%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

GJAE 63 (2014), Number 4

A New Graphical User Interface Generator for Economic
Models and its Comparison to Existing Approaches

Ein neues Werkzeug zur Erstellung Graphischer Oberflachen
fur okonomische Modelle und sein Vergleich zu bestehenden

Ansatzen

Wolfgang Britz
University of Bonn, Germany

Abstract

The paper discusses the role of Graphical User Inter-
faces in economic modelling and specifically the de-
velopment of a new Graphical User Interface Genera-
tor for applications realized in GAMS (General Alge-
braic Modelling System), a widely used Algebraic
Modelling Language for (bio-)economic simulation
models. It motivates the development of GGIG (Gams
Graphical Interface Generator) by reviewing existing
approaches. In opposite to frameworks available for
environmental and Agent Based Modelling, GUI ge-
nerators for more classical economic models seem to
be scarce. GGIG aims at a fast development process
not requiring programming skills where simple user
operable controls are defined in an XML file such that
GAMS based projects can add easily a GUI. It com-
prises quite versatile exploitation tools for interactive
reporting (tables, graphs and maps) including a ma-
chine learning package plus useful utilities, e.g. to
generate a HTML based GAMS code documentation
or batch execution. In opposite to other approaches,
GGIG strictly separates the GUI and GAMS code, but
does not offer IDE functionality. Applications to
CAPRI, a rather complex model, and some smaller
projects seem to show that researchers without formal
programming training are able to develop and modify
a GUI for their models, while model users can be
quickly trained in GGIG based GUIs.

Key Words

Graphical User Interface;
Algebraic Modelling Language

Economic Modelling;

Zusammenfassung

Der Aufsatz diskutiert die Bedeutung Grafischer
Benutzeroberflachen in der 6konomischen Modellie-
rung, insbesondere die Entwicklung eines neues
Werkzeugs zur Erstellung Grafischer Oberflachen fir

Anwendungen basierend auf GAMS (General
Algebraic Modelling System), einer weitverbreiteten
Algebraischen Modellierungssprache fir (bio-)6ko-
nomische Simulationsmodelle. Er motiviert die Ent-
wicklung von GGIG (Gams Graphical Interface Ge-
nerator) vor dem Hintergrund eines Uberblicks alter-
nativer Ansatze. Im Gegensatz zu bestehenden Pro-
grammiergerusten fir umwelt- oder agentenbasierte
Modellierung scheinen nur wenige Werkzeuge zur
Erstellung von Benutzeroberflachen klassischer 6ko-
nomischer Modelle verfiighar zu sein. GGIG zielt auf
einen schnellen Entwicklungsprozess, der keine
Kenntnisse in der Programmierung voraussetzt und
auf der Definition einfacher Bedienelemente in einer
XML-Datei basiert, wodurch sich ohne grofRen Auf-
wand eine Nutzeroberflache zu einem GAMS-Projekt
erstellen lasst. GGIG enthélt darliber hinaus recht
vielseitige Instrumente zur Erzeugung interaktiver
Ergebnisauswertungen (Tabellen, Grafiken und Kar-
ten) einschlielllich eines Paketes maschineller Lern-
verfahren sowie zusétzlich Dienstprogramme, z.B. zur
Erstellung einer HTML basierten Dokumentation des
GAMS-Codes oder zur Batchausfiihrung. Im Gegen-
satz zu anderen Ansatzen trennt GGIG klar zwischen
dem GAMS-Code und der Nutzeroberflache, bietet
dafiir aber auch keine Funktionen einer Integrierten
Entwicklungsumgebung an. Die Anwendung von
GGIG in CAPRI, einem recht komplexen Modellsys-
tem, und einigen kleineren Projekten legen es nahe,
dass Forscher ohne formale Programmierkenntnisse
mittels GGIG Benutzeroberflachen fir ihre Modellen
entwickeln und pflegen kénnen, wéahrend Modellan-
wender sich schnell in die Nutzung der Oberflachen
einarbeiten.

Schliisselworter

Graphische Nutzeroberflache; 6konomische Modellie-
rung; Algebraische Modellierungssprache

271

GJAE 63 (2014), Number 4

1 Introduction

The demand for quantitative policy assessments
is currently growing, as governments increasingly
face legal obligations for impact assessments (e.g.
EU, 2009), which frequently involve the use of eco-
nomic simulation models. One implication is that new
staff, who was not previously involved in the devel-
opment of a specific model, needs to be trained in
model application or at least analysis. There are, how-
ever, not too many examples of policy-relevant eco-
nomic models which succeeded in attracting users
beyond the group of (original) developers and staff
directly supervised by them, such as graduate
students. GTAP (HERTEL, 1997) is probably the best-
known case. Another example for the transition from
development and use by developers to continuous
policy-relevant application by non-developers
provides the so-called iMAP (integrated Modelling
Platform for Agro-Economic and Policy Analysis,
M’BAREK et al., 2012) platform. The platform hosts
both partial equilibrium models such as ESIM, BANSE
et al., 2005; CAPRI, BRITz and WITzKE, 2012, and
AGMEMOD, SALAMON et al., 2008, and several
Computable General Equilibrium models (GTAP;
MAGNET, VAN MEIIL and WOLTIER, 2012; GLOBE,
MCDONALD et al.,, 2012; RegCge, BRITZ, 2012).
IMAP aims at providing a scientific basis for policy
decision-making linked to the economic assessment of
the Common Agricultural Policy and related topics
such as trade, energy, environment, and climate
change.

The reason why certain models, such as those
mentioned above, are used continuously, also beyond
their developers, or are proposed by clients for appli-
cations while others might never provide policy-
relevant results clearly depends on many aspects.
These include a sound methodology; appropriate ex-
tent and resolution in space, time and with regard to
products and processes; the provision of policy-
relevant indicators or detail in depicting policy in-
struments (cf. PODHORA et al., 2013). Software as-
pects (BRITZ, 1999) also play a critical role, specifi-
cally with regard to software usability (cf. ABRAN,
2003). 1S09241-11, 1998 defines software usability as
“the extent to which a product can be used by speci-
fied users to achieve specified goals with effective-
ness, efficiency and satisfaction in a specified context
of use”. Software usability clearly affects learning
costs and, therefore, the ease with which new model
users can be trained.

The paper focuses on these technical aspects and
specifically on the role of Graphical User Interfaces
(GUIs). Beyond a more general discussion on the use
of GUIs for economic models, partly drawing from
the examples mentioned above, the paper also pre-
sents a new freeware tool to build GUIs for economic
models, currently available for models written in GAMS
(General Algebraic Modelling System, BROOKE et al.,
1988) or the statistical language R (IHAKA and GEN-
TLEMAN, 1996). A structured discussion on experi-
ences with that tool named GGIG (Gams Graphical
Interface Generator, BRITZz, 2014a), and its predeces-
sor, the CAPRI GUI, provide further empirical evi-
dence for a more general discussion. The paper is
organized as follows: the next section discusses se-
lected software aspects. Section 3 analyses the role of
GUIs and discusses options available for GAMS-
based models for model steering and result analysis,
before presenting GGIG in section 4. Section 5 pro-
vides a short comparison to alternative solutions and
discusses experiences with GGIG and the CAPRI
GUI. Finally, a summary is provided in section 6.

2 Selected Software Aspects in
Agricultural Economic Modelling

Partial and general equilibrium models at a larger,
often global scale, but also bio-economic farm
and hydro-economic models typically use ALMSs
(Algebraic Modelling Systems, KALLRATH, 2012).
KALLRATH (2012) describes an ALM as “Roughly
speaking, a modelling language serves the purpose of
passing data and a mathematical model description to
a solver in the same way that people, especially math-
ematicians, describe those problems to each other”.
AMLs are especially useful if data transformation and
equations are structurally identical, e.g. across regions
and products. Table 1 presents technical details on
some well-known policy relevant models in agricul-
tural economics. The majority of the models use either
the AMLs GAMS or GEMPACK (HARRISON and
PEARSON, 1996), with GEMPACK being far more
specialized and targeted to CGEs. Econometrically
estimated economic models such as AGLINK-
COSIMO or FAPRI often simulate within the same
econometric package used for estimation.

The core of an economic simulation model en-
coded in an ALM consists of numerical problem(s)
that require a simultaneous solution for all equations.
This contrasts with environmental models that often

272

GJAE 63 (2014), Number 4

Table 1. Software aspects of selected models relevant for agricultural policy/market analysis
Model Short characterization Simulation language GUI
GTAP Global, trade oriented CGE GEMPACK (GAMS version | runGTAP (PEARsON et al.,
available) 2003)

MAGNET GTAP variant with a focus on Europe and GEMPACK Proprietary (WOLTJER, 2013)
the CAP

GLOBE Global CGE GAMS -

ESIM Multi-Commaodity model, strictly template | GAMS -
based

AG-MEMOD Multi-Commaodity model, single equation GAMS GSE based (SALAMON et al.,
based 2008)

AGLINK-COSIMO Multi-Commaodity model, single equation TROLL Visual Basic/EXCEL based
based (COSIMO template based)

FAPRI Multi-Commaodity model, single equation EXCEL, SAS (cf. Moss et Result analysis in EXCEL
based al., 2011)

CAPRI Regional/Farm type programming models GAMS GGIG
linked with Multi-Commodity model and
regional CGEs, all strictly template based

Note: BRiTz et al. (2013) provide a detailed comparison of the result exploitation part of GTAP, AGLINK-COSIMO and CAPRI. Where
no reference is given, information is based on personal communication with model authors.

integrate smaller components and are solved recur-
sively in space and time, which asks for a modular
design. That might partly explain the evolvement of
frameworks for environmental models (LANIAK et al.,
2013a), often targeting specific application domains
(LANIAK et al., 2013b) and with a focus on inter-
operability of individual modelling components. These
frameworks typically support tool development in-
cluding GUIs as well as result visualization®. Similar
packages (cf. RAILSBACK et al., 2006) exist for Agent
Based Modelling (ABM). Compared to economic
models, the resolution of environmental models in
space and/or time is often higher, but the number of
items simulated tends to be smaller. With dynamic
and/or spatial aspects often in focus, time series
graphs and/or maps are widely used for visualization.
Contrary to that, the simultaneous solution ap-
proaches in economic models tend to combine all
variables and their relations present in the overall
problem in one module. CGEs and Multi-Commodity
models solve for many items such as different types of

! The thematic issue on “The Future of Integrated Model-

ing Science and Technology” of Environmental Model-
ling and Software, Vol. 39 provides an excellent over-
view on the current state-of-the-art and visions in that
field. It is interesting to note that very few of the 26 ar-
ticles in the thematic issue touch also upon economic
optimization models (e.g. KNAPEN et al., 2013, on the
use of OpenMI, BULATEWICZ et al., 2013, on integrating
scripting languages such as MATLAB into OpenMI
which also more widely used by economists).

prices, output generation, primary factor and interme-
diate input use, trade, demand categories, differentiat-
ed by product and space, and eventually time. All
CGEs and also the partial equilibrium models (ESIM
and CAPRI) mentioned above are therefore rather
strictly build in a template structure. This means that
model equations are structurally identical across space
and products, and where applicable across periods,
while differences are expressed in parameters. AMLs
allow efficient coding of such template based models.
For economic models, tabular presentations or bar
charts with relative changes are widely used to depict
results, in order to assess the linkages across markets
and items. However, also economic models with a
higher spatial resolution often use maps for result
visualization, whereas (recursive) dynamic models
tend to rely on time series graphs. BRITZ et al. (2013)
provide a comparison of GUIs with a focus on result
visualization such that these aspects are not discussed
in detail in the following.

Besides differences rooting in the solution strate-
gy, software solutions supporting modelling in differ-
ent disciplines reflect different traditions to document
and describe models. Economists rely mostly on
equations, and, therefore, favour AMLs, whereas
environmental modellers more often additionally use
graphical presentations, such as flow charts. They
might, therefore, favour object-oriented approaches
or even frameworks that allow building models with
the help of GUIs (cf. RICHMOND and PETERSON,
1997). Thus, both software use and result analysis

273

GJAE 63 (2014), Number 4

are linked closely to structural properties of the under-
lying models as well as disciplinary traditions. How-
ever, path dependencies can also play an important
role.

In agricultural economics, the AML language
GAMS is widely applied (BRITZ and KALLRATH,
2012), also for tools with a focus on environmental
interactions such as bio-economic single farm models
(cf. JANSSEN et al., 2010) or global land use models
(cf. HAVLIK et al., 2013). Contrary to many packages
used in environmental and ABM modelling, GAMS is
a commercial, non-open source product. It provides
transparent interfaces to solvers and supports a com-
pact, set-driven presentation of data transformation
and models, along with a rather powerful scripting
language. GAMS is shipped with a basic Integrated
Development Environment (IDE, a software tool
which supports code development by e.g. specialized
editors) and simple tools to inspect the content of pro-
prietary data bases. GAMS does however not com-
prise a GUI generator. Commercial GAMS applica-
tions in different domains® such as electricity grid
optimization (ANG, 2004), portfolio optimization for
electric utilities (REBENNACK et al., 2010), gas trans-
mission optimization (DE WOLF and SMEERS, 2000) or
chemical engineering (MORARIA and GROSSMANN,
1991) are often integrated in a software environment
already featuring a GUI. Therefore, it might not pay
off for GAMS to develop a GUI generator (see also
BRITZ and KALLRATH, 2012); instead, GAMS offers
Application Programming Interfaces (APIs)® which
allow integrating GAMS into other software frame-
works.

Therefore, there exists no default GUI solution
for GAMS-based tools. That leads to proprietary solu-
tions such as BAzzANI (2005) for a water management
tool or the GUI (BRITz, 2011) for CAPRI (Common
Agricultural Policy Regionalized Impact Model,
BRITZ and WITzKE, 2012). BRITZ et al. (2013) review,
with a focus on result analysis, GUI solutions of three
large-scale economic simulation models - partly real-
ized in GAMS - and conclude that the development of
common GUI tools might be advantageous, to avoid
costly duplicate coding efforts and combine efficient
and innovative solutions of existing GUIs. However,
not much is available in the market in that respect. To
the best knowledge of the author, so far only DoL

2 Publicly documentation of commercial applications is

scarce, possibly as the detailed knowledge constitutes a
competitive advantage.

see http://www.gams.com/dd/docs/api/

(2006) has developed with GSE (Gams Simulation
Environment, cf. DoL and BouMA 2006) a generic
tool with GUI functionalities for GAMS models.
Other approaches, such as SEAMLESS-IF (VAN
ITTERSUM et al., 2008; KNAPEN et al., 2013) or SIAT
(VERWELW et al., 2010) — which wrap a layer around a
GAMS application to integrate them into an Open-MI
based architecture — target larger modelling tool for
integrated assessments which incorporate different
components.

But is it possible to develop a generic GUI gener-
ator for (bio-) economic models using GAMS which
is on the one hand easy enough to handle for GAMS
coders while on the other hand flexible and powerful
enough to make its use attractive? What are the alter-
natives? Does it pay off to add a GUI to GAMS-based
tools? Against this background, this paper documents
and discusses a new interface generator for GAMS
and R-based applications termed GGIG, coupled to
exploitation tools and additional utilities such as for
HTML based code documentation. In the next section,
its development is motivated and main functionalities
discussed, drawing a comparison to alternative solu-
tions.

3 GUIs for GAMS-based Economic
Models

3.1 Why a GUI?

Since GAMS is not shipped with a GUI generator,
the default solution to steer GAMS-based applications
consists of using a text editor to change specific
sections of the code. To do this, users need familiarity
with GAMS and detailed knowledge on the code
structure of the economic model. Here, GUIs can
decrease learning costs for users which need not to
familiarize themselves with the details of the under-
lying code (cf. ABRAN et al., 2003). Such detail refers
e.g. to the mnemonics used in the code — the names of
symbols and labels —, and the file structure. Indeed,
traditional training for specific economic models often
comes close to learning a new language. In that case
the trainee needs to memorize a new vocabulary of
parameter, variable and equation names as well as
labels used for products, regions and items; often in
combination with a new grammar, i.e. a software
language such as GAMS and how it is specifically
applied in the model. A well-designed GUI introduces
a layer accessible to users which shields details of the
technical implementation from the user such that the

274

GJAE 63 (2014), Number 4

conceptual knowledge about the economic model is
sufficient for its successful application. Additionally,
it is typically faster to operate controls on a GUI
compared to changing GAMS code with a text editor.
Learning costs for a GUI are typically low if it is
based on the look and feel of a normal windowed
application.

Decreased learning costs might be important in a
university or other research environment with a higher
staff turnover, to allow e.g. graduate student to apply
models or to contribute to their further development.
That especially matters if model use expands beyond
the team of (original) developers to economists
involved in policy-relevant applications. As such,
introducing a GUI might be part of the transition
process of moving tools from development to
application.

Steering a complex model by manual edits
directly in the code also increase the chance of errors,
especially if steering options are distributed across
files: the operator might have forgotten to reverse
changes from earlier runs or to introduce all the
changes necessary for the intended application.
Contrary to that, a GUI shows all options available
(hopefully in a appropriately ordered and compact
way) on the interface itself. A GUI can also prevent
steering errors by restricting input choice, e.g. by
attaching numerical ranges to input editors. GUI
generators might also offer additional specific utilities
targeted to the use of GAMS or another language.
Available GUIs for GAMS tools also comprise
reporting tools which can speed up debugging,
analyzing and publication of quantitative results. That
might hence open the chance for class-room use of
more complex models, typically hard to realize if
results can only be accessed from inside the modelling
software.

Adding a GUI to a tool can also support code
development. Constructing a GUI forces the coder to
clearly define which settings the user can change for a
certain type of application, along with their allowed
ranges. Equally, a GUI will typically pass these
settings in one block to a language such as GAMS,
such that ideally only one file changes between runs
which supports a clear separation of input and
software code. It also eases the use of a software
versioning system, as run specific edits in a whole set
of files are avoided.

GUI development can also help to reflect more
clearly how to modularize the production chain of an
economic model (data input and transformation, prepa-

ration of an ex-ante baseline, parameter estimation or
calibration, scenario definition, simulation runs, post-
model processing, exploitation), and to define clear
input-output relations between these different steps.
Producing output reports of each step which can be
inspected by the GUI supports quality management
through introduction of logical breakpoints where
(intermediate) results are inspected. Efforts to support
a clear code structure are specifically important in
GAMS projects, as the language only allows for
global symbols and basically does not support sub-
routines or functions.

Most of the reflections above are not specific to
GAMS, but hold for any economic simulation model,
either implemented in another AML, an econometric
package or another computer language. Indeed,
GGIG, the package discussed below, now also
supports project results in the econometric package R
and was also linked to a Java-based ABM, whereas
components of GSE, i.E. a similar system, can be used
with GAMS and GEMPACK.

3.2 Options to Steer GAMS-based Tools
and Exploit their Results

The following section briefly compares four basic
options found in practise to steer GAMS-based tools:
(1) no GUI, (2) simple EXCEL/Visual Basic based
solutions, (3) GUI generators specifically designed to
interact with GAMS and (4) proprietary solutions for
a specific tool.

The perhaps most widely used approach is no
GUI at all, i.e. to steer the GAMS application by
adding or changing settings directly in the code. The
disadvantages were already mentioned above. It has
clearly the lowest development costs and does not
require knowledge beyond the one needed to develop
the GAMS code itself. Of the models mentioned
above, only ESIM and GLOBE seem to rely on that
solution. It might be the appropriate one if only
developers already familiar with the code use the
model and/or if the code base is relatively small and
there are not many settings to change, such that the
learning costs to oversee the full code are small.

A proprietary GUI, i.e. one specifically
developed for one tool, gives the highest flexibility
with regard to layout and functionality, but is also the
most costly alternative. Most research groups
developing GAMS code are not familiar with the
progamming languages, libraries or GUI builders
needed to develop a GUI. This means that external
expertise must be hired, which can lead to substantial

275

GJAE 63 (2014), Number 4

transaction costs. More over, economic models are
typically permanently updated, for example in
response to (proposed) policy changes. That might
provoke changes in GUIs to reflect modifications in
the GAMS code. As updates take time, GUIs coded
by third parties typically lag behind the model’s code
development. Indeed, cost and time to synchronize
changes in the model’s code with a GUI is one
possible reason why GUIs attached to economic
models were sometimes given up again (cf. BRITZ et
al., 2013). That clearly motivates a solution where
GAMS coders can generate and change the GUI
themselves. Of the models mentioned above, GTAP
and MAGNET use a proprietary GUI. CAPRI has also
over years been based on a proprietary solution, and
AGMEMOD as well features its own user interface
(VAN LEEUWEN et al., 2012), which is however
closely linked to GSE. All these systems are rather
large, and receive(d) considerable funds for develop-
ment and maintenance, which might explain why
proprietary solutions could be developed and kept
alive.

Packages such as GSE and GGIG are specifically
designed to build GUIs for GAMS based tools. They
are thus less flexible compared to a proprietary
solution, but require far less time and limited
knowledge to build a GUI. They also aim at allowing
the GAMS coders themselves to synchronize code and
GUI development. The use of that type of GUI does
not necessarily require GAMS knowledge. Besides
the examples discussed below based on GGIG, the
CCAT tool (Cross Compliance Assessment Tool)
project (BouMA et al., 2010) realized in GSE provides
an example about GUIs built with such as GUI
builder.

Alternatively, tool developers have developed
solutions building on a GAMS<->EXCEL interface
delivered with GAMS. Users edit numerical values
in predefined EXCEL cells, from where their input
is read by GAMS. Combined with a Visual Basic
application which starts GAMS, that allows building
of a rudimentary GUI for GAMS model. Visual
Basic would also allow to introduce user operable
controls and check their input. A similar solution
is reported for AGLINK-COSIMO (OECD, 2007),
which is realized in TROLL, an econometric language
which also does not feature an own GUI-builder.
These solutions tend to deliver a Look and Feel
distinctely different from a normal Windows program,
while requiring expertise in Visual Basic program-
ming.

4 GGIG: A GAMS Graphical
Interface Generator

4.1 Background

Since 1999, a Java based proprietary GUI is available
for CAPRI, a large-scale, global agricultural economic
model with a focus on Europe which comprises also
environmental modules, including a spatial down-
scaling component (LEIP et al., 2008) covering
150,000 1x1 km clusters linked to bio-physical model-
ling (BRITZ and LEIP, 2009). GAMS is used for basi-
cally all numerical operations in CAPRI: data fusion,
model set-up and solution as well as post-model pro-
cessing. The GUI attached to CAPRI emerged slowly
over years. Its exploitation part is based on interactive
reports (tables, graphics and maps), produced from
multi-dimensional parameters read from GDX files, a
proprietary binary format from GAMS for which APls
are available. These reports are defined in an XML
file which rendered the exploitation part generic
enough to use it already in the past for e.g. an eco-
nomic agricultural model for Benin (KUHN et al.,
2010) or a Morrocan river basin model (HEIDECKE
and HECKELEI, 2010). Drawing on the positive
example of the XML-based report generator, the aim
of developing GGIG was twofold: first, to provide a
new, generic concept for GUI generation for GAMS
based tools which can be applied not only to CAPRI,
but also to other GAMS-based economic models.
That included the goal to overcome certain
disadvantages of the proprietary solution available for
CAPRI. Second, to integrate functionalities developed
originally only for CAPRI into the GUI generator in
order to port them also to other projects using GAMS.
The development of GGIG and the preceding
CAPRI GUI were thus not based on a formal user
requirement analysis. Instead, core CAPRI GAMS
code developers developed its GUI in parallel to the
model code and improved it over time based on
feature requests and feedback by CAPRI users. The
annual CAPRI training sessions where both core
CAPRI users and newcomers come inter alia together
to analyse scenarios based on the GUI provided a
forum to both get feedback on the GUI and to observe
how people (learn to) use the GUI. The somewhat
informal development process also reflects the fact
that there are no commerical interests involved as the
GGIG binaries and CAPRI* are distributed for free.

* Further information on GGIG along with a fully opera-

tional downloadable didactic example can be found at:

276

GJAE 63 (2

4.2 General Concept and Figure

014), Number 4

1. Overview on information flow in GGIG

Current Applications

Two major object classes underlie the

Controls and Settings

GGIG

GGIG

R definition file Control
general concept of the steering part of . — Generator
GGIG®: (1) tasks which are linked to n
GAMS applications, and (2) user opera- GAMS

ble controls (checkboxes, sliders, spinner,
single and multi-lists, editable tables, text
fields, file selectors), derived from stand-
ard Java Swing components (cf. ROBIN-
SON and VOROBIEV, 2003), typically

include file

Project specific
e
GUI
GAMS Exploitation
executable
tools

shared by several tasks. GGIG transforms
the state of these controls into a standard-
ized presentation in GAMS language con-
structs, sent to a GAMS application based
on a file to be included (see figure 1)°. The

GAMS
project code

Meta data
Numerjcal results

GUI developer defines objects of these
two classes in a XML file — the GGIG
controls and settings definition file — from
which GGIG builds the GUI. The user can execute a
task as a GAMS application from the GUI which also
shows run time messages from GAMS. The reporting
part then allows merging of results from different runs
and exploiting their results. As discussed below,
GGIG offers additional utilities for working with
GAMS-based models.

The overall layout of the GUI is standardised and
unchangeable, see Figure 2. It comprises the follow-
ing main elements: (1) a menu bar to change project-
wide settings (such as directories, the GAMS version
to use, SVN related information, user name and type)
and to access utilities (discussed below); (2) a work
step and task selection panel on the left hand side;
(3) a right hand side panel which either shows:
(a) controls, a button panel to start GAMS and a win-
dows capturing GAMS output, (b) a panel to select
result sets (see the left hand side of Figure 5 below) and
to start their exploitation or (c) the exploitation tools
(see the example on the right hand side of Figure 5).

The project specific XML file defines the work
steps, tasks and controls available to the user. Equally,

http://www.ilr.uni-bonn.de/agpo/staff/britz/ggig_e.htm.
For information on CAPRI see: http://www.capri-mo
del.org.

The following section draws to a large extent on the
GGIG manual, written by the author, from which also
figures are copied.

The GUI can also be used to steer tasks in the econo-
metric package R, in which case R code is generated
from the control setting, such that it can provide a GUI
for tools project which use both R and GAMS.

Source: own elaboration

the reports shown in the exploitation tools are task
specific. Whereas the grouping of the controls is ra-
ther free, the fixed standard layout underlying GGIG
forces the GUI developer to structure its GAMS pro-
ject into work steps and tasks. That is a deliberate
restriction guiding also the code development of a tool
such that it reflects a logical sequence of steps, for
example, data base compilation, baseline develop-
ment, model calibration and counter-factional runs.

As opposed to Java GUI generators such as Win-
dowBuilder’, GGIG offers quite limited layout possi-
bilities and no WYSIWYG (What You See Is What
You Get). That reflects the aim to let model users
develop a simple GUI for their own purposes. The
declaration of a control, therefore, comprises solely
a few attributes, which reduces learning costs (see
Figure 3 which shows the most commonly used ones
for an example).

4.3 GAMS Application Steering

As discussed above, the user steers GAMS applica-
tions by operating the controls provided by GGIG.
Specific options for controls in GGIG should help to
reduce steering errors. First, the input for any control
requiring numerical input can be restricted to a prede-
fined input range; file selection can be limited based
on a REGEX mask. Second, there is an n to one rela-
tion between GAMS applications (= mains) and a task

" WindowBuilder is a GUI builder for JAVA which works

as an Eclipse plugin (http://www.eclipse.org/window
builder/).

277

GJAE 63 (2

Figure 2. The main window of a GGIG based GU

014), Number 4

| File Settings Utilities GUI Help

CgeRegEU+ worksteps General settings | Methodological switches |

*) Calibration CgeRegEU+ General settings

@ Simulation

CgeRegEU+ tasks

© Run policy experiment Scenario description | cge_no_shock

Base year CAPRI |04

v

Simulation year CAPRI | 20

v

Baseline scenario CAPRI MTR_RD

>

m

Use seperate threads | | Countries

[compleGams | startGams | stopGaMs | Exploitresuits

GAMS Graphical User Interface

Generator
Woifgang Britz
2012

Universty Bonn

ILR

Institute for
Food and

Resource Economics |

1

| Ini file : regcge.ini | User name : undefined

| User type : runner

Source: screenshot from GGIG generated GUI

in GGIG. If an application is used in different
“modes”, e.g. for model calibration versus simulation,
each mode can receive an own task and thus set of
controls. That is also the only way to introduce rela-
tions between controls in GGIG. Third, default val-
ue(s) for each control can be registered and, fourth,
depending on the user level (exploiter, runner, admin-
istrator, developer, debugger) tasks and controls
can be hidden or disabled. Indeed, under the ex-
ploiter level, a user can solely exploit results and

of settings as an appropriate GAMS symbol), all other
settings are passed as a “SETGLOBAL key value”
pair to GAMS. That gives the coder high flexibility in
handling the settings in GAMS. Additionally, all set-
tings are passed as strings via a SET declaration to
GAMS (see Figure 4) which provides thus a complete
meta-information on the run. The application can store

Figure 4. Example of meta information generated

by GGIG and passed to GAMS

does even not see any control. The settings of all
controls are sent in one block to GAMS. That
renders it easy to write GAMS code for more
complex crosschecks across control settings and to
report the error back to the user from GAMS.
With the exemptions of tables and n from m

SET s _META 7

‘Workstep® ‘Run scenarios’

‘Task® 'Simulation’

‘Date and time' '2813-85-88 14:59:48°

‘Scenario description' ‘HoHumans®

‘Humber of years' '5.8°

‘Water rights, updated according to lake lewel'
‘Solution printing' ‘Suppress’®

I

‘on"'

selection (which require to pass a vector or matrix

Figure 3. Example for a XML definition of a

control in GGIG

that information with numerical results in a GDX
container for later inspection. The GUI also re-

<control>
<Type>checkBox</Type>

<Ualue>false</Ualue’>
<gamsHame>useFarmnTypes</gamsHame>
<tasks>
HSMU baseline,
Downscale scenario results
<ftasks>
<fcontrol>

<Title>Downscale farm type results<{/Title>

members the state of the user operated controls and
further input between sessions.

4.4

The exploitation tools offer different types of
views: tables, graphs and maps. The user can add
relative or absolute differences to element(s) in one
or different dimensions and export views to clip

Exploitation

278

GJAE 63 (2014), Number 4

board and different file formats. Tables support e.g.
pivoting, filtering, sorting, basis statistics and showing
statistical outliers and allow adding long labels, units,
pop-up explanatory texts and links to a section in a
PDF file. Table items can carry a hyperlink, e.g. for
navigating through a sequence of tables with increas-
ing detail. Additionally, users can for example choose
fonts and number formatting. The graphs (e.g. line,
bar, box-and-whisker and spider charts, heat maps and
histograms) build on the JFreeChart® library and are
user configurable, for example with regard to fonts,
transparency or colouring. Maps allow for different
classification and colouring options, and support some
more unusual formats such as flow maps (see Figure 5)
or bar charts embedded in a map. A utility allows
importing geometries in Shapefile format for use with
the mapping viewer. For a detailed description of the
exploitation tools see the GGIG (BRITz, 2014b) and
CAPRI (BRITZ, 2014c) user manuals. Tasks in GGIG
can define filters when selecting result sets from a
disk; Figure 5 presents an example taken from the
CAPRI GUI, which also shows a flow map.
Additionally, the exploitation part transparently
integrates the WEKA machine library (WITTEN et al.,
2011). It provides a powerful set of filtering, cluster-
ing and classification algorithm as well as related
visualization tools from machine learning, and

Figure 5.

|4 CAPRI [t\britz\capri\gams]
File Settings Utilities GUI Help
CAPRI worksteps
Build database
Generate baseline

Result exploitation

BL Belgum and Luxembourg” ~
DK ‘Denmark”™
DE "Germany”
EL "Greece"
ES "Span”
Country selection FR "France”
IR “Iriand™

© Run scenario

CAPRI tasks
Generate expost results
Define scenario

© Run scenario with market model
Run scenario without market model
Downscale scenario results
Run policy experiment with CGE

T Ttaly™
. The Netheriands®
AT "Austria®
Scenario 1 RES_2_0420MTR_RD

o

Regonallevel PRI
s

Scenario 3

Base year selection 08 Scenario 4

Scenario 5

Show meta Show results

Ini file : caprinew.ini User name : undefined User type : runner

Scenario 2 RES_2_0420MTR_RDNOPIL1

allows for a data driven approach to explore relations
between results loaded in the viewer.

4.5 Further Functionalities

GGIG supports further functionalities originally
developed for the CAPRI GUI and now generalized
to work with other GAMS projects: (1) batch mode,
(2) automated code documentation in HTML,
(3) SVN updates, (4) a viewer for GDX files and
(5) an equation and variable viewer for GAMS
models.

The first two might deserve some further expla-
nation. The batch mode allows running a sequence of
tasks without using the GUI, such as different simula-
tion runs, while it documents in a HTML file which
tasks were started, their settings and return codes. The
generated include files and the GAMS listings of each
task are saved for later inspection. The underlying
batch steering file can be constructed by copy and
paste from generated include files. The code docu-
mentation generator generates a HTML site with in-
terlinked pages for each GAMS file, GAMS symbol
and tasks, similar to javadocg. That allows, for exam-
ple, finding out for a certain parameter or variable in
which tasks and files it is defined, used or changed.
The HTML page also collects SVN information on
each file.

Example of a result selection panel and map view generated by GGIG

mmm

http://www.jfree.org/jfreechart

° Cf.
doc/

http://agile.csc.ncsu.edu/SEMaterials/tutorials/java

279

GJAE 63 (2014), Number 4

5 Discussion

5.1 Short Comparison of GGIG to
Modelling Frameworks and other
GUI Generators

Compared to frameworks used in environmental mod-
elling or the libraries used for ABMs, GGIG serves a
far more limited task: it allows solely adding some
basic GUI functionalities to a GAMS project. It does
not support interactive graphical development of
model code or a graphical GUI generator. Further-
more, the interaction between GGIG and the GAMS
code of the model is rather limited: GGIG solely gen-
erates a typically rather small include file, spawns the
GAMS application as a separate process and shows it
run-time output on screen. Finally, it can read results
from several GAMS runs from disk to exploit them.
Therefore, GGIG does not pass objects in memory
back and forth to the model. Accordingly, GGIG typi-
cally requires very limited changes to the GAMS
code, such that the GAMS application can still be
used alternatively within the GAMS IDE or started by
another application. CAPRI, to give an example, was
steered in the context of another project by a client-
server based GUI (RizzoLl et al., 2009). GGIG is
portable between those platforms supported by both
GAMS and Java.

Perhaps the product that is most similar to GGIG
is the GSE tool by DoL (2006). Both target GAMS
projects, but their basic concepts seem rather differ-
ent. GSE combines functionalities of an IDE (e.g.
editing, visual presentation of links between files,
version control), a GUI and a reporting tool. Overall,
GSE seems more powerful, but learning costs and the
effort to implement GSE into a project are probably
also higher. Whereas GGIG is steered by XML files to
define controls, tasks and the reporting views, the GUI
in GSE seems to be mostly set up by introducing
steering tags as comments in the GAMS code. GGIG
might be somewhat more versatile with regard to ex-
ploitation possibilities.

Similar to runGTAP, a GUI developed for the
GTAP modelling system, GSE keeps a strong link
between the data structure present in the GAMS code
and the visualization. That clearly fits a more IDE-
focused profile. The exploitation tools of GGIG, in
contrast, are set up to work more similar to a data
mining tool, i.e. the reports are not (necessarily) struc-
tured according to data structures present in the under-
lying GAMS model. That somewhat increases learn-
ing costs for that part of GGIG, and, in order to fully

exploit the potential of the exploitation tools, requires
an appropriate structuring of the results in GAMS.

5.2 Experiences with GGIG

Examples of projects which use GGIG beyond
CAPRI, in chronological order, provide a small
partial equilibrium model for the global poultry
market (WIECK et al., 2012); FARMDYN, a detailed
single farm bio-economic model (LENGERS and
BRITz, 2012); a hydro-economic river basin model
(KuHN, 2012) and a prototype GAMS version of
the AGLINK-COSIMO model. Furthermore, the
FADNTOOL project (http://www.fadntool.eu) has
recently opted to use GGIG for a tool that combines
different economic models, partly realized in GAMS
and partly in R, which all use Farm Accounting Net-
work Data. Table 2 reports some key properties of
these current projects known to the author where
GGIG is applied. It shows that the use cases and thus
the aims linked to the application of GGIG somewhat
differ. Equally, it highlights larger differences in the
complexity of the generated GUIs when assessed by
the number of tasks, controls and views defined in the
XML files steering. A view as reported below refers
to one predefined table, map or graph to exploit results.

Based on these examples, experiences with
GGIG so far will be reported and analyzed for three
use cases of increasing complexity (see Table 3):
(1) analyzing results, (2) model runs, and (3) setting
up a GUI interface and extending it. The table below
classifies these use cases with regard to the knowledge
needed and tries to generalize to what extent a GUI
might reduce learning costs, referring to arguments
from section 2. Details for the use cases will be dis-
cussed next.

The first use case refers to analysis of existing re-
sults. The user does not need to run the economic
model, which also means in the case of GGIG that no
GAMS or R installation is necessary, only a working
Java Run Time Engine (JRE) is needed. GGIG allows
(pre)selecting a user role “exploiter” where all model
steering controls are hidden. Only such tasks are visi-
ble for which existing result sets can be located.
Accordingly, the user only sees drop-down boxes to
select result sets, e.g. from different scenario runs, and,
if defined in the XML file, selection box e.g. for years
or countries. If locations on disk are relative in pre-
sets, one can copy a work installation of a GGIG GUI
along with result files e.g. from USB stick to a com-
puter, and the user can immediately start the interface,
as long as the JRE is correctly installed. That renders

280

GJAE 63 (2014), Number 4

Table 2. Properties of projects applying GGIG

Project # of tasks (T), Users Main aim of using GGIG

controls (C)

and views (V)
CAPRI (large scale partial | T: 25, C: 145 developers, runners, Replace proprietary GUI to allow GAMS
equilibrium model) V: 182 analysts coder to change GUI
Global poultry equilibrium | T: 1, C: 20 developers Test of GGIG, ease result analysis
model V: 16
FARMDYN, detailed bio- | T:4, C: 173 developers Support modular code development, ease
economic farm model V: 28 model application and result analysis
AGLINK-COSIMO in T:11,C: 28 developers, project Support modular code development, ease
GAMS V: 28 reviewer testing, show that GAMS based model im-

plementation can be easily linked to GUI

LANA-HERBAMO (river | T:2,C: 19 developers Ease model application and result
basin model) analysis
GTAP in GAMS with T:6,C:28 Students as developers, | Ease coding, model application and
GGIG runners and analysts result analysis

Source: own research

Table 3.

GUI use cases and related knowledge w/o GUI

Use case Knowledge needed independent

of GUI use

Contribution of GUI to
reduced learning costs

Additional knowledge needed
without GUI

Model results Market and policy intelligence,

analysis economic theory, methodological
overview on model
Model runs Additionally: details on

methodology
First GUI set-up

GUI extension

Potentially very high

Depending on model
from high to almost zero

Negative, not needed
without GUI

Negative, not needed
without GUI

At least mnemonics and file
location/structure of results

Maximal: Model language, file
structure, mnemonics;
Minimal: zero

Source: own research

it quite easy to organize trainings with regard to result
analysis.

The yearly 2-3 days CAPRI training sessions
from the last decade provide ample observations for
that use case, as the exploitation tools of the proprie-
tary CAPRI GUI are identical to GGIG. Generally,
users learn relatively fast to work with the exploitation
tools. Typically, a one to two hour instruction was
sufficient to teach the basic functionalities, for exam-
ple, how to load a set of results from different scenar-
ios, to navigate between different views, to produce a
map or table with relative changes, or to export results
to clipboard.

These short instructions also covered some con-
tent related information, for example, where to find
and how to interpret results on prices, market balanc-
es, trade, farm activities, or environmental indicators.
With that background, users with sufficient domain
knowledge, i.e. with regard to agricultural policies and

markets while being trained in economic reasoning,
were able to analyse complex scenarios with the ex-
ploitation tools without having any technical know-
ledge about CAPRI (mnemonics, code structure etc.).
The participants mentioned these points also regularly
in feedback rounds. They were quite diverse with
regard to their pre-existing knowledge on economic
modelling or software use. The same observations
were made in block courses with PhD students.

Over the years, some desk officers in the EU ad-
ministration received a 2-3 hour introduction of how
to exploit CAPRI results based on its GUI and after-
wards analyzed results without any experienced user
being available. That situation is different from train-
ing sessions or a block course where participants can
both support each other and draw on the expertise of
the trainers. The experiences of these users thus un-
derline further that learning time for that type of GUI
seems to be limited. The positive experiences from the

281

GJAE 63 (2014), Number 4

training session, classroom use and individual applica-
tions underline that GUIs can indeed help to improve
accessibility to results of economic model.

The second use case is running the model, i.e. to
perform a policy or market scenario.’’ The standard
case is that users are at first trained in analysing re-
sults. Having mastered successfully that step clearly
increases the motivation to learn more about the
model. In order to perform a policy scenario, the user
needs to map a change in legislation into a quantita-
tive change in exogenous parameters. That requires an
understanding of the legislation, of the model’s meth-
odology and finally, about how to code the change.
GGIG can clearly only ease the last bit. To what ex-
tent that is possible depends largely on the complexity
of both the policy presentation in a model and the
scenario. Besides defining controls which change
policy related exogenous parameters, GGIG comprises
a “scenario definition tool” where pre-existing GAMS
code snippets can be changed in an editor and com-
bined to a scenario. The same observations also hold
for scenarios that change other exogenous parameters
such as macro-variables.

The models mentioned in Table 2 differ con-
siderably in their approaches to define a model run.
The two extremes will be presented briefly in the fol-
lowing. In the single farm model FARMDYN, a larger
part of the ~170 controls mentioned in table 2 allows
to define a model run both with regards to assets of
the farm (land, labour, stable, machinery ..), the
shocks (mainly prices for output and inputs) and mod-
el properties (time horizon, methodological features).
A direct editing of changes in the GAMS code is not
necessary. For CAPRI, however, the opposite is typi-
cal: a user defines a scenario in the GAMS code di-
rectly, potentially supported by the scenario definition
tool. Existing scenarios are stored in sub-directories
and can be re-used. The CAPRI GUI however allows
to switch certain modules respectively model features
on or off, and to select the years, regions and spatial
resolution of the model run.

In opposite to the first use case, the contribution
of a GUI to reduced learning costs is therefore far
more depending on the model. Especially partial equi-

% From a technical viewpoint, a model runs means that
GGIG passes the status of the control to a GAMS (or R)
program. That means that GGIG can also be used to run
GAMS programs which, for example, build up the mod-
el database. We will, however, not analyse that type of
application in here. Firstly, typically a few, quite expe-
rienced people are typically involved in these tasks, and
secondly, it is far less standardized across models.

librium models often depict policy instruments close
to the law book; CAPRI, to give an example, distin-
guishes between ~60 different subsidies schemes at
farm level. Defining controls at that detail is a tre-
mendous task with probably limited returns, as GAMS
coding gives far more flexibility e.g. to define groups
of subsidies and to apply changes at group level.

CAPRI provides some further observations
for the second use case of running the model; not
astonishing, they are fewer than those for the first one.
By now, more and more institutions not previously
involved in the development of CAPRI apply the
model. In most cases, on the job training is not a
viable option, as it requires prolonged staff exchange.
Hence, a small group of newcomers (or less experi-
enced users) attended short block courses of 1-3 days,
not only to learn how to exploit and analyse results
as in the yearly training sessions, but also to perform
more complex tasks such as to define and run policy
scenarios or to construct an ex-ante baseline. The GUI
was typically assessed as the easiest part to learn,
and the contrast in learning time and success rate is
striking between tasks which require own coding
efforts and tasks which can be performed by solely
using the GUI. A similar experience provides a recent
course where a group of master students used the
GTAP in GAMS code from Tom Rutherford (RUTH-
ERFORD and HARBOR, 2005) successfully in conjunc-
tion with GGIG to develop and analyse their own
scenarios, mostly without any support by an experi-
enced user.

Given the number of training sessions and cours-
es, these observations relate to more than one hundred
persons, with quite different pre-existing knowledge
and talents. The observations differ considerable from
those made in early CAPRI training sessions using
earlier versions of CAPRI with no or a far less well
developed GUI. In these earlier versions, users had to
edit the GAMS code and to use GAMS tools to in-
spect results. Users typically achieved far less, while
the trainers permanently had to support participants in
overcoming problems related to GAMS coding or
assessing results. One might hence summarize that, at
least based on the experiences with CAPRI and
GGIG, GUIs are indeed able to considerably reduce
learning time and steering errors with regard to eco-
nomic model applications.

The last use case relates to the implementation of
a GUI in GGIG. For the smaller projects reported in
Table 1, a trained coder could set up a GUI and a set
of exploitation tables in a few hours. In opposite to the
smaller- to medium-scale examples mentioned above,

282

GJAE 63 (2014), Number 4

CAPRI has a much more complex GUI. Setting up a
first working version took considerably longer, also as
its implementation led to improvements to GGIG it-
self and thus was mixed with code development in the
GUI generator itself. Equally, there were some legacy
questions as the GAMS code needed to work over a
longer testing period both under the old and new GUI.
From the other examples, the river basin model was
the only one where the GUI was added after the main
development phase, and perhaps not astonishing, it
went along with some refactoring of the GAMS code.
The experiences with CAPRI and the river basin model
might serve as an indication that it is generally best to
develop the GAMS code from the beginning in paral-
lel to the GUI.

After the first version of the CAPRI GUI was set
up in GGIG, GAMS coders involved in CAPRI pro-
jects have added new features to the projects’ GUIs.
The same holds for researchers contributing to some
of the other projects mentioned above. These experi-
ences seem to underline that at least once a starting
implementation based on GGIG is given, the learning
time required to expand a GUI seems quite low.

To summarize and conclude, the use cases seem
to underline that it is advantageous to complement
economic models with a GUI, at least if their use be-
yond the core group of original developers is required.
The largest reduction in learning costs with a GUI can
be achieved if users solely exploit existing scenarios.
The experiences in that respect seem to indicate that
the learning time can be so low that result sets of
complex economic models can be used in the class-
room or to let informed clients access results. It clear-
ly motivates potential model users if they are able to
analyse model runs based on their knowledge with
regard to markets, policies, economic theory and eco-
nomic model methodology without having first to
learn a lot of technical detail. Based on that experi-
ence about what the model is able to deliver, they can
take an informed decision if they want to acquire the
necessary skills to master more complex tasks, such as
to define and run policy scenarios. For clients, having
easy access to results also reduces the black-box char-
acter of complex models and might build trust (as
long as results make sense). More specifically, the
experiences with GGIG so far might also serve as an
indication that users seem to learn quickly to use
GGIG based GUIs, while the efforts needed to build a
GUI in GGIG are limited.

6 Summary and Conclusions

Result analysis of economic models and more so
model runs require considerably learning efforts as
users need to familiarize themselves with the model-
ling language used, mnemonics and further technical
detail. Graphical User Interfaces (GUI) have the po-
tential to not only reduce learning costs, but also to
more efficiently steer models and exploit results.

However, developing a proprietary GUI for an
economic model is typically a costly task which re-
quires knowledge in software engineering. With
GGIG (GAMS Graphical Interface Generator), a rela-
tively simple GUI builder XML for GAMS and R
projects is now available where components are de-
fined in an XML file. GUIs generated with GGIG
carry user operable controls of which the settings are
passed via an include file to GAMS. They allow
spawning GAMS processes and merging the results
from different GAMS runs for exploitation, supported
by a rather flexible reporting tool. GGIG also com-
prises a set of further utilities, e.g. for SVN updates or
to build a documentation of GAMS symbols and files
in HTML pages, similar to javadoc. First applications
underline that GAMS coders without formal software
training are able to build their own GUI, whereas
users learn quickly to use the GUI for result analysis
and model runs.

References

ABRAN, A., A. KHELIFI, W. SURYN and A. SEFFAH (2003):
Usability meanings and interpretations in 1ISO standards.
In: Software Quality Journal 11 (4): 325-338.

ANG, C. (2004): Optimized recovery of damaged electrical
power grids. Master Thesis. Naval Postgraduate School,
Monterey, California. In: DOI:http://worldcat.org/oclc/
66268376.

BANSE, M., H. GRETHE and S. NOLTE (2005): European
Simulation Model (ESIM) in the General Algebraic
Modeling System (GAMS): Model Documentation.
Humboldt University of Berlin, Universities Hohenheim
and Gaottingen.

BAzzANI, G. (2005): An integrated decision support system
for irrigation and water policy design: DSIRR. In: Envi-
ronmental Modelling and Software 20 (2): 153-163.

BoumA, F., B. ELBERSEN, J. ROOS-KLEIN LANKHORST and
I. STARITSKY (2010): Deliverable 5.6: Technical De-
scription of Final CCAT Tool, LEI The Hague. In:
http://www.wageningenur.nl/upload_mm/a/1/1/6801a81c
-7fde-4f46-a244-9a2fc5894250 D5 6TechnicalDescrip
tionCCATFinalToolFINALL.pdf.

283

GJAE 63 (2014), Number 4

BRriTz, W. (2012): RegCgeEU+ in GAMS, documentation
including the Graphical User Interface, CAPPRI-RD
Deliverable 3.2.4. In: http://www.ilrl.uni-bonn.de/agpo/
rsrch/capri-rd/docs/d3.2.4.pdf.

—(1999): IT - An Unimportant Ingredient of Large Scale
Models? In: Agrarwirtschaft 48-(3/4): 159-162.

—(2011): The Graphical User Interface for CAPRI version
2011. University Bonn, Institute for Food and Resource
Economics. In: http://www.capri-model.org/docs/Gui
2011.pdf.

—(2014a): GGIG Graphical Interface Generator Program-
ming Guide. University Bonn, Institute for Food and
Resource Economics. In: http://www.ilr.uni-bonn.de/
agpo/staff/britz/GGIG_programming_guide.pdf.

—(2014b): GGIG Graphical Interface Generator User
Guide. University Bonn, Institute for Food and Re-
source Economics. In: http://www.ilr.uni-bonn.de/agpo/
staff/britz/GGI1G_user_Guide.pdf.

— (2014c): The Graphical User Interface for CAPRI version
2014. University Bonn, Institute for Food and Resource
Economics. In: http://www.capri-model.org/docs/Gui
2014.pdf.

BRITz, W. and J. KALLRATH (2012): Economic Simulation
Models in Agricultural Economics: The Current and
Possible Future Role of Algebraic Modelling Lan-
guages. In: Kallrath, J. (ed.): Algebraic Modelling Sys-
tems: Modelling and Solving Real World Optimization
Problems. Springer, Heidelberg, Germany: 199-212.

BRITZ, W. and A. LEIP (2009): Development of marginal
emission factors for N losses from agricultural soils
with the DNDC-CAPRI meta-model. In: Agriculture,
Ecosystems & Environment 133 (3-4): 267-279.

BRrRITz, W., P. PEREZ DOMINGUEZ and G.P. NARAYANAN
(2013): Analyzing results from agricultural large-scale
Economic Simulation Model: State-of-the-art and Way
Ahead. In: submitted to German Journal of Agricultural
Economics.

BRITZ, W. and P. WiTzKE (2012): CAPRI model documen-
tation 2012. University Bonn, Institute for Food and Re-
source Economics. In: http://www.capri-model.org/docs/
capri_documentation.pdf.

Brooke, A., D. Kendrick and A. Meeraus (1988): GAMS: A
User's Guide. The Scientific Press, Redwood City, Cali-
fornia.

BuLATEWICZ, T., A. ALLEN, J.M. PETERSON, S. STAGGEN-
BORG, S.M. WELCH and D.R. STEWARD (2013): The
Simple Script Wrapper for OpenMI: Enabling interdis-
ciplinary modeling studies. In: Environmental Model-
ling & Software 39: 283-294.

DE WOLF, D. and Y. SMEERS (2000): The Gas Transmission
Problem Solved by and Extension of the Simplex Algo-
rithm. In: Management Science 46 (11): 1454-1465.

DoL, W. and F. BouMA (2006): The GSE philosophy: a
concept of model building as a team activity. LEI-
Wageningen UR, The Hague.

DoL, W. (2006): GAMS Simulation Environment. LEI The
Hague. In: http://www3.lei.wur.nl/gamstools/gse.doc.

EU (2009): Impact Assessment Guidelines, SEC(2009) 92.

HARRISON, W.J. and K.R. PEARSON (1996): Computing
Solutions for Large General Equilibrium Models Using
GEMPACK. In: Computational Economics 9 (2): 83-
127.

HAVLIK, P., H. VALIN, A. MOSNIER, M. OBERSTEINER, J.S.
BAKER, M. HERRERO, M.C. RUFINO and E. SCHMID
(2013): Crop Productivity and the Global Livestock
Sector: Implications for Land Use Change and Green-
house Gas Emissions. In: American Journal of Agricul-
tural Economics 95 (2): 442-448.

HEIDECKE, C. and T. HECKELEI (2010): Impacts of changing
water inflow distributions on irrigation and farm income
along the Draa River in Morocco. In: Agricultural Eco-
nomics 41 (2): 135-149.

HERTEL, T.W. (ed.) (1997): Global Trade Analysis: Model-
ling and Applications. Cambridge, University Press.
IHAKA, R. and R. GENTLEMAN (1996): R: a language for
data analysis and graphics. In: Journal of computational

and graphical statistics 5 (3): 299-314.

1SO 9241 (1992/2001): Ergonomics requirements for office
with visual display terminals (VDTs). International Or-
ganization for Standardization, Geneva.

JANSSEN, S., K. LOUHICHI, A. KANELLOPOULOS, P. ZAN-
DER, G. FLICHMANN, H. HENGSDIK, E. MEUTER, E. AN-
DERSEN, H. BELHOUCHETTE, M. BLANCO, N. BORKOW-
SKI, T. HECKELEI, M. HECKER, H. LI, A. OUDE LANSINK,
G. STOKSTAD, P. THORNE, H. VAN KEULEN and M. VAN
ITTERSUM (2010): A Generic Bio-Economic Farm Mod-
el for Environmental and Economic Assessment of Ag-
ricultural Systems. In: Environmental Management 46
(6): 862-877.

KALLRATH, J. (2012): Algebraic Modeling Languages:
Introduction and Overview. In: Kallrath, J. (ed.): Alge-
braic Modelling Systems: Modelling and Solving Real
World Optimization Problems. Springer, Heidelberg,
Germany: 3-10.

KNAPEN, M.J.R., S.J.C. JANSSEN, O.R. ROOSENSCHOON,
P.J.F.M. VERWEL],, W. DE WINTER, M. UITERWIJK and
J.E. WIEN (2013): Evaluating OpenMI as a model inte-
gration platform across disciplines. In: Modelling &
Software 39: 274-282.

KUHN, A., V. MULINDABIGWI, M. JANSSENS, G. STEUP, T.
GAISER, H. GOLDBACH, |. GRUBER and E. GANDONOU
(2010): Impacts of Global Change on food security in
Benin. In: Speth, P., M. Christoph and B. Dieckkriger
(eds.): Impacts of Global Change in the Hydrological
Cycle in West and Northwest Africa. Springer, Berlin:
454-483.

KUHN, A., P. vaN OEL and F. MEINS (2012): The Lake
Naivasha Hydro-Economic Basin Model (LANA-
HEBAMO) - A Technical Documentation. DFG Re-
search Unit 1501, Sub-Project B2, Technical Paper
10/2012. Universitat Bonn.

LANIAK, G.F., G. OLCHIN, J. GOODALL, A. VoINOV, M.
HiLL, P. GLYNN, G. WHELAN, G. GELLER, N. QUINN, M.
BLIND, S. BECKHAM, S. REANEY, N. GABER, R. KENNE-
DY and A. HUGHES (2013b): Integrated Environmental
Modeling: A Vision and Roadmap for the Future. In:
Environmental Modelling & Software 39: 3-23.

LANIAK, G.F., A.E. RizzoLi and A. VoINov (2013a): The-
matic Issue on the Future of Integrated Modeling Sci-
ence and Technology. In: Environmental Modelling &
Software 39: 1-2.

LEIp, A., G. MARCHI, R. K&BLE, M. KEMPEN, W. BRITZ and
C.C. L1 (2008): Linking an economic model for Europe-
an agriculture with a mechanistic model to estimate ni-

284

GJAE 63 (2014), Number 4

trogen losses from cropland soil in Europe. In: Biogeo-
sciences 5 (1): 73-94.

LENGERS, B. and W. BRITz (2012): The choice of emission
indicators in environmental policy design: an analysis of
GHG abatement in different dairy farms based on a bio-
economic model approach. In: Review of Agricultural
and Environmental Studies 93 (2): 117-144.

M'BAREK, R., W. BRITz, A. BURRELL and J. DELINCE
(2012): An integrated Modelling Platform for Agro-
economic Commodity and Policy Analysis (iMAP).
JRC Scientific and Policy Reports, Luxembourg. Publi-
cations Office of the European Union, Luxembourg,
25267 EN.

MCDONALD, S., K. THIERFELDER and T. WALMSLEY (2012):
Globe v2: A SAM Based Global CGE Model using
GTAP Data. Oxford Brookes University, Departement
of Economics, Oxford, UK. In: http://www.cgemod. org.
uk/globev2_2012.pdf.

Moss, J.E., J.C. BINFIELD, L. ZHANG, M. PATTON and I.S.
Kim (2011): A Stochastic Analysis of the Impact of
Volatile World Agricultural Prices on European and UK
Agriculture. In 85" Annual Conference of the Agricul-
tural Economics Society, Warwick University: 18-20.

MORARI, M. and |.E. GROSSMANN (eds.) (1991): Chemical
Engineering Optimization Models with GAMS. CACHE
Process Design Case Studies 6. CACHE Austin, Texas.

OECD (2007): Documentation of the AGLINK-COSIMO
Model. Organization for Economic Co-operation and
Development, Paris. In: http://ww.oecd.org/officialdocu
ments/publicdislaydocumentpdf/cote=AGR/CA/APM(2
006)16/FINAL&docLanguage=En.

PEARSON, K., M. HORRIDGE and A.N. PRATT (2003):
Hands-on Computing with RunGTAP and WIinGEM to
Introduce GTAP and GEMPACK. The Center for Glob-
al Trade Analysis. In: https://www.gtap.agecon.purdue.
edu/resources/download/2692.pdf.

PODHORA, A., K. HELMING, L. ADENAUER, T. HECKELEI, P.
KAUTTO, P. REIDSMA, K. RENNINGS, J. TURNPENNY and
J. JANSEN (2013): The policy-relevancy of impact as-
sessment tools: Evaluating nine years of European re-
search funding. In: Environmental Science and Policy
31: 85-95.

RAILSBACK, S.F., S.L. LYTINEN and S.K. JACKSON (2006):
Agent-based simulation platforms: review and develop-
ment recommendations. In: Simulation 82 (9): 609-623.

REBENNACK, S., J. KALLRATH and P.M. PARDALOS (2010):
Energy Portfolio Optimization for Electric Utilities:
Case Study for Germany. In: Bjorndal, E., M. Bjorndal,
P.M. Pardalos and M. Ronngvist (eds.): Energy, Natural
Resources and Environmental Economics. Springer,
Berlin, Heidelber: 221-246.

RICHMOND, B. and S. PETERSON (1997): An introduction to
systems thinking. High Performance Systems, Hanover,
New Hampshire.

RizzoLl, A.E., JJ.F. WIEN, R. KNAPEN, L. RUINELLI, I.
ATHANASIADIS and B. JONSSON (2009): Updated ver-
sion of final design and of the architecture of SEAM-
LESS-IF Report No.47, SEAMLESS integrated project,
EU 6" Framework Programme, contract no. 010036-2.
In: http://www.SEAMLESS-IP.org.

RoBINSON, M. and P. VOROBIEV (2003): Swing. Second
Edition. Manning, Greenwich, Connecticut.

RUTHERFORD, T. and A. HARBOR (2005): GTAP6InGAMS:
The Dataset and Static Model. Prepared for the Work-
shop “Applied General Equilibrium Modeling for Trade
Policy Analysis in Russia and the CIS”. The World
Bank Resident Mission, Moscow, December 1-9, 2005.
In: http://www.mpsge.org/gtap6/gtap6gams.pdf.

SALAMON, P., F. CHANTREUIL, T. DONNELLAN, E. ERIAVEC,
R. EsposTl, K.F. HANRAHAN, M. VAN LEEUWEN, F.
Bouma, W. DoL and G. SALPUTRA (2008): How to deal
with the challenges of linking a large humber of indi-
vidual national models: the case of the AGMEMOD
Partnership. In: German Journal of Agricultural Eco-
nomics 57 (8): 373-378.

VAN ITTERSUM, M., F. EWERT, T. HECKELEI, J. WERY, J.
ALKAN OLSSON, E. ANDERSEN, |. BEZLEPKINA, F.
BROUWER, M. DONATELLI, G. FLICHMANN, L. OLSSON,
A.E. RizzoLl, T. VAN DER WAL, J.E. WIEN and J. WOLF
(2008): Integrated assessment of agricultural systems —
A component-based framework for the European Union
(SEAMLESS). In: Agricultural Systems 96 (1-3): 150-
165.

VAN LEEUWEN, M., F. BOoUMA, F. CHANTREUIL, W. DoL, E.
ERJAVEC, K.F. HANRAHAN, P. SALAMON and G. SAL-
PUTRA (2012): AGMEMOD Model. In: The Future of
EU Agricultural Markets by AGMEMOD. Springer,
Dordrecht, Netherlands: 45-74.

VAN MEWLL, H. and G. WOLTJER (2012): The development
of the MAGNET strategy. Paper presented at the 15"
Annual Conference on Global Economic Analysis, Gene-
va, Switzerland. In: https://Awww.gtap.agecon.purdue. edu/
resources/res_display.asp?RecordID=3956.

VERWEL, P.J.F.M., M.J.R. KNAPEN, W.P. DE WINTER, J.J.F.
WIEN, J.A. TE ROLLER, S. SIEBER and J.M.L. JANSEN
(2010): An IT perspective on integrative environmental
modelling: the SIAT case. In: Ecological Modelling 221
(18): 2167-2176.

WIECK, C., S.W. SCHLUTER and W. BRITZ (2012): Assess-
ment of the Impact of Avian Influenza Related Regula-
tory Policies on Poultry Meat Trade and Welfare. In:
The World Economy 35 (8): 1037-1052.

WITTEN, LLH.E. FRANK and M.A. HALL (2011): Data Min-
ing Practical Machine Learning Tools and Techniques.
Third edition. Elsevier, Amsterdam.

WOLTIER, G. (2013): Simplifying general equilibrium anal-
ysis through a modular structure: MAGNET. Paper for
the 16™ Annual Conference on Global Economic Analy-
sis "New Challenges for Global Trade in a Rapidly
Changing World", June 12-14 2013, Shanghai, China.
In: https://www.gtap.agecon.purdue.edu/resources/res_dis
play.asp?RecordID=4097.

DR. WOLFGANG BRITZ

Universitat Bonn, Institut fir Lebensmittel- und
Ressourcendkonomik

Nussallee 21, 53229 Bonn

e-mail: wolfgang.britz@ilr.uni-bonn.de

285

