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Measuring technical efficiency of dairy farms
with imprecise data: a fuzzy data envelopment

analysis approach

Amin W. Mugera†

This article integrates fuzzy set theory in the data envelopment analysis (DEA)
framework to compute technical efficiency scores when input and output data are
imprecise. The underlying assumption in conventional DEA is that input and output
data are measured with precision. However, production agriculture takes place in an
uncertain environment, and, in some situations, input and output data may be
imprecise. We present an approach of measuring efficiency when data are known to lie
within specified intervals and empirically illustrate this approach using a group of 29
dairy producers in Pennsylvania. Compared to the conventional DEA scores that are
point estimates, the computed fuzzy efficiency scores are interval bound allowing the
decision maker to trace the performance of a decision-making unit at different
possibility levels.

Key words: data envelopment analysis, fuzzy set theory, membership function,
technical efficiency, a-cut level.

1. Introduction

The data envelopment analysis (DEA) approach has been extensively applied
in agriculture to measure the productive efficiency of production entities.
Charnes et al. (1978) developed the DEA methodology for measuring relative
efficiencies within a group of decision-making units (DMUs) which utilise
several inputs to produce a set of outputs. DEA constructs a nonparametric
frontier over data points so that all observations lie on or below the frontier.
A competing method for computing technical efficiency scores is the
stochastic frontier approach (SFA) developed by Aigner et al. (1977) and
Meeusen and van den Broeck (1977).
DEA approach has been favoured over the SFA for several seasons. First,

it requires no assumption about the distribution of the underlying data and
deviation from the estimated frontier is interpreted purely as inefficiency.
Second, it does not require specification of a functional form for the frontier
just as economic theory does not imply a particular functional form.
However, DEA requires detailed data about inputs and outputs. It is based

on the assumption that all input and output data are crisp, that is, all the
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observations are considered as feasible with probability one, meaning no noise
ormeasurement error is assumed (Simar 2007; Henderson andZelenyuk 2007).
Empirical analysis using DEA has increasingly used individual or household
level data derived from survey responses that are not perfectly reliable (Bound
et al. 2001). The use of survey in microdata has raised concerns about
measurement error as some variables are difficult to measure with reasonable
accuracy. For example, input and output data are usually collected by asking
respondents to recall the details of events occurring during past agricultural
seasons prior to the interview. This can introduce recall bias (under or over
reporting) in survey data. The dominance of uncertainty in agricultural
production has seen the flourish of studies of production under risk in
agricultural economics (Just and Pope 2001). Factors used in production
agriculture, such as labour, are sometimes difficult to measure in a precise
manner. Input measures are often based on accounting data even though the
definition of accounting costs differs from that of economic costs by excluding
the opportunity cost (Kuosmanen et al. 2007). Producer data may also be
available only in linguistic form such as ‘high yield’, ‘low yield’, ‘labour
intensive’ or ‘capital intensive’. The conventional DEA1 approach is very
sensitive to data measurement errors and changes in data, including outliers
and missing data, can change the efficient frontier significantly. The DEA
model does not account for statistical noise.
A number of techniques to account for the deterministic nature have been

suggested in the literature, such as the techniques for detecting possible outliers
(Cazals et al. 2002) and the stochastic programming approach (Cooper et al.
1998).Notably, Simar andWilson (1998, 2000a) introduced bootstrapping into
the DEA framework to allow for consistent estimation of the production
frontier, corresponding efficiency scores, as well as standard errors and
confidence intervals. However, as observed by Kuosmanen et al. (2007), the
statistical properties and hypothesis tests suggested by Simar and Wilson
(2000a,b) focus exclusively on the effect of the sampling of firms from the
production possibilities set, and hence, the bootstrap approach does not allow
for data errors of any kind. Therefore, there is need for a model that can
adequately represent the stochastic nature of production data at a microlevel.
This paper introduces fuzzy DEA, an approach advanced in the field of

industrial engineering, to measure technical efficiency where data are
imprecise. A group of 29 dairy producers in Pennsylvania are used to
illustrate how to empirically compute fuzzy technical efficiency scores. The
approach incorporates fuzzy set theory in the DEA mathematical program-
ming technique to compute technical efficiency indices under natural
uncertainty inherent in the production processes. Unlike the conventional

1 Here, we refer to the Banker, Charnes and Cooper (BCC) model that assumes variable
return to scale (Banker et al. 1984). The concept presented can equally be extended to the
Charnes, Copper and Rhodes (CCR) model that assumes constant return to scale (Charnes
et al. 1978).
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DEA model, with a fuzzy DEA model, the decision maker can consider
different degrees of measurement errors (possibility levels) when estimating
technical efficiency. Expert judgment expressed in linguistic variables can also
be incorporated into the fuzzy DEA models (Guo and Tanaka 2001).
Fuzzy DEA models are rare in the economics or agricultural economics

literature. A search for ‘fuzzy DEA’ in the AGRICOLA, AgEcon Search and
EconLit databases returned no items. The only recent application of fuzzy
DEA in agriculture is by Hadi-Vencheh and Matin (2011) who compute
efficiency scores for wheat provinces in Iran. Other applications of fuzzy set
theory in agricultural economics include van Kooten et al. (2001) who
proposed a fuzzy contingent valuation approach to measure uncertain
preferences for nonmarket goods. Duval and Featherstone (2002) compared
compromise programming and fuzzy programming to a traditional mean–
variance approach, and Krcmar and Van Kooten (2008) developed a
compromise-fuzzy programming framework to analyse trade-offs of economic
development prospects of forest dependent aboriginal communities. The
contribution of this paper is to allow an agricultural economist to expediently
reach an introductory understanding of fuzzy data envelopment analysis.
Analysis of technical efficiency using fuzzy DEA models is very useful to

the decision maker and presents several advantages. First, uncertainty in
measurement can be incorporated in DEA model at different degrees. Second,
linguistic variables can be incorporated into the DEA model, for example
expert judgment and environmental variables. Third, fuzzy DEA can be used
to deal with missing data, and fourth, the decision maker can trace how the
efficiency scores vary at different levels of uncertainty.
In what follows, the conventional DEA model is presented followed by the

basic concepts of fuzzy set theory and how those concepts are integrated into
the DEA framework. Then, a literature review of numerical and empirical
fuzzy DEA models is presented. The dataset is discussed next followed by
an application of the fuzzy DEA model to that data and discussion of the
results. Then, the article concludes.

2. Methodology

2.1. Conventional DEA model

Data envelopment analysis (DEA) is a nonparametric methodology for
measuring efficiency within a group of decision-making units (DMUs) that
utilise several inputs to produce a set of outputs. DEA models provide
efficiency scores that assess the performance of different DMUs either in
terms of the use of several inputs (input orientation) or the production of
certain outputs (output orientation). The input-oriented DEA scores vary in
[0, 1], the unity value indicating the technically efficient units (Leon et al.
2003). The assumption underlying DEA is that all data assume specific
numerical values.
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Consider N decision-making units, DMUj, where j = 1… N. Each DMU
consumes input levels xij, i = 1… M, to produce outputs levels yrj, r = 1… S.
Suppose that xj = [x1j…, xMj]

T and yj = [y1j…, ySj]
T are the vectors of input

and output values for DMUj, where xj � 0 and yj � 0. The relative
efficiency score of the DMUo, o 2 {1,…,N}, is obtained from the following
input-oriented DEA model that aims at reducing the input amounts by as
much as possible while keeping at least the present output levels:

MinZ ¼ h subject to : hxio �
XN
j¼1

kjxij;8i; ; yro�
XN
j¼1

kjyrj; 8r; ; kj � 0 ð1Þ

where k indicates the intensity levels which make the activity of each DMU
expand or contract to construct a piecewise linear technology (F€are et al.
1994). The DMUo is technically efficient if and only if h = 1, otherwise the
DMUo is inefficient. There is an extensive literature on classical DEA models
and Cooper et al. (2007) provides a comprehensive review of some of the
accomplishments and future prospects of DEA. A major drawback of the
DEA model is that the computed relative efficiency scores are very sensitive to
noise in data. Any outlier or missing value in the data may cause the efficiency
measure of most DMUs to change drastically (Kao and Liu 2000a,b). This
makes an approach that is able to deal with inexact numbers, numbers in
range or vague measures desirable. Fuzzy set theory can be incorporated in
the DEA framework to deal with imprecise data in both the objective
function and constraints.

2.2. Fuzzy set theory

Optimisation techniques often used in economics are ‘crisp’ in that a clear
distinction is made in a two-valued way between feasible and infeasible, and
between optimal andnonoptimal solutions (Zimmerman 1994). The techniques
do not allow for gradual transition between these categories, a limitation often
referred to as the problem of artificial precision in formalised systems (Geyer-
Schulz 1997). Bellman and Zadeh (1970) were the first to suggest modelling
goals and/or constraints in optimisation problems as fuzzy sets to account for
uncertainty and fuzziness of the decision-making environment.
Fuzzy set theory is a generalisation of classical set theory in that the

domain of the characteristics function is extended from the discrete set {0, 1}
to the closed real interval [0, 1]. Zadeh (1965) defined a fuzzy set as a class of
objects with continuum grades of membership. Suppose X is a space of
objects, and x is a generic element of X. A fuzzy set, ~A, in X can be defined as
the set of ordered pairs:

~A ¼ fðx; uAðxÞÞjx 2 Xg; ð2Þ
where uA(x): X?M is the membership function and M is the membership
space that varies in the interval [0, 1]. The closer the value of uA(x) is to one,
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the greater the membership degree of X to ~A. However, if M = {0, 1}, the set
A is nonfuzzy2 (Triantis and Girod 1998). A fuzzy set ~A can be defined
precisely by associating with each object x a number between 0 and 1, which
represents its grade of membership in A. Thus, uA(x) = 1 if x is totally in A,
uA(x) = 0 if x is not in A, and 0 < uA(x) < 1 if x is partly in A.
Fuzzy set theory3 is based on several topological concepts that are beyond

the scope of this paper. The interested readers are referred to Kaufmann and
Gupta (1991) and Zimmerman (1994) for an introduction to fuzzy sets theory
and fuzzy mathematical models. However, terms like fuzzy sets, membership
functions and fuzzy numbers will be used several times, but no real knowledge
of the theory of fuzzy sets is required. Basic concepts relevant to understand
this paper are defined:

1 A set in conventional set theory, A, such as a set of large dairy farms (x)
that produce at least 1000 L of milk per day is represented as
A ¼ xjmilkðxÞ� 1000f g. A universal set, U, is the set from which all
elements are drawn, for example, all dairy farms. The conventional set is
defined such that the elements in a universe are divided into two groups:
members (those that do belong to it) and nonmembers (those that do not
belong).

2 A fuzzy set, drawn from U, allows its elements to belong to A at various
degrees, with ‘1’ implying a full belongingness and ‘0’ implying no
belongingness. For example, from U ¼ x1 ¼ 500; x2 ¼ 900; x3 ¼ 1200f g,
we can have a crisp set A ¼ x3 ¼ 1200f g and fuzzy set
~A ¼ x1 ¼ 500; 0:5ð Þx2 ¼ 900; 0:9ð Þ; x3 ¼ 1200; 1ð Þf g. The values 0.5, 0.9
and 1 are membership functions, uA(x), and represent the grade of
membership of x1, x2 and x3 to the set A ¼ xjmilkðxÞ� 1000f g. The term
‘large dairy farms’ here is vague and vary depending with the perception of
an individual. Therefore, farms x1 and x2 can be considered large farms
too but with degrees of membership 0.5 and 0.9.

3 A fuzzy number is a quantity whose value is imprecise, rather than exact as
is the case with single-valued numbers. Generally, a fuzzy number is a
fuzzy subset of a real number, R, which is both normal and convex where
normal implies that the maximum value of the fuzzy set in R is 1. It has a
peak or plateau with membership grade 1, over which the members of the
universe are completely in the set. The membership function is increasing
towards the peak and decreasing away from it. Fuzzy numbers can be
represented as linear, triangular, trapezoidal or Gaussian. In practice,
triangular fuzzy numbers are used commonly used because they can easily
be specified by the decision maker.

2 This rule outs degree of belongingness. It implies that x belong to the set 100% (1) or is not
a member of the set (0).

3 Fuzzy set theory focusses on how to deal with imprecision or inexactness analytically. The
imprecision here is nonstatistical or nonprobabilistic (Levine 1997).
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4 A triangular fuzzy number, ~A, is a number with piecewise linear
membership functions u ~AðxÞ defined by:

u ~AðxÞ ¼

0;x < pl

x�pl

pm�pl ;p
l � x� pm;

pm�x
pu�pm ;p

m� x� pu;

0;x > pu

8>>><
>>>:

ð3Þ

5 This can be denoted as a triplet (pm, pl, pu) where pm, pl, pu are the centre,
left spread and right spread of the number. Figure 1 illustrates an example
of a triangular fuzzy number. Letting ~A and ~B to be two triangular fuzzy
numbers denoted by (al, am, au) and (bl, bm, bu), it follows that ~A� ~B if and
only if al � bl, am � bm. and au � bu.

6 The a-cut level of a fuzzy set is a crisp subset of X that contains all the
elements of X whose membership grades are greater than or equal to the
specified value of a. This is denoted by ~Aa ¼ fðx; u ~AðxÞÞju ~AðxÞ� a; x 2 Xg.
Each a-cut level of a fuzzy number is a closed interval which can be
represented as L að Þ;U að Þ½ �, where L(a) is the lower bound and U(a) is the
upper bound at a defined a-cut level, a. A family of a-cut levels determines a
fuzzy number.

7 Therefore, using fuzzy mathematics, the interval of confidence at a given a-
cut level, where L is lower bound and U is upper bound, can be
characterised as:

8a 2 0 : 1½ �;Aa ¼ L ¼ aðpm � plÞ þ pl;U ¼ pu � aðpu � pmÞ� �
To illustrate concepts (3–6), assume that we want to define a medium dairy

farm as one producing an average of 1000 kg of milk a day. Suppose we set
the lower and upper bounds to 500 and 1500 kg. Letting x represent the
average kilos of milk produced per day, the linear membership function in
concept (4) can be represented as:

Figure 1 A theoretical triangular fuzzy number. Note: L = pl + a(pm � pl) and U = pu � a 9

(pu � pm).
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u ~AðxÞ ¼
0; x < 500
x�500

1000�500 ; 500� x� 1000;
1500�x
1500�100 ; 1000� x� 1500;

0; x > 1500

8>>><
>>>:

Therefore, if x < 500 or x > 1500, the degree of membership is zero. If x is
700 or 1300, the degree of membership is 0.4, and if x is 900 or 1000, the
degree of membership is 0.8. This implies that at uA(x) = 0.4, the lower and
upper bounds of x are L að Þ;U að Þ½ � ¼ 700; 1300½ �:
Likewise, at uA(x) = 0.8, we have [L(a), U(a)] = [900, 1100]. The family of

the uA(x) levels determines the fuzzy number that defines a medium dairy
farm. Concept 6 provides a simple way of determining the lower and upper
bounds at any given a-cut level. For instance, at uA(x) = 0.8, we can compute
the lower and upper bounds as follows:

8a 2 0 : 1½ �;Aa ¼ L ¼ aðpm � plÞ þ pl;U ¼ pu � aðpu � pmÞ� �
) 0:8ð1000� 500Þ þ 500; 1500� 0:8ð1500� 1000Þ½ � ¼ 900; 1100½ �

Therefore, it follows that the fuzzy number defined by a-cut level = 0.8 is a
subset of the fuzzy number defined by a-cut level = 0.4.

2.2.1. Fuzzy DEA with triangular membership functions
Consider the conventional DEA model in equation 1 with the exception that
the inputs and outputs are fuzzy where, ‘~’, indicates fuzziness.4 Suppose
the input and output are triangular fuzzy numbers represented by
~xij ¼ ðxlij;xmij ;xuijÞ and ~yrj ¼ ðylrj; ymrj ; yurjÞ. Kao and Liu (2000a) developed a
method to find the membership function of the efficiency scores when the
observations are fuzzy numbers based on the idea of the a-cut level and Zadeh’s
extension principle.5 The main idea is to transform the levels of inputs and
outputs such that the data lie within bounded intervals, that is ~xij 2 ½xLij ;xUij � and
~yrj 2 ½yLrj; yUrj �whereL andU represent the lower and upper bounds, respectively.
Therefore, equation 1 can be reformulated, taking into consideration the fuzzy
data, as:

MinZ ¼ ~hs:t : ~h~xio�
XN
j¼1

kj~xij; 8i; ; ~yro �
XN
j¼1

kj~yrj;8r; ;
X

kj ¼ 1;kj� 0 ð4Þ

The above model can be expanded to indicate the centre, lower and upper
bound values as follows:

4 The presented fuzzy model provides measures of weak efficiency because inefficiency
represented by nonzero slacks is omitted when measuring technical efficiency. However, the
concepts presented can be integrated in a slack-based DEA model to compute strong efficiency
measures that allow for nonzero slacks.

5 The extension principle states that the classical results of Boolean logic are recovered from
fuzzy logic operations when all fuzzy membership grades are restricted to the classical set
{0, 1}.
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MinZ ¼ ~hs:t :

ð~hxmio ; ~hxlio ; ~hxuioÞ�
XN
j¼1

kjx
m
ij ;
XN
j¼1

kjx
l
ij ;
XN
j¼1

kjx
u
ij

 !
8i;

ðymro ; ylro ; yuroÞ�
XN
j¼1

kjy
m
rj ;
XN
j¼1

kjy
l
rj ;
XN
j¼1

kjy
u
rj

 !
8r;

X
kj ¼ 1; kj� 0

ð5Þ

This model is fuzzy and the usual linear programming method cannot solve
it without being defuzzified.6 The a-cut level and extension principle are used
to defuzzify the model by transforming the fuzzy triangular numbers to ‘crisp’
intervals that are solvable as a series of conventional DEA models as follows:

MinZ ¼ h subject to :

½hðaxmio þ ð1� aÞxlioÞ; hðaxmio þ ð1� aÞxuioÞ� �Xn
j¼1

kjðaxmij þ ð1� aÞxlijÞ;
Xn
j¼1

kjðaxmij þ ð1� aÞxuijÞ
" #

8i;

½hðaymro þ ð1� aÞylroÞ; hðaymro þ ð1� aÞyuroÞ� �Xn
j¼1

kjðaymrj þ ð1� aÞylrjÞ;
Xn
j¼1

kjðaymrj þ ð1� aÞyurjÞ
" #

8i;
X

kj ¼ 1; kj� 0

ð6Þ

The model is solved by means of comparing the left-hand side (LHS) and
right-hand side (RHS) of each equality/inequality constraint. The main
advantage of the a-cut level approach used in this paper is that it provides
flexibility for the analyst to set their own acceptable possibility levels for
decision-making in evaluating and comparing DMUs. Zadeh (1978) sug-
gested that fuzzy sets could be used as a basis for the theory of possibility
similar to the way that measurement theory provides the basis for the theory
of probability. The fuzzy variable is associated with a possibility distribution
in the same manner that a random variable is associated with a probability
distribution. Therefore, the computed fuzzy efficiency scores are viewed as a
fuzzy variable in the range [0, 1].
The main advantage of the FDEA is the ability to deal with imprecision in

data (i.e. incompleteness of information). Rather than representing uncertain
information by approximation, flexible data structures such as fuzzy numbers
can be used. The FDEA approach makes it possible to converts fuzzy data
into interval data that can be integrated into the DEA framework and

6 Equation (5) is a possibility problem and would require possibility programming to solve.
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analysed using the linear programming model. The main disadvantage of this
approach is that it requires the analyst to have prior and accurate knowledge
of the units being analysed and their environment in order to detect data
imprecision and formulate interval data using fuzzy set theory.

3. Literature review

Sengupta (1992) was the first to propose a mathematical programming
approach where fuzziness was incorporated into DEA by allowing the
objective function and the constraints to be fuzzy. The stochastic DEA model
was to be solved using chance-constrained programming and required the
analyst to supply information on expected values of variables, the variance–
covariance matrices of all variables, and the probability levels at which the
feasibility constraints are to be satisfied. This method was difficult to
implement due to those data requirements.
Triantis and Girod (1998) suggested a mathematical programming

approach that transforms fuzzy inputs and outputs into crisp data using
membership function values. Efficiency scores would then be computed for
different membership functions and averaged. Hougaard (1999) suggested an
approach that allows the decision maker to include other sources of
information such as expert opinion in technical efficiencies computation.
Kao and Liu (2000a) suggested the use of a-cut level sets to transform fuzzy
data into interval data so that the fuzzy model becomes a family of
conventional crisp DEA models. This approach was much similar to Guo and
Tanaka (2001) who proposed a fuzzy CCR model in which fuzzy constraints,
including fuzzy equalities and fuzzy inequalities, were all converted to crisp
constraints by predefining different possibility levels.
Lertworasirikul et al. (2003) proposed a possibility approach in which

fuzzy constraints are treated as fuzzy events, and a fuzzy DEA model is
transformed into a possibility DEA model by using possibility measures on
fuzzy events. Saati et al. (2002) adopted the a-cut level approach, defined the
fuzzy CCR model as a possibility-programming problem and transformed it
into an interval programming problem. This model could be solved as a crisp
linear programming model and produce crisp efficiency score for each DMU
and for each given a-cut level. All the above authors used numerical examples
to illustrate the application of the proposed fuzzy DEA approach.

4. Data

Fuzzy DEA is applied to compute the technical efficiency scores of 29 dairy
farms in Pennsylvania using the a-cut level approach. The dairy producers use
three inputs (land, labour and cows) to produce two outputs (milk and
butterfat). The original data had 34 decision-making units, but five units were
dropped after testing for outliers using the Wilson (1993, 2010) approach.
The data are obtained from Strokes et al. (2007) who used the conventional

© 2013 Australian Agricultural and Resource Economics Society Inc. and Wiley Publishing Asia Pty Ltd

Measuring fuzzy technical efficiency scores 509



DEA to computed technical efficiencies, assuming that either the data are
precise or the relationship between inputs and outputs is deterministic.
However, the authors hint that the data may not be precise, ‘Due to the
structure of the dataset it was not possible to determine whether all resources
such as land or labor were utilized by the dairy operations (pp. 2558)’.
To illustrate the application of fuzzy DEA, uncertainty is introduced in the

data by representing the inputs and outputs as symmetrical triangular fuzzy
numbers with a fuzzy interval. The input and output data can be represented
as pairs consisting of centres and spreads as ~xij ¼ ðxmij ; eijÞ and ~yrj ¼ ðymrj ;brjÞ,
respectively.7 A representation of the input/output relationship is simply:

~Y(milk, butterfat) ¼ ~X(land, labor, cows); ð7Þ

where ~Y and ~X are matrices of the fuzzy outputs and inputs. The data are
listed in Table 1. The spread for each variable is generated as a random
number using the random number generator in R. For the purpose of this
study, we assume that the spread for labour is a random number between 0.1
and 0.5. The spread for cows is between 1 and 5 and that of land is between 1
and 15. The spread of milk is between 0 and 191 and for butterfat is between 0
and 10. In practice, the spread can be determined by eliciting expert
knowledge on the accuracy of collected data.8 The decision maker can
construct the lower bound, centre and upper bound of each variable based on
the following criteria: (i) the most pessimistic value (lower bound) which has a
very low likelihood of belonging to the set of available values; (ii) the most
possible value (centre) that definitely belongs to the set of available values;
and (iii) the most optimistic value (upper bound) that has a very high
likelihood of belonging to the set of available values. The membership
function is applied to those triplet values to generate a triangular possibility
distribution for each variable; the function will vary from zero and one and
represent the degree to which a specific variable (input or output) is close to
the most optimistic value.
Empirical studies on data accuracy can also be used to determine

reasonable spreads. For example, Berry et al. (2005) used a control dataset
consisting of 58,210 cows in Ireland to investigate the effect of reduced
milking frequencies on the accuracy of computing 305-day milk and fat yields
and to determine the accuracy of predicting milk and fat yields from
alternative recording schemes. The mean error in estimating 305-day yield
from records that are updated every 8 weeks was 6.8 kg (standard deviation
of 191 kg) for milk yield and 0.3 kg (standard deviation of 10 kg) for fat
yield. Those standard deviation values are used to determine the spread of

7 Symmetric fuzzy numbers means that the upper and lower spreads are equal, that is
xlij ¼ xuij ¼ eij

8 It is not possible to suggest rules on how the spread should be chosen because this will vary
from case to case. This is where the role of expert knowledge of the system being analysed is
very important in determining degree of inaccuracy in data.
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milk and fat yield in our illustration. Figure A1 presents the average butterfat
expressed as triangular fuzzy number.
We follow a three-stage approach to compute the technical efficiency scores.

In the first stage, the inputs and outputs are expressed in terms of symmetrical
triangular fuzzy numbers and membership functions at six different a-cut
levels ranging from 0 to 1. Prespecified intervals of 0.2 are used. In the second
stage, the classical DEA model is re-formulated as a series of DEA models in
terms of the membership functions for each of the fuzzy input and output
variables following equation (6). The adopted model is presented in the
appendix. In the third stage, fuzzy technical efficiency scores are computed

Table 1 Inputs and outputs used in the fuzzy DEA analysis models

DMU Labour
(FTE)

Cows Land (ha) Milk
production (kg)

Butterfat
production (kg)

Farm1 2.66 70 98 734,300 26,040
Farm2 3.06 67 97 585,312 22,579
Farm3 3.59 72 38 595,224 22,968
Farm4 1 60 48 600,600 23,520
Farm5 2.8 180 166 1,605,240 59,400
Farm6 2 112 66 1,114,736 40,208
Farm7 1.6 40 109 297,840 12,080
Farm8 2.28 55 105 514,910 18,535
Farm9 4.71 118 121 1,063,888 40,946
Farm10 1.8 55 19 498,685 17,435
Farm11 2 58 57 499,090 19,662
Farm12 2 87 63 795,876 29,232
Farm13 1.8 40 36 272,080 10,480
Farm14 2 53 136 446,949 15,794
Farm15 4.18 249 257 1,827,411 73,206
Farm16 1.6 43 40 366,790 13,029
Farm17 1.38 55 101 373,725 14,080
Farm18 1.6 36 85 175,320 6,588
Farm19 1.9 44 60 326,744 13,068
Farm20 1.51 54 81 450,900 17,010
Farm21 1 98 121 921,788 35,770
Farm22 1.65 36 89 257,976 9,612
Farm23 1.67 54 147 237,114 8,370
Farm24 3.2 110 127 1,097,910 38,390
Farm25 1 64 51 732,032 25,920
Farm26 3.72 110 42 989,450 38,720
Farm27 1.93 81 80 907,281 33,210
Farm28 2.17 56 74 392,840 14,952
Farm29 2 71 61 474,919 18,034
Farm30 1 30 45 183,150 7,350
Farm31 2 82 52 441,078 16,564
Farm32 2 73 113 572,612 20,294
Farm33 3 143 126 1,293,435 50,479
Farm34 1.15 62 86 534,502 19,964
Mean 2 77 88 652,403 24,514
SD 1 45 47 396,973 15,283
Minimum 1 30 19 175,320 6,588
Maximum 5 249 257 1,827,411 73,206

Source: Strokes et al. (2007).
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for different membership functions to track how the relative efficiency scores
of each farm varies at different possibility levels. The Benchmarking package
in R is used to solve the different linear programming problems.

5. Empirical results

Each farm was evaluated at different a-cut level from zero to one at both the
lower and upper bounds. The lower bound and upper bound input reducing
technical efficiency scores haið Þ are presented in Tables 2 and 3. The input and
output data were assumed to be imprecise, and, therefore, the computed
efficiency scores are fuzzy too. In general, with some few exceptions, the lower
bound technical efficiency scores ðEjiÞLai decrease as the membership function
shifts the input and output data from the most precise measurement (a = 1)
to the most imprecise measurement (a = 0). The upper bound scores ðEjiÞUai
increase as a decrease from 1 to 0. The closer a approaches 1 the greater the
level of possibility and the lower the degree of uncertainty is. The fuzzy
efficiency scores lie in a range, and the different a-cut levels indicate those
intervals and the uncertainty level associated with precision in data.
Specifically, a = 0 has the widest interval. On the other hand, the value of
a = 1 is the most likely value of efficiency score.
Using the a-cut level approach, the range of a farm’s efficiency score at

different possibility levels is derived. For example, the efficiency scores for
Farm 1 at a-cut level = 1 is 0.918. This deterministic case assumes precision in
measurement. At a-cut level = 0.8, the efficiency score range is [0.861, 0.927].
This indicates that it is possible that the efficiency score of Farm 1 will fall
between 0.861 and 0.927 at the possibility level of 0.8. The range of the
efficiency score at the extremes (a = 0) is [0.872, 0.962]. This implies that the
efficiency score of Farm 1, relative to other farms, will never exceed 0.962 or fall
below 0.872. Results of the other farms at different possibility levels can be
interpreted in similar manner. As the degree of uncertainty in data measure-
ment increases, what we observe is that in general, the technical efficiency
scores will tend to be underestimated in the lower bound and overestimated in
the upper bound. However, the Fuzzy DEA is also able to discriminate farms
that will be affected differently. For example, the technical efficiency of Farm
15 is overestimated as the degree of uncertainty increases in the lower bound
and underestimated in the upper bound. The technical efficiency of Farm 16
remains stable in the lower bound but unstable in the upper bound and that of
Farm 9 is stable in the upper bound but unstable in the lower bound.
Figure 2 illustrates the membership function of the average triangular

fuzzy efficiency scores for the 29 farms. Figure 3 plots the best practice
frontiers for the upper bound (dashed lines) and lower bound (dotted lines)
membership functions of inputs and outputs at a = 0.9 This represents the
extreme range that the frontiers defining the relative technical efficiency scores

9 Simple summation is used to construct the aggregate outputs and inputs.
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of each farm are expected to shift due to imprecision in data. The shift of the
frontier at 0 < a < 1 would fall within this range and would keep on
narrowing as a approached 1.
The results from the fuzzy DEA model provide more information to the

decision maker compared with the point estimates from the conventional
DEA model. The analyst can observe the variation of the technical efficiency
profile of each farm from the impossible value when a-cut level = 0 to the
risk-free value when a-cut level = 1. For example, only nine farms (i.e. Farms
4, 5, 8, 18, 21, 22, 23, 26 and 28) have technical efficiency scores that define
the frontier at all a-cut levels. The analyst can also identify those farms that
will be affected differently due to imprecision in data.
The computed fuzzy efficiency scores need to be ranked in order to

determine how each farm performs relative to the other farms in an uncertain
environment. The ranking of the fuzzy efficiency scores can be compared with

Table 2 Lower bound technical efficiency scores at varying a-cut levels

Lower bound membership function value ðEjÞLai
DMU h1 h0.8 h0.6 h0.4 h0.2 h0 Average

Farm1 0.918 0.909 0.900 0.891 0.882 0.872 0.895
Farm2 0.864 0.861 0.857 0.854 0.849 0.844 0.855
Farm3 0.892 0.878 0.863 0.848 0.833 0.817 0.855
Farm4 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm5 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm6 0.967 0.961 0.956 0.950 0.939 0.927 0.950
Farm7 0.919 0.912 0.905 0.898 0.887 0.875 0.899
Farm8 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm9 0.906 0.900 0.895 0.889 0.883 0.876 0.892
Farm10 0.856 0.852 0.848 0.844 0.840 0.836 0.846
Farm11 0.982 0.982 0.982 0.983 0.983 0.984 0.983
Farm12 0.874 0.878 0.881 0.882 0.879 0.877 0.879
Farm13 0.994 0.990 0.985 0.980 0.974 0.968 0.982
Farm14 0.769 0.766 0.763 0.760 0.755 0.749 0.761
Farm15 0.833 0.845 0.857 0.869 0.882 0.896 0.864
Farm16 0.920 0.921 0.922 0.922 0.922 0.920 0.921
Farm17 0.883 0.886 0.889 0.892 0.892 0.889 0.888
Farm18 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm19 0.962 0.976 0.992 1.000 1.000 1.000 0.988
Farm20 0.617 0.619 0.621 0.622 0.619 0.615 0.619
Farm21 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm22 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm23 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm24 0.784 0.778 0.772 0.765 0.758 0.749 0.768
Farm25 0.713 0.706 0.698 0.691 0.684 0.677 0.695
Farm26 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm27 0.741 0.734 0.726 0.718 0.707 0.697 0.721
Farm28 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm29 0.870 0.853 0.849 0.845 0.841 0.836 0.849
Average 0.906 0.904 0.902 0.900 0.897 0.893 0.900
Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.617 0.619 0.621 0.622 0.619 0.615 0.619

The table reports the lower bound input reducing technical efficiency scores at various a-levels.
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the ranking of scores of the conventional DEA model in order to discriminate
which decision-making units are sensitive to the variation of the inputs/
output variable measurement inaccuracy. We use the Chen and Klein (1997)
ranking method to compute an index, I, for ranking fuzzy numbers as:

Ij ¼
PN
i¼0

ððEjÞUai � cÞ
PN
i¼0

ððEjÞUai � cÞ �PN
i¼0

ððEjÞLai � dÞ
� � ;N ! 1; ð8Þ

where c =mini;j ðEjiÞLai
n o

and d ¼ maxi;j ðEjiÞUai
n o

. The lower bound and upper

bound efficiency indices are represented by ðEjiÞLai and ðEjiÞUai. A larger index

Table 3 Upper bound technical efficiency scores at various a-cut levels

Upper Bound Membership Function Value ðEjÞUai
DMU h1 h0.8 h0.6 h0.4 h0.2 h0 Average

Farm1 0.918 0.927 0.936 0.945 0.954 0.962 0.940
Farm2 0.864 0.867 0.866 0.864 0.863 0.861 0.864
Farm3 0.892 0.906 0.920 0.933 0.945 0.958 0.926
Farm4 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm5 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm6 0.967 0.972 0.974 0.977 0.979 0.981 0.975
Farm7 0.919 0.926 0.933 0.939 0.946 0.952 0.936
Farm8 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm9 0.906 0.911 0.911 0.911 0.911 0.912 0.910
Farm10 0.856 0.860 0.864 0.868 0.872 0.876 0.866
Farm11 0.982 0.982 0.982 0.982 0.983 0.983 0.982
Farm12 0.874 0.871 0.868 0.865 0.862 0.859 0.866
Farm13 0.994 0.997 0.999 1.000 1.000 1.000 0.998
Farm14 0.769 0.772 0.777 0.797 0.815 0.831 0.794
Farm15 0.833 0.823 0.812 0.802 0.793 0.792 0.809
Farm16 0.920 0.919 0.915 0.911 0.907 0.903 0.912
Farm17 0.883 0.880 0.875 0.871 0.866 0.862 0.873
Farm18 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm19 0.962 0.948 0.936 0.923 0.911 0.900 0.930
Farm20 0.617 0.635 0.666 0.693 0.717 0.738 0.678
Farm21 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm22 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm23 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm24 0.784 0.790 0.795 0.799 0.803 0.808 0.797
Farm25 0.713 0.719 0.726 0.733 0.740 0.749 0.730
Farm26 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm27 0.741 0.749 0.756 0.764 0.771 0.778 0.760
Farm28 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Farm29 0.870 0.890 0.908 0.923 0.937 0.949 0.913
Average 0.906 0.908 0.911 0.914 0.916 0.919 0.912
Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Min 0.617 0.635 0.666 0.693 0.717 0.738 0.678

The table reports the upper bound input reducing technical efficiency scores at various a-levels.
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indicates the fuzzy number is more preferred. The Chen–Kleins method is
used to compute the ranking indices for each farm. The ranking is compared
with a ranking of the crisp technical efficiency indices from the classical DEA
model, and the results are presented in Table 4. The Chen–Klein ranking
index gives similar results compared with the ranking of crisp technical
efficiency scores. The Spearman rank correlation of the two ranking methods
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Figure 2 The empirical average triangular fuzzy efficiency scores for the 29 dairy operations.
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Figure 3 Best practice frontiers at a-level = 0. The dotted line represent the lower variable
returns to scale frontier at a-level = 0. The dashed line represent upper variable returns to scale
frontier at a-level = 0.
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is 0.99 and is significant at <1%. Figure 2A illustrates the strong correlation
between the Chen–Klein ranking index and the crisp technical efficiency
scores.

6. Conclusions

The main objective of this paper was to introduce fuzzy DEA models by
literature review and application as an alternative for analysing the
productive efficiency of agricultural entities in an uncertain environment.
Fuzzy DEA models were found to be applicable when expert judgment or
environmental variables (linguistic variables) need to be incorporated into the
conventional DEA model, when there are missing data and when the
measurement of the data is imprecise.
An empirical example of symmetrical triangular membership functions

was used to illustrate the application of fuzzy DEA to a group of 29 dairy
farms in Pennsylvania. The a-cut level approach was used to convert the
fuzzy DEA scores into crisp scores. The fuzzy DEA model was able to
discriminate the farms whose efficiency performance is sensitive to variation

Table 4 Ranking of the crisp and fuzzy efficiency scores

Rank DMU Chen–Klein index CCR technical efficiency

1 Farm4 1.000 1.000
2 Farm5 1.000 1.000
3 Farm8 1.000 1.000
4 Farm18 1.000 1.000
5 Farm21 1.000 1.000
6 Farm22 1.000 1.000
7 Farm23 1.000 1.000
8 Farm26 1.000 1.000
9 Farm28 1.000 1.000
10 Farm13 0.964 0.962
11 Farm11 0.954 0.982
12 Farm6 0.954 0.994
13 Farm19 0.877 0.967
14 Farm16 0.788 0.920
15 Farm7 0.759 0.919
16 Farm1 0.755 0.918
17 Farm9 0.729 0.906
18 Farm3 0.695 0.883
19 Farm17 0.679 0.892
20 Farm12 0.671 0.874
21 Farm29 0.660 0.870
22 Farm2 0.628 0.864
23 Farm10 0.616 0.856
24 Farm15 0.583 0.833
25 Farm24 0.433 0.784
26 Farm14 0.422 0.769
27 Farm27 0.335 0.741
28 Farm25 0.267 0.713
29 Farm20 0.134 0.617
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in the inputs/outputs. Compared to the classical DEA model, results from
the fuzzy DEA model allow for a determination of robustness and might
lead to recommendations that are more rigorous.
We conclude by arguing here that it will be interesting to apply empirical

fuzzy DEA models in the field of agricultural economics using the a-cut level
approach. Given the incomplete knowledge of input and output measures
often used in DEA models, fuzzy DEA models will provide agricultural
economists with an additional tool for efficiency analysis. Uncertainty always
exists in human thinking and judgment. Research in efficiency and produc-
tivity analysis should apply recent advancements in DEA that address current
concerns. Fuzzy DEA can play an important role for performance evaluation
of decision-making units when data are imprecise.
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Appendix

TE (LN,LB,CW,MK,BT) ¼ Min h

subject to :

Constraints

hðaLNm
io þ ð1� aÞLNl

ioÞ�
P34
j¼1

kjðaLNm
ij þ ð1� aÞLNl

ijÞ;

hðaLBm
io þ ð1� aÞLBl

ioÞ�
P34
j¼1

kjðaLBm
ij þ ð1� aÞLBl

ijÞ;

hðaCWm
io þ ð1� aÞCWl

ioÞ�
P34
j¼1

kjðaCWm
ij þ ð1� aÞCWl

ijÞ;

hðaMKm
i0 þ ð1� aÞMKl

ioÞ�
P34
j¼1

kjðaMKm
ij þ ð1� aÞMKl

ijÞ;

hðaBFm
io þ ð1� aÞBFl

ioÞ�
P34
j¼1

kjðaBFm
ij þ ð1� aÞBFl

ijÞ;P
kj ¼ 1; kj � 0; hj � 0

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

TE (LN,LB,CW,MK,BT) ¼ Min h

subject to :

Constraints

hðaLNm
io þ ð1� aÞLNu

ioÞ�
P34
j¼1

kjðaLNm
ij þ ð1� aÞLNu

ijÞ;

hðaLBm
io þ ð1� aÞLBu

ioÞ�
P34
j¼1

kjðaLBm
ij þ ð1� aÞLBu

ijÞ;

hðaCWm
io þ ð1� aÞCWu

ioÞ�
P34
j¼1

kjðaCWm
ij þ ð1� aÞCWu

ijÞ;

hðaMKm
io þ ð1� aÞMKu

ioÞ�
P34
j¼1

kjðaMKm
ij þ ð1� aÞMKu

ijÞ;

hðaBFm
io þ ð1� aÞBFu

ioÞ�
P34
j¼1

kjðaBFm
ij þ ð1� aÞBFu

ijÞ;P
kj ¼ 1; kj � 0; hj � 0

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

where LN = Land, LB = Labour, CW = Cows, MK = Milk and BF = But-
terfat, 0 � a � 1 is the a-cut level, 0 < h � 1 is the efficiency index,
subscripts l, m and u indicate the lower, centre and upper bounds of the fuzzy
number.
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