37.78 53.46
Peas 0.090 31.69 27.43
Rape 0.036 33.36 42.11
Sunflower 0.184 16.51 17.90
Rape for biodiesel 0.040 29.14 30.29
Pesticide ~ Wheat 0.161 38.29 47.60
W. barley 0.189 32.25 31.44
S. barley 0.111 36.25 48.29
Maize grain 0.108 20.22 21.45
Peas 0.151 25.50 34.94
Rape 0.235 47.51 56.33
Sunflower 0.160 30.92 29.65
Rape for biodiesel 0.256 32.72 61.09
Insurance Wheat 0.008 14.62 22.29
W. barley 0.012 25.81 28.79
S. barley 0.012 34.60 50.94
Maize grain 0.011 30.66 26.41
Peas 0.019 31.77 37.26
Rape 0.029 16.36 19.12
Sunflower 0.028 23.73 32.28
Rape for biodiesel 0.032 31.54 44.49
Add value Wheat 0.595 34.90 34.50
W. barley 0.527 35.57 48.19
S. barley 0.627 15.35 21.99
Maize grain 0.456 24.90 27.71
Peas 0.674 33.41 53.79
Rape 0.494 29.45 25.54
Sunflower 0.518 32.70 37.17
Rape for biodiesel 0.445 15.86 19.19
Sum 145.4417 176.0907
"For these crops very few observations were available. Source: model results

This Table shows also that in most cases the WAPE between observed and
estimated input coefficients is low, below 30%, for both models. Exceptions are winter
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barley, maize grain, peas and sunflower products. This finding is, however, not
surprising since only a few observation are available for these three products.

The superiority of GME with informative prior is confirmed as well when we
examine input allocation by single farm, input category, and product. The GME WP
model performs better in 6,700 out of the 10,863 cases (around 60% of the cases).

The inspection of the normalised entropy criterion reported in Table 5 reveals that
the informational content of the error components is invariant across models. This is not
unexpected, as the support values for w have not been changed. However, the
normalized entropy of the estimated parameters S(p) varies significantly between the
two models, and it is greater in the GME with informative prior (i.e., GME WP)
showing the relative superiority of this model. Indeed, the normalized entropy measure
for the GME_WP is about 0.96 which is closer to one (the upper bound of entropy)
while in the case of the GME NP it is around 0.65. This finding is in line with our
intuition that the estimated coefficients would more likely be closer to the a priori
expected values from the Cropping Practices Survey Data than to unspecified values
between zero and one. To conclude, the use of ad hoc (vague) support points would
make the estimation task much easier as it saves time in terms of collecting external
(i.e., non-sample) information from other database or studies; however it generates less
satisfactory results. It remains to be known whether or not the variation of the support
ranges (i.e., interval) has an impact on model estimates when reliable prior are used.
This is examined in section 4.3.

Table 5. Normalized entropy criterion

GME_WP GME_NP
S(p) 0.9593 0.6539
S(w) 0.9853 0.9860

Source: model results

Sensitivity of GME results to support bounds

The aim of this analysis is to assess the sensitivity of the GME model outcomes to
support bounds (i.e., end points) when informative a priori expectations (i.e.,
GME_WP) are used. More specifically, we seek to show whether or not moving away
from the a priori expectation weakens the GME estimates. To do so, we shift the
support bounds from a minimum of 25% (a lower percent does not lead the model to
converge) to a 100% maximum of the a priori expectation while maintaining the
support values equally and symmetrically spaced in each case. Five different designs of
the support sets, including the base case design set (design n°3), are selected and
described in Table 6. Because no a priori information is included for the error term and
the residual “added value” category, we shall focus on the input allocation matrix. The
results of the sensitivity analysis are compared with the results for the initial support set
(base case, design set n°3).
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Table 6. Designs of the support set for the input allocation matrix
Input categories| Number of support |Type of spacing| Selected support set
points
Design n°1 +£25% a’;
Design n°2 Fertilizer +40% a’;

) Seed . .
Design n°3 (base case) | .o 11 Symmetries +50% a';
Design n°4 Insurance +£75% a’;
Design n°5 +100% a’;

Table 7 presents the WAPE accuracy indicator for the various support sets as well
as its percentage deviation from the base case (design n°3). This it is possible to see that
when the prior expectation is well defined, the GME estimator seems insensitive to the
change of support ranges. In fact, doubling the support bounds (in comparison to the
base case) induces less than a 3.5% change in the WAPE summed over input categories
and products. This small change reveals, however, that decreasing the support bounds
impacts negatively estimation results (designs n°1 and n°2). Inversely, increasing the
bounds slightly improves estimation (designs n°4 and n°5). This is not surprising as the
estimated input coefficients are oriented by the a priori expectations but not all of them
are close to this point. This is consistent with Golan et al (1996) who concluded that
“increasing the bounds increases the impact of the data and decreases the impact of the
support”.

Table 7. Weighted Absolute Percentage Error (WAPE) for different support point

designs
Design n°1 Design n°2 Design n°3 (base  Design n°4 Design n°5
case)
Fertilizer 26.36 (1.5) 26.17(0.8) 25.9606 25.82(-0.6) 26.03(0.3)
Seed 39.12(4.1) 39.28(4.4) 37.5651 38.75(3.1) 39.60(5.1)
Pesticide 33.80(7.7) 32.86(4.5) 31.3911 28.52(-10) 26.97(-16.4)
Insurance 33.87(-0.4) 33.88(-0.3) 33.9981 34.42(1.2) 34.99(2.8)
Added value 17.26(4.4) 16.99(2.7) 16.5267 15.90(-4) 15.84(-4.3)
Sum 150.39(3.4) 149.19(2.5) 145.4417 143.41(-1.4) 143.43(-1.4)
Note: numbers in parenthesis are percentages deviations to the base case (design 3) Source: model results

This insensitiveness is confirmed by detailing WAPE according to input category
and product as shown in Table 8, as well as examining two other indicators (i.e.,
Normalized entropy indicators (Table 9) and Pearson's correlation coefficient (Table
10). Doubling the support bounds provokes a slight change in the levels of these
indicators.

However, from Table 8, it appears that the change in support bounds matters for the
products with few observations such as winter barley and peas as well as for those that
have a large variability of input costs across farms; i.e., a high standard deviation of
input costs (cf. Table 1), such as rape for biodiesel and spring barley.

2012, Vol 13, No 2



AGRICULTURAL ECONOMICS REVIEW

97

Table 8. Weighted Absolute Percentage Error (WAPE) for different support point

designs
Design n®l  Desien n®2  Design n°3  Design n°4  Design n°5
Fertilizer =~ Wheat 27.4082 27.2693 27.1097 27.0677 27.3906
W. barley 41.3832 41.6499 39.7937 40.8840 41.4410
S. barley 34.1700 33.1559 31.5746 28.4549 26.7032
Maize grain 35.2570 35.3406 35.5194 36.1421 36.8946
Peas 17.5497 17.2761 16.8509 16.2989 16.3330
Rape 26.0048 25.9054 25.8178 26.0079 26.5353
Sunflower 39.3077 39.6032 37.5938 38.7410 39.6341
Rape for biodiesel 32.0036 31.0778 29.6754 27.0724 25.8046
Seed Wheat 33.9240 33.9680 34.0996 34.5506 35.1322
W. barley 17.2350 16.9252 16.4473 15.7799 15.7362
S. barley 25.8813 25.7769 25.6740 25.7979 26.2319
Maize grain 40.0772 40.2681 37.7837 39.8196 41.1127
Peas 34.5883 334314 31.6897 28.3897 26.6383
Rape 33.1893 33.2245 33.3558 33.7855 34.3385
Sunflower 17.2892 16.9590 16.5076 15.7101 15.5392
Rape for biodiesel 30.3974 29.8744 29.1429 27.8740 27.4346
Pesticide =~ Wheat 38.2961 38.4685 38.2939 39.6159 40.5457
W. barley 34.2440 33.4667 32.2534 29.8198 28.4009
S. barley 35.8032 35.9221 36.2464 37.3763 38.7243
Maize grain 21.2013 20.8870 20.2198 19.3401 19.0385
Peas 25.4073 25.3980 25.4993 26.0071 26.5557
Rape 48.9425 48.9448 47.5093 47.2836 46.8341
Sunflower 33.0321 32.2572 30.9206 28.4345 27.1430
Rape for biodiesel 32.6979 32.6561 32.7249 32.9411 33.3359
Insurance ~ Wheat 15.2919 15.0733 14.6189 14.0435 13.9757
W. barley 26.0674 25.9616 25.8126 25.8364 26.2091
S. barley 37.3002 37.3155 34.5962 35.9554 37.0673
Maize grain 33.0396 32.1092 30.6645 27.7899 26.1917
Peas 31.8069 31.7712 31.7729 31.8486 32.0717
Rape 16.9985 16.7375 16.3627 15.9292 16.0411
Sunflower 24.5492 24.1553 23.7272 22.9559 22.4507
Rape for biodiesel 31.3610 31.6164 31.5391 32.9336 34.2540
Sum 150.39 149.19 145.4417 143.41 143.43
Source: model results
Table 9. Pearson's correlation coefficient (R) for sensitivity designs
Design n°1 Design n°2 Design n°3 Design n°4 Design n°5
(base case)
Fertilizer 0.9415 0.9419 0.9425 0.9439 0.9448
Seed 0.8742 0.8744 0.8728 0.8734 0.8741
Pesticide 0.9317 0.9325 0.9337 0.9364 0.9384
Insurance 0.8706 0.8711 0.8720 0.8742 0.8761
Added value 0.9760 0.9762 0.9765 0.9771 0.9775
Sum 4.5940 4.5960 4.5975 4.6051 46110
Source: model results
Table 10. Normalized entropy indicators for sensitivity designs
Design n°l Design n°2 Design n°3 (base) Design n°4 Design n°5
S(p) 0.8892 0.9086 0.9593 0.9738 0.9783
S(w) 0.9852 0.9853 0.9853 0.9857 0.9860
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Comparison of alternative estimation models

This section presents the empirical results of the two alternative models: GME and
HPD. According to the WAPE accuracy indicator, reported in Table 11, the two
approaches come up with very similar results. The GME WP slightly outperforms the
HPD model while looking to the WAPE summed over all farms, input categories, and
products. However, its performance does not prevail as, on the one hand, the differences
between WAPEs are not significant (i.e., less than 5%) and, on the other hand, the
lowest WAPE varies between models when attention is paid to individual input
categories.

Regarding the Pearson's correlation coefficient (R), the obtained results show that
the values are higher than 0.850 for all inputs and with the two model specifications,
showing the likeness and the good predictive power of the used methods.

Table 11. Performance of the two alternative models in predicting input allocation

Weighted Absolute Percentage Error (WAPE) Pearson's correlation coefficient (R)

GME_WP HPD GME_WP HPD
Fertilizer 25.9606 27.1524 0.9425 0.9402
Seed 37.5651 36.9203 0.8728 0.8714
Pesticide 31.3911 37.9461 0.9337 0.9292
Insurance 33.9981 33.6610 0.8720 0.8699
Added value 16.5267 18.7598 0.9765 0.9755
Sum 145.4417 154.4397 4.5975 4.5863

Source: model results

The examination of model outcomes by input category and product confirms the
quite similar performance of the two alternative approaches. In fact, according to the
WAPE indicator reported in Table 12, the GME WP outperforms the HPD approach in
60% (i.e., 24 out of 40) of the cases, but in most of these cases the differences are very
slight in absolute terms.

The likeness of both approach is also confirmed when we compare the bias by
single farm, input category, and product. The GME approach outperforms in only 6,191
out of the 10,843 cases (about 55%) compared to HDP.

From this comparison, it appears that the Baysian (HPD) approach could be a good
alternative to GME estimators as it gives results close to GME with a straightforward
and transparent implementation of a priori information. As explained in Heckelei et al.
(2008), contrary to GME approach which requires a specification of support points and
their reference distributions, as well as their final weighting implied by the maximum
entropy criterion, the implementation of HPD approach necessitates the definition of
only the a priori expectations which is much easier and significantly reduces the
computational demand.
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Table 12. Weighted Absolute Percentage Error between observed and estimated input
coefficients for alternative approaches

Observed Input Weighted Absolute Percentage Error
Coefficients (WAPE)

GME WP HPD
Fertilizer Wheat 0.172 27.11 28.12
W. barley” 0.194 39.79 38.81
S. barley 0.166 31.57 38.55
Maize grain” 0.166 35.52 35.11
Peas 0.066 16.85 18.98
Rape 0.206 25.82 26.52
Sunflower” 0.110 37.59 36.41
Rape for biodiesel 0.226 29.68 36.08
Seed Wheat 0.064 34.10 33.77
W. barley 0.079 16.45 18.90
S. barley 0.084 25.67 26.42
Maize grain 0.258 37.78 35.63
Peas 0.090 31.69 3943
Rape 0.036 33.36 33.05
Sunflower 0.184 16.51 19.05
Rape for biodiesel 0.040 29.14 32.21
Pesticide  Wheat 0.161 38.29 38.14
W. barley 0.189 32.25 37.97
S. barley 0.111 36.25 35.23
Maize grain 0.108 20.22 22.43
Peas 0.151 25.50 25.49
Rape 0.235 47.51 48.46
Sunflower 0.160 30.92 36.80
Rape for biodiesel 0.256 32.72 32.50
Insurance Wheat 0.008 14.62 16.94
W. barley 0.012 25.81 26.59
S. barley 0.012 34.60 33.94
Maize grain 0.011 30.66 36.79
Peas 0.019 31.77 31.55
Rape 0.029 16.36 18.39
Sunflower 0.028 23.73 26.16
Rape for biodiesel 0.032 31.54 31.25
Add value Wheat 0.595 34.90 42.80
W. barley 0.527 35.57 35.56
S. barley 0.627 15.35 17.62
Maize grain 0.456 24.90 25.70
Peas 0.674 3341 32.71
Rape 0.494 29.45 35.17
Sunflower 0.518 32.70 32.51
Rape for biodiesel 0.445 15.86 17.76

Sum 145.4417 154.4397

Source: model results

Conclusion

In this paper, in a first step, we assessed the outcomes of the GME approach, with
and without informative prior to shed light on the role of well-defined a priori
information in improving the reliability of input allocation estimations. The GME
approach showed better results when consistent a priori information (GME_ WP) was
used, even though this performance is not always significant. The superiority of
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GME WP confirmed mainly at disaggregated level (i.e., when we examined input
allocation by single farm, input category and product) and for the products with very
few observations. The GME_ WP model outperforms in 60% out of over 10,853 cases
when compared by farm, input and product. Moreover, the GME estimator seems
insensitive to the change in support bounds when the prior expectation is well defined.
However, since the accuracy improvement related to the use of reliable prior is not very
apparent, it might be better in certain cases, mainly when these prior are not readily
available, to define ad hoc (vague) support points (i.e., GME without prior) to save time
and resources. That is, the trade-off between accuracy of estimations, cost of data
collection, and the computational burden related to each approach has to be considered
by the model developer according to context. This is in line with the proposal of Howitt
and Reynauld (2003), who suggested the use of uninformative uniform distributions as
prior when no a priori information on estimated parameters is available.

In a second step, we compared the outcomes of GME to a Bayesian approach
(HPD) which makes it possible to incorporate a priori information into the estimation
process. The main finding is that the Bayesian approach could be a good alternative to
the GME estimator. In fact, the GME approach outperforms HPD in only 55% of the
cases. This means that, not only is the difference among approaches not big enough but
there are also a large number of cases (45%) where the HPD gives better estimations.
This is in line with Heckelei et al. (2005; 2008) who suggested the use of this approach
instead of GME to solve undetermined system of equations. HPD provides results that
are close to the GME method with the advantage of a straightforward and transparent
implementation of the a priori information. In addition, from this investigation it
appears that both the GME and the HPD approaches are very useful for reconciling
heterogeneous data sources (i.e., farm accountancy data and cropping practices surveys)
in a theoretically sound way.

Based on our finding that well-defined a priori information plays a role in
improving the accuracy of GME estimation, we shall implement this procedure at a
large scale to estimate input allocation in France using FADN and CPRD data sources.
The estimated coefficients will be used in a supply model for policy analysis based on a
mathematical programming approach.
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