
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

GJAE 63 (2014), Number 4

271

A New Graphical User Interface Generator for Economic
Models and its Comparison to Existing Approaches

Ein neues Werkzeug zur Erstellung Graphischer Oberflächen
für ökonomische Modelle und sein Vergleich zu bestehenden
Ansätzen

Wolfgang Britz

University of Bonn, Germany

Abstract

The paper discusses the role of Graphical User Inter-

faces in economic modelling and specifically the de-

velopment of a new Graphical User Interface Genera-

tor for applications realized in GAMS (General Alge-

braic Modelling System), a widely used Algebraic

Modelling Language for (bio-)economic simulation

models. It motivates the development of GGIG (Gams

Graphical Interface Generator) by reviewing existing

approaches. In opposite to frameworks available for

environmental and Agent Based Modelling, GUI ge-

nerators for more classical economic models seem to

be scarce. GGIG aims at a fast development process

not requiring programming skills where simple user

operable controls are defined in an XML file such that

GAMS based projects can add easily a GUI. It com-

prises quite versatile exploitation tools for interactive

reporting (tables, graphs and maps) including a ma-

chine learning package plus useful utilities, e.g. to

generate a HTML based GAMS code documentation

or batch execution. In opposite to other approaches,

GGIG strictly separates the GUI and GAMS code, but

does not offer IDE functionality. Applications to

CAPRI, a rather complex model, and some smaller

projects seem to show that researchers without formal

programming training are able to develop and modify

a GUI for their models, while model users can be

quickly trained in GGIG based GUIs.

Key Words

Graphical User Interface; Economic Modelling;

Algebraic Modelling Language

Zusammenfassung

Der Aufsatz diskutiert die Bedeutung Grafischer

Benutzeroberflächen in der ökonomischen Modellie-

rung, insbesondere die Entwicklung eines neues

Werkzeugs zur Erstellung Grafischer Oberflächen für

Anwendungen basierend auf GAMS (General

Algebraic Modelling System), einer weitverbreiteten

Algebraischen Modellierungssprache für (bio-)öko-

nomische Simulationsmodelle. Er motiviert die Ent-

wicklung von GGIG (Gams Graphical Interface Ge-

nerator) vor dem Hintergrund eines Überblicks alter-

nativer Ansätze. Im Gegensatz zu bestehenden Pro-

grammiergerüsten für umwelt- oder agentenbasierte

Modellierung scheinen nur wenige Werkzeuge zur

Erstellung von Benutzeroberflächen klassischer öko-

nomischer Modelle verfügbar zu sein. GGIG zielt auf

einen schnellen Entwicklungsprozess, der keine

Kenntnisse in der Programmierung voraussetzt und

auf der Definition einfacher Bedienelemente in einer

XML-Datei basiert, wodurch sich ohne großen Auf-

wand eine Nutzeroberfläche zu einem GAMS-Projekt

erstellen lässt. GGIG enthält darüber hinaus recht

vielseitige Instrumente zur Erzeugung interaktiver

Ergebnisauswertungen (Tabellen, Grafiken und Kar-

ten) einschließlich eines Paketes maschineller Lern-

verfahren sowie zusätzlich Dienstprogramme, z.B. zur

Erstellung einer HTML basierten Dokumentation des

GAMS-Codes oder zur Batchausführung. Im Gegen-

satz zu anderen Ansätzen trennt GGIG klar zwischen

dem GAMS-Code und der Nutzeroberfläche, bietet

dafür aber auch keine Funktionen einer Integrierten

Entwicklungsumgebung an. Die Anwendung von

GGIG in CAPRI, einem recht komplexen Modellsys-

tem, und einigen kleineren Projekten legen es nahe,

dass Forscher ohne formale Programmierkenntnisse

mittels GGIG Benutzeroberflächen für ihre Modellen

entwickeln und pflegen können, während Modellan-

wender sich schnell in die Nutzung der Oberflächen

einarbeiten.

Schlüsselwörter

Graphische Nutzeroberfläche; ökonomische Modellie-

rung; Algebraische Modellierungssprache

GJAE 63 (2014), Number 4

272

1 Introduction

The demand for quantitative policy assessments

is currently growing, as governments increasingly

face legal obligations for impact assessments (e.g.

EU, 2009), which frequently involve the use of eco-

nomic simulation models. One implication is that new

staff, who was not previously involved in the devel-

opment of a specific model, needs to be trained in

model application or at least analysis. There are, how-

ever, not too many examples of policy-relevant eco-

nomic models which succeeded in attracting users

beyond the group of (original) developers and staff

directly supervised by them, such as graduate

students. GTAP (HERTEL, 1997) is probably the best-

known case. Another example for the transition from

development and use by developers to continuous

policy-relevant application by non-developers

provides the so-called iMAP (integrated Modelling

Platform for Agro-Economic and Policy Analysis,

M’BAREK et al., 2012) platform. The platform hosts

both partial equilibrium models such as ESIM, BANSE

et al., 2005; CAPRI, BRITZ and WITZKE, 2012, and

AGMEMOD, SALAMON et al., 2008, and several

Computable General Equilibrium models (GTAP;

MAGNET, VAN MEIJL and WOLTJER, 2012; GLOBE,

MCDONALD et al., 2012; RegCge, BRITZ, 2012).

iMAP aims at providing a scientific basis for policy

decision-making linked to the economic assessment of

the Common Agricultural Policy and related topics

such as trade, energy, environment, and climate

change.

The reason why certain models, such as those

mentioned above, are used continuously, also beyond

their developers, or are proposed by clients for appli-

cations while others might never provide policy-

relevant results clearly depends on many aspects.

These include a sound methodology; appropriate ex-

tent and resolution in space, time and with regard to

products and processes; the provision of policy-

relevant indicators or detail in depicting policy in-

struments (cf. PODHORA et al., 2013). Software as-

pects (BRITZ, 1999) also play a critical role, specifi-

cally with regard to software usability (cf. ABRAN,

2003). ISO9241-11, 1998 defines software usability as

“the extent to which a product can be used by speci-

fied users to achieve specified goals with effective-

ness, efficiency and satisfaction in a specified context

of use”. Software usability clearly affects learning

costs and, therefore, the ease with which new model

users can be trained.

The paper focuses on these technical aspects and

specifically on the role of Graphical User Interfaces

(GUIs). Beyond a more general discussion on the use

of GUIs for economic models, partly drawing from

the examples mentioned above, the paper also pre-

sents a new freeware tool to build GUIs for economic

models, currently available for models written in GAMS

(General Algebraic Modelling System, BROOKE et al.,

1988) or the statistical language R (IHAKA and GEN-

TLEMAN, 1996). A structured discussion on experi-

ences with that tool named GGIG (Gams Graphical

Interface Generator, BRITZ, 2014a), and its predeces-

sor, the CAPRI GUI, provide further empirical evi-

dence for a more general discussion. The paper is

organized as follows: the next section discusses se-

lected software aspects. Section 3 analyses the role of

GUIs and discusses options available for GAMS-

based models for model steering and result analysis,

before presenting GGIG in section 4. Section 5 pro-

vides a short comparison to alternative solutions and

discusses experiences with GGIG and the CAPRI

GUI. Finally, a summary is provided in section 6.

2 Selected Software Aspects in
Agricultural Economic Modelling

Partial and general equilibrium models at a larger,

often global scale, but also bio-economic farm

and hydro-economic models typically use ALMs

(Algebraic Modelling Systems, KALLRATH, 2012).

KALLRATH (2012) describes an ALM as “Roughly

speaking, a modelling language serves the purpose of

passing data and a mathematical model description to

a solver in the same way that people, especially math-

ematicians, describe those problems to each other”.

AMLs are especially useful if data transformation and

equations are structurally identical, e.g. across regions

and products. Table 1 presents technical details on

some well-known policy relevant models in agricul-

tural economics. The majority of the models use either

the AMLs GAMS or GEMPACK (HARRISON and

PEARSON, 1996), with GEMPACK being far more

specialized and targeted to CGEs. Econometrically

estimated economic models such as AGLINK-

COSIMO or FAPRI often simulate within the same

econometric package used for estimation.

The core of an economic simulation model en-

coded in an ALM consists of numerical problem(s)

that require a simultaneous solution for all equations.

This contrasts with environmental models that often

GJAE 63 (2014), Number 4

273

integrate smaller components and are solved recur-

sively in space and time, which asks for a modular

design. That might partly explain the evolvement of

frameworks for environmental models (LANIAK et al.,

2013a), often targeting specific application domains

(LANIAK et al., 2013b) and with a focus on inter-

operability of individual modelling components. These

frameworks typically support tool development in-

cluding GUIs as well as result visualization1. Similar

packages (cf. RAILSBACK et al., 2006) exist for Agent

Based Modelling (ABM). Compared to economic

models, the resolution of environmental models in

space and/or time is often higher, but the number of

items simulated tends to be smaller. With dynamic

and/or spatial aspects often in focus, time series

graphs and/or maps are widely used for visualization.

Contrary to that, the simultaneous solution ap-

proaches in economic models tend to combine all

variables and their relations present in the overall

problem in one module. CGEs and Multi-Commodity

models solve for many items such as different types of

1 The thematic issue on “The Future of Integrated Model-

ing Science and Technology” of Environmental Model-

ling and Software, Vol. 39 provides an excellent over-

view on the current state-of-the-art and visions in that

field. It is interesting to note that very few of the 26 ar-

ticles in the thematic issue touch also upon economic

optimization models (e.g. KNAPEN et al., 2013, on the

use of OpenMI, BULATEWICZ et al., 2013, on integrating

scripting languages such as MATLAB into OpenMI

which also more widely used by economists).

prices, output generation, primary factor and interme-

diate input use, trade, demand categories, differentiat-

ed by product and space, and eventually time. All

CGEs and also the partial equilibrium models (ESIM

and CAPRI) mentioned above are therefore rather

strictly build in a template structure. This means that

model equations are structurally identical across space

and products, and where applicable across periods,

while differences are expressed in parameters. AMLs

allow efficient coding of such template based models.

For economic models, tabular presentations or bar

charts with relative changes are widely used to depict

results, in order to assess the linkages across markets

and items. However, also economic models with a

higher spatial resolution often use maps for result

visualization, whereas (recursive) dynamic models

tend to rely on time series graphs. BRITZ et al. (2013)

provide a comparison of GUIs with a focus on result

visualization such that these aspects are not discussed

in detail in the following.

Besides differences rooting in the solution strate-

gy, software solutions supporting modelling in differ-

ent disciplines reflect different traditions to document

and describe models. Economists rely mostly on

equations, and, therefore, favour AMLs, whereas

environmental modellers more often additionally use

graphical presentations, such as flow charts. They

might, therefore, favour object-oriented approaches

or even frameworks that allow building models with

the help of GUIs (cf. RICHMOND and PETERSON,

1997). Thus, both software use and result analysis

Table 1. Software aspects of selected models relevant for agricultural policy/market analysis

Model Short characterization Simulation language GUI

GTAP Global, trade oriented CGE GEMPACK (GAMS version

available)

runGTAP (PEARSON et al.,

2003)

MAGNET GTAP variant with a focus on Europe and

the CAP

GEMPACK Proprietary (WOLTJER, 2013)

GLOBE Global CGE GAMS -

ESIM Multi-Commodity model, strictly template

based

GAMS -

AG-MEMOD Multi-Commodity model, single equation

based

GAMS GSE based (SALAMON et al.,

2008)

AGLINK-COSIMO Multi-Commodity model, single equation

based (COSIMO template based)

TROLL Visual Basic/EXCEL based

FAPRI Multi-Commodity model, single equation

based

EXCEL, SAS (cf. MOSS et

al., 2011)

Result analysis in EXCEL

CAPRI Regional/Farm type programming models

linked with Multi-Commodity model and

regional CGEs, all strictly template based

GAMS GGIG

Note: BRITZ et al. (2013) provide a detailed comparison of the result exploitation part of GTAP, AGLINK-COSIMO and CAPRI. Where

 no reference is given, information is based on personal communication with model authors.

GJAE 63 (2014), Number 4

274

are linked closely to structural properties of the under-

lying models as well as disciplinary traditions. How-

ever, path dependencies can also play an important

role.

In agricultural economics, the AML language

GAMS is widely applied (BRITZ and KALLRATH,

2012), also for tools with a focus on environmental

interactions such as bio-economic single farm models

(cf. JANSSEN et al., 2010) or global land use models

(cf. HAVLIK et al., 2013). Contrary to many packages

used in environmental and ABM modelling, GAMS is

a commercial, non-open source product. It provides

transparent interfaces to solvers and supports a com-

pact, set-driven presentation of data transformation

and models, along with a rather powerful scripting

language. GAMS is shipped with a basic Integrated

Development Environment (IDE, a software tool

which supports code development by e.g. specialized

editors) and simple tools to inspect the content of pro-

prietary data bases. GAMS does however not com-

prise a GUI generator. Commercial GAMS applica-

tions in different domains2 such as electricity grid

optimization (ANG, 2004), portfolio optimization for

electric utilities (REBENNACK et al., 2010), gas trans-

mission optimization (DE WOLF and SMEERS, 2000) or

chemical engineering (MORARIA and GROSSMANN,

1991) are often integrated in a software environment

already featuring a GUI. Therefore, it might not pay

off for GAMS to develop a GUI generator (see also

BRITZ and KALLRATH, 2012); instead, GAMS offers

Application Programming Interfaces (APIs)3 which

allow integrating GAMS into other software frame-

works.

Therefore, there exists no default GUI solution

for GAMS-based tools. That leads to proprietary solu-

tions such as BAZZANI (2005) for a water management

tool or the GUI (BRITZ, 2011) for CAPRI (Common

Agricultural Policy Regionalized Impact Model,

BRITZ and WITZKE, 2012). BRITZ et al. (2013) review,

with a focus on result analysis, GUI solutions of three

large-scale economic simulation models - partly real-

ized in GAMS - and conclude that the development of

common GUI tools might be advantageous, to avoid

costly duplicate coding efforts and combine efficient

and innovative solutions of existing GUIs. However,

not much is available in the market in that respect. To

the best knowledge of the author, so far only DOL

2 Publicly documentation of commercial applications is

scarce, possibly as the detailed knowledge constitutes a

competitive advantage.
3 see http://www.gams.com/dd/docs/api/

(2006) has developed with GSE (Gams Simulation

Environment, cf. DOL and BOUMA 2006) a generic

tool with GUI functionalities for GAMS models.

Other approaches, such as SEAMLESS-IF (VAN

ITTERSUM et al., 2008; KNAPEN et al., 2013) or SIAT

(VERWEIJ et al., 2010) – which wrap a layer around a

GAMS application to integrate them into an Open-MI

based architecture – target larger modelling tool for

integrated assessments which incorporate different

components.

But is it possible to develop a generic GUI gener-

ator for (bio-) economic models using GAMS which

is on the one hand easy enough to handle for GAMS

coders while on the other hand flexible and powerful

enough to make its use attractive? What are the alter-

natives? Does it pay off to add a GUI to GAMS-based

tools? Against this background, this paper documents

and discusses a new interface generator for GAMS

and R-based applications termed GGIG, coupled to

exploitation tools and additional utilities such as for

HTML based code documentation. In the next section,

its development is motivated and main functionalities

discussed, drawing a comparison to alternative solu-

tions.

3 GUIs for GAMS-based Economic
Models

3.1 Why a GUI?

Since GAMS is not shipped with a GUI generator,

the default solution to steer GAMS-based applications

consists of using a text editor to change specific

sections of the code. To do this, users need familiarity

with GAMS and detailed knowledge on the code

structure of the economic model. Here, GUIs can

decrease learning costs for users which need not to

familiarize themselves with the details of the under-

lying code (cf. ABRAN et al., 2003). Such detail refers

e.g. to the mnemonics used in the code – the names of

symbols and labels –, and the file structure. Indeed,

traditional training for specific economic models often

comes close to learning a new language. In that case

the trainee needs to memorize a new vocabulary of

parameter, variable and equation names as well as

labels used for products, regions and items; often in

combination with a new grammar, i.e. a software

language such as GAMS and how it is specifically

applied in the model. A well-designed GUI introduces

a layer accessible to users which shields details of the

technical implementation from the user such that the

GJAE 63 (2014), Number 4

275

conceptual knowledge about the economic model is

sufficient for its successful application. Additionally,

it is typically faster to operate controls on a GUI

compared to changing GAMS code with a text editor.

Learning costs for a GUI are typically low if it is

based on the look and feel of a normal windowed

application.

Decreased learning costs might be important in a

university or other research environment with a higher

staff turnover, to allow e.g. graduate student to apply

models or to contribute to their further development.

That especially matters if model use expands beyond

the team of (original) developers to economists

involved in policy-relevant applications. As such,

introducing a GUI might be part of the transition

process of moving tools from development to

application.

Steering a complex model by manual edits

directly in the code also increase the chance of errors,

especially if steering options are distributed across

files: the operator might have forgotten to reverse

changes from earlier runs or to introduce all the

changes necessary for the intended application.

Contrary to that, a GUI shows all options available

(hopefully in a appropriately ordered and compact

way) on the interface itself. A GUI can also prevent

steering errors by restricting input choice, e.g. by

attaching numerical ranges to input editors. GUI

generators might also offer additional specific utilities

targeted to the use of GAMS or another language.

Available GUIs for GAMS tools also comprise

reporting tools which can speed up debugging,

analyzing and publication of quantitative results. That

might hence open the chance for class-room use of

more complex models, typically hard to realize if

results can only be accessed from inside the modelling

software.

Adding a GUI to a tool can also support code

development. Constructing a GUI forces the coder to

clearly define which settings the user can change for a

certain type of application, along with their allowed

ranges. Equally, a GUI will typically pass these

settings in one block to a language such as GAMS,

such that ideally only one file changes between runs

which supports a clear separation of input and

software code. It also eases the use of a software

versioning system, as run specific edits in a whole set

of files are avoided.

GUI development can also help to reflect more

clearly how to modularize the production chain of an

economic model (data input and transformation, prepa-

ration of an ex-ante baseline, parameter estimation or

calibration, scenario definition, simulation runs, post-

model processing, exploitation), and to define clear

input-output relations between these different steps.

Producing output reports of each step which can be

inspected by the GUI supports quality management

through introduction of logical breakpoints where

(intermediate) results are inspected. Efforts to support

a clear code structure are specifically important in

GAMS projects, as the language only allows for

global symbols and basically does not support sub-

routines or functions.

Most of the reflections above are not specific to

GAMS, but hold for any economic simulation model,

either implemented in another AML, an econometric

package or another computer language. Indeed,

GGIG, the package discussed below, now also

supports project results in the econometric package R

and was also linked to a Java-based ABM, whereas

components of GSE, i.E. a similar system, can be used

with GAMS and GEMPACK.

3.2 Options to Steer GAMS-based Tools
and Exploit their Results

The following section briefly compares four basic

options found in practise to steer GAMS-based tools:

(1) no GUI, (2) simple EXCEL/Visual Basic based

solutions, (3) GUI generators specifically designed to

interact with GAMS and (4) proprietary solutions for

a specific tool.

The perhaps most widely used approach is no

GUI at all, i.e. to steer the GAMS application by

adding or changing settings directly in the code. The

disadvantages were already mentioned above. It has

clearly the lowest development costs and does not

require knowledge beyond the one needed to develop

the GAMS code itself. Of the models mentioned

above, only ESIM and GLOBE seem to rely on that

solution. It might be the appropriate one if only

developers already familiar with the code use the

model and/or if the code base is relatively small and

there are not many settings to change, such that the

learning costs to oversee the full code are small.

A proprietary GUI, i.e. one specifically

developed for one tool, gives the highest flexibility

with regard to layout and functionality, but is also the

most costly alternative. Most research groups

developing GAMS code are not familiar with the

progamming languages, libraries or GUI builders

needed to develop a GUI. This means that external

expertise must be hired, which can lead to substantial

GJAE 63 (2014), Number 4

276

transaction costs. More over, economic models are

typically permanently updated, for example in

response to (proposed) policy changes. That might

provoke changes in GUIs to reflect modifications in

the GAMS code. As updates take time, GUIs coded

by third parties typically lag behind the model’s code

development. Indeed, cost and time to synchronize

changes in the model’s code with a GUI is one

possible reason why GUIs attached to economic

models were sometimes given up again (cf. BRITZ et

al., 2013). That clearly motivates a solution where

GAMS coders can generate and change the GUI

themselves. Of the models mentioned above, GTAP

and MAGNET use a proprietary GUI. CAPRI has also

over years been based on a proprietary solution, and

AGMEMOD as well features its own user interface

(VAN LEEUWEN et al., 2012), which is however

closely linked to GSE. All these systems are rather

large, and receive(d) considerable funds for develop-

ment and maintenance, which might explain why

proprietary solutions could be developed and kept

alive.

Packages such as GSE and GGIG are specifically

designed to build GUIs for GAMS based tools. They

are thus less flexible compared to a proprietary

solution, but require far less time and limited

knowledge to build a GUI. They also aim at allowing

the GAMS coders themselves to synchronize code and

GUI development. The use of that type of GUI does

not necessarily require GAMS knowledge. Besides

the examples discussed below based on GGIG, the

CCAT tool (Cross Compliance Assessment Tool)

project (BOUMA et al., 2010) realized in GSE provides

an example about GUIs built with such as GUI

builder.

Alternatively, tool developers have developed

solutions building on a GAMS<->EXCEL interface

delivered with GAMS. Users edit numerical values

in predefined EXCEL cells, from where their input

is read by GAMS. Combined with a Visual Basic

application which starts GAMS, that allows building

of a rudimentary GUI for GAMS model. Visual

Basic would also allow to introduce user operable

controls and check their input. A similar solution

is reported for AGLINK-COSIMO (OECD, 2007),

which is realized in TROLL, an econometric language

which also does not feature an own GUI-builder.

These solutions tend to deliver a Look and Feel

distinctely different from a normal Windows program,

while requiring expertise in Visual Basic program-

ming.

4 GGIG: A GAMS Graphical
Interface Generator

4.1 Background

Since 1999, a Java based proprietary GUI is available

for CAPRI, a large-scale, global agricultural economic

model with a focus on Europe which comprises also

environmental modules, including a spatial down-

scaling component (LEIP et al., 2008) covering

150,000 1x1 km clusters linked to bio-physical model-

ling (BRITZ and LEIP, 2009). GAMS is used for basi-

cally all numerical operations in CAPRI: data fusion,

model set-up and solution as well as post-model pro-

cessing. The GUI attached to CAPRI emerged slowly

over years. Its exploitation part is based on interactive

reports (tables, graphics and maps), produced from

multi-dimensional parameters read from GDX files, a

proprietary binary format from GAMS for which APIs

are available. These reports are defined in an XML

file which rendered the exploitation part generic

enough to use it already in the past for e.g. an eco-

nomic agricultural model for Benin (KUHN et al.,

2010) or a Morrocan river basin model (HEIDECKE

and HECKELEI, 2010). Drawing on the positive

example of the XML-based report generator, the aim

of developing GGIG was twofold: first, to provide a

new, generic concept for GUI generation for GAMS

based tools which can be applied not only to CAPRI,

but also to other GAMS-based economic models.

That included the goal to overcome certain

disadvantages of the proprietary solution available for

CAPRI. Second, to integrate functionalities developed

originally only for CAPRI into the GUI generator in

order to port them also to other projects using GAMS.

The development of GGIG and the preceding

CAPRI GUI were thus not based on a formal user

requirement analysis. Instead, core CAPRI GAMS

code developers developed its GUI in parallel to the

model code and improved it over time based on

feature requests and feedback by CAPRI users. The

annual CAPRI training sessions where both core

CAPRI users and newcomers come inter alia together

to analyse scenarios based on the GUI provided a

forum to both get feedback on the GUI and to observe

how people (learn to) use the GUI. The somewhat

informal development process also reflects the fact

that there are no commerical interests involved as the

GGIG binaries and CAPRI4 are distributed for free.

4 Further information on GGIG along with a fully opera-

tional downloadable didactic example can be found at:

GJAE 63 (2014), Number 4

277

4.2 General Concept and
Current Applications

Two major object classes underlie the

general concept of the steering part of

GGIG
5
: (1) tasks which are linked to

GAMS applications, and (2) user opera-

ble controls (checkboxes, sliders, spinner,

single and multi-lists, editable tables, text

fields, file selectors), derived from stand-

ard Java Swing components (cf. ROBIN-

SON and VOROBIEV, 2003), typically

shared by several tasks. GGIG transforms

the state of these controls into a standard-

ized presentation in GAMS language con-

structs, sent to a GAMS application based

on a file to be included (see figure 1)6. The

GUI developer defines objects of these

two classes in a XML file – the GGIG

controls and settings definition file – from

which GGIG builds the GUI. The user can execute a

task as a GAMS application from the GUI which also

shows run time messages from GAMS. The reporting

part then allows merging of results from different runs

and exploiting their results. As discussed below,

GGIG offers additional utilities for working with

GAMS-based models.

The overall layout of the GUI is standardised and

unchangeable, see Figure 2. It comprises the follow-

ing main elements: (1) a menu bar to change project-

wide settings (such as directories, the GAMS version

to use, SVN related information, user name and type)

and to access utilities (discussed below); (2) a work

step and task selection panel on the left hand side;

(3) a right hand side panel which either shows:

(a) controls, a button panel to start GAMS and a win-

dows capturing GAMS output, (b) a panel to select

result sets (see the left hand side of Figure 5 below) and

to start their exploitation or (c) the exploitation tools

(see the example on the right hand side of Figure 5).

The project specific XML file defines the work

steps, tasks and controls available to the user. Equally,

http://www.ilr.uni-bonn.de/agpo/staff/britz/ggig_e.htm.

For information on CAPRI see: http://www.capri-mo

del.org.
5 The following section draws to a large extent on the

GGIG manual, written by the author, from which also

figures are copied.
6 The GUI can also be used to steer tasks in the econo-

metric package R, in which case R code is generated

from the control setting, such that it can provide a GUI

for tools project which use both R and GAMS.

the reports shown in the exploitation tools are task

specific. Whereas the grouping of the controls is ra-

ther free, the fixed standard layout underlying GGIG

forces the GUI developer to structure its GAMS pro-

ject into work steps and tasks. That is a deliberate

restriction guiding also the code development of a tool

such that it reflects a logical sequence of steps, for

example, data base compilation, baseline develop-

ment, model calibration and counter-factional runs.

As opposed to Java GUI generators such as Win-

dowBuilder7, GGIG offers quite limited layout possi-

bilities and no WYSIWYG (What You See Is What

You Get). That reflects the aim to let model users

develop a simple GUI for their own purposes. The

declaration of a control, therefore, comprises solely

a few attributes, which reduces learning costs (see

Figure 3 which shows the most commonly used ones

for an example).

4.3 GAMS Application Steering

As discussed above, the user steers GAMS applica-

tions by operating the controls provided by GGIG.

Specific options for controls in GGIG should help to

reduce steering errors. First, the input for any control

requiring numerical input can be restricted to a prede-

fined input range; file selection can be limited based

on a REGEX mask. Second, there is an n to one rela-

tion between GAMS applications (= mains) and a task

7 WindowBuilder is a GUI builder for JAVA which works

as an Eclipse plugin (http://www.eclipse.org/window

builder/).

Figure 1. Overview on information flow in GGIG

Source: own elaboration

GJAE 63 (2014), Number 4

278

Figure 3. Example for a XML definition of a

control in GGIG

in GGIG. If an application is used in different

“modes”, e.g. for model calibration versus simulation,

each mode can receive an own task and thus set of

controls. That is also the only way to introduce rela-

tions between controls in GGIG. Third, default val-

ue(s) for each control can be registered and, fourth,

depending on the user level (exploiter, runner, admin-

istrator, developer, debugger) tasks and controls

can be hidden or disabled. Indeed, under the ex-

ploiter level, a user can solely exploit results and

does even not see any control. The settings of all

controls are sent in one block to GAMS. That

renders it easy to write GAMS code for more

complex crosschecks across control settings and to

report the error back to the user from GAMS.

With the exemptions of tables and n from m

selection (which require to pass a vector or matrix

of settings as an appropriate GAMS symbol), all other

settings are passed as a “$ETGLOBAL key value”

pair to GAMS. That gives the coder high flexibility in

handling the settings in GAMS. Additionally, all set-

tings are passed as strings via a SET declaration to

GAMS (see Figure 4) which provides thus a complete

meta-information on the run. The application can store

that information with numerical results in a GDX

container for later inspection. The GUI also re-

members the state of the user operated controls and

further input between sessions.

4.4 Exploitation

The exploitation tools offer different types of

views: tables, graphs and maps. The user can add

relative or absolute differences to element(s) in one

or different dimensions and export views to clip

Figure 2. The main window of a GGIG based GUI

Source: screenshot from GGIG generated GUI

Figure 4. Example of meta information generated

by GGIG and passed to GAMS

GJAE 63 (2014), Number 4

279

board and different file formats. Tables support e.g.

pivoting, filtering, sorting, basis statistics and showing

statistical outliers and allow adding long labels, units,

pop-up explanatory texts and links to a section in a

PDF file. Table items can carry a hyperlink, e.g. for

navigating through a sequence of tables with increas-

ing detail. Additionally, users can for example choose

fonts and number formatting. The graphs (e.g. line,

bar, box-and-whisker and spider charts, heat maps and

histograms) build on the JFreeChart8 library and are

user configurable, for example with regard to fonts,

transparency or colouring. Maps allow for different

classification and colouring options, and support some

more unusual formats such as flow maps (see Figure 5)

or bar charts embedded in a map. A utility allows

importing geometries in Shapefile format for use with

the mapping viewer. For a detailed description of the

exploitation tools see the GGIG (BRITZ, 2014b) and

CAPRI (BRITZ, 2014c) user manuals. Tasks in GGIG

can define filters when selecting result sets from a

disk; Figure 5 presents an example taken from the

CAPRI GUI, which also shows a flow map.

Additionally, the exploitation part transparently

integrates the WEKA machine library (WITTEN et al.,

2011). It provides a powerful set of filtering, cluster-

ing and classification algorithm as well as related

visualization tools from machine learning, and

8 http://www.jfree.org/jfreechart

allows for a data driven approach to explore relations

between results loaded in the viewer.

4.5 Further Functionalities

GGIG supports further functionalities originally

developed for the CAPRI GUI and now generalized

to work with other GAMS projects: (1) batch mode,

(2) automated code documentation in HTML,

(3) SVN updates, (4) a viewer for GDX files and

(5) an equation and variable viewer for GAMS

models.

The first two might deserve some further expla-

nation. The batch mode allows running a sequence of

tasks without using the GUI, such as different simula-

tion runs, while it documents in a HTML file which

tasks were started, their settings and return codes. The

generated include files and the GAMS listings of each

task are saved for later inspection. The underlying

batch steering file can be constructed by copy and

paste from generated include files. The code docu-

mentation generator generates a HTML site with in-

terlinked pages for each GAMS file, GAMS symbol

and tasks, similar to javadoc9. That allows, for exam-

ple, finding out for a certain parameter or variable in

which tasks and files it is defined, used or changed.

The HTML page also collects SVN information on

each file.

9 Cf. http://agile.csc.ncsu.edu/SEMaterials/tutorials/java

doc/

Figure 5. Example of a result selection panel and map view generated by GGIG

GJAE 63 (2014), Number 4

280

5 Discussion

5.1 Short Comparison of GGIG to
Modelling Frameworks and other
GUI Generators

Compared to frameworks used in environmental mod-

elling or the libraries used for ABMs, GGIG serves a

far more limited task: it allows solely adding some

basic GUI functionalities to a GAMS project. It does

not support interactive graphical development of

model code or a graphical GUI generator. Further-

more, the interaction between GGIG and the GAMS

code of the model is rather limited: GGIG solely gen-

erates a typically rather small include file, spawns the

GAMS application as a separate process and shows it

run-time output on screen. Finally, it can read results

from several GAMS runs from disk to exploit them.

Therefore, GGIG does not pass objects in memory

back and forth to the model. Accordingly, GGIG typi-

cally requires very limited changes to the GAMS

code, such that the GAMS application can still be

used alternatively within the GAMS IDE or started by

another application. CAPRI, to give an example, was

steered in the context of another project by a client-

server based GUI (RIZZOLI et al., 2009). GGIG is

portable between those platforms supported by both

GAMS and Java.

Perhaps the product that is most similar to GGIG

is the GSE tool by DOL (2006). Both target GAMS

projects, but their basic concepts seem rather differ-

ent. GSE combines functionalities of an IDE (e.g.

editing, visual presentation of links between files,

version control), a GUI and a reporting tool. Overall,

GSE seems more powerful, but learning costs and the

effort to implement GSE into a project are probably

also higher. Whereas GGIG is steered by XML files to

define controls, tasks and the reporting views, the GUI

in GSE seems to be mostly set up by introducing

steering tags as comments in the GAMS code. GGIG

might be somewhat more versatile with regard to ex-

ploitation possibilities.

Similar to runGTAP, a GUI developed for the

GTAP modelling system, GSE keeps a strong link

between the data structure present in the GAMS code

and the visualization. That clearly fits a more IDE-

focused profile. The exploitation tools of GGIG, in

contrast, are set up to work more similar to a data

mining tool, i.e. the reports are not (necessarily) struc-

tured according to data structures present in the under-

lying GAMS model. That somewhat increases learn-

ing costs for that part of GGIG, and, in order to fully

exploit the potential of the exploitation tools, requires

an appropriate structuring of the results in GAMS.

5.2 Experiences with GGIG

Examples of projects which use GGIG beyond

CAPRI, in chronological order, provide a small

partial equilibrium model for the global poultry

market (WIECK et al., 2012); FARMDYN, a detailed

single farm bio-economic model (LENGERS and

BRITZ, 2012); a hydro-economic river basin model

(KUHN, 2012) and a prototype GAMS version of

the AGLINK-COSIMO model. Furthermore, the

FADNTOOL project (http://www.fadntool.eu) has

recently opted to use GGIG for a tool that combines

different economic models, partly realized in GAMS

and partly in R, which all use Farm Accounting Net-

work Data. Table 2 reports some key properties of

these current projects known to the author where

GGIG is applied. It shows that the use cases and thus

the aims linked to the application of GGIG somewhat

differ. Equally, it highlights larger differences in the

complexity of the generated GUIs when assessed by

the number of tasks, controls and views defined in the

XML files steering. A view as reported below refers

to one predefined table, map or graph to exploit results.

Based on these examples, experiences with

GGIG so far will be reported and analyzed for three

use cases of increasing complexity (see Table 3):

(1) analyzing results, (2) model runs, and (3) setting

up a GUI interface and extending it. The table below

classifies these use cases with regard to the knowledge

needed and tries to generalize to what extent a GUI

might reduce learning costs, referring to arguments

from section 2. Details for the use cases will be dis-

cussed next.

The first use case refers to analysis of existing re-

sults. The user does not need to run the economic

model, which also means in the case of GGIG that no

GAMS or R installation is necessary, only a working

Java Run Time Engine (JRE) is needed. GGIG allows

(pre)selecting a user role “exploiter” where all model

steering controls are hidden. Only such tasks are visi-

ble for which existing result sets can be located.

Accordingly, the user only sees drop-down boxes to

select result sets, e.g. from different scenario runs, and,

if defined in the XML file, selection box e.g. for years

or countries. If locations on disk are relative in pre-

sets, one can copy a work installation of a GGIG GUI

along with result files e.g. from USB stick to a com-

puter, and the user can immediately start the interface,

as long as the JRE is correctly installed. That renders

GJAE 63 (2014), Number 4

281

it quite easy to organize trainings with regard to result

analysis.

The yearly 2-3 days CAPRI training sessions

from the last decade provide ample observations for

that use case, as the exploitation tools of the proprie-

tary CAPRI GUI are identical to GGIG. Generally,

users learn relatively fast to work with the exploitation

tools. Typically, a one to two hour instruction was

sufficient to teach the basic functionalities, for exam-

ple, how to load a set of results from different scenar-

ios, to navigate between different views, to produce a

map or table with relative changes, or to export results

to clipboard.

These short instructions also covered some con-

tent related information, for example, where to find

and how to interpret results on prices, market balanc-

es, trade, farm activities, or environmental indicators.

With that background, users with sufficient domain

knowledge, i.e. with regard to agricultural policies and

markets while being trained in economic reasoning,

were able to analyse complex scenarios with the ex-

ploitation tools without having any technical know-

ledge about CAPRI (mnemonics, code structure etc.).

The participants mentioned these points also regularly

in feedback rounds. They were quite diverse with

regard to their pre-existing knowledge on economic

modelling or software use. The same observations

were made in block courses with PhD students.

Over the years, some desk officers in the EU ad-

ministration received a 2-3 hour introduction of how

to exploit CAPRI results based on its GUI and after-

wards analyzed results without any experienced user

being available. That situation is different from train-

ing sessions or a block course where participants can

both support each other and draw on the expertise of

the trainers. The experiences of these users thus un-

derline further that learning time for that type of GUI

seems to be limited. The positive experiences from the

Table 2. Properties of projects applying GGIG

Project # of tasks (T),

controls (C)

and views (V)

Users Main aim of using GGIG

CAPRI (large scale partial

equilibrium model)

T: 25, C: 145

V: 182

developers, runners,

analysts

Replace proprietary GUI to allow GAMS

coder to change GUI

Global poultry equilibrium

model

T: 1, C: 20

V: 16

developers Test of GGIG, ease result analysis

FARMDYN, detailed bio-

economic farm model

T:4, C: 173

V: 28

developers Support modular code development, ease

model application and result analysis

AGLINK-COSIMO in

GAMS

T: 11, C: 28

V: 28

developers, project

reviewer

Support modular code development, ease

testing, show that GAMS based model im-

plementation can be easily linked to GUI

LANA-HERBAMO (river

basin model)

T: 2, C: 19 developers Ease model application and result

analysis

GTAP in GAMS with

GGIG

T: 6, C: 28 Students as developers,

runners and analysts

Ease coding, model application and

result analysis

Source: own research

Table 3. GUI use cases and related knowledge w/o GUI

Use case Knowledge needed independent

of GUI use

Contribution of GUI to

reduced learning costs

Additional knowledge needed

without GUI

Model results

analysis

Market and policy intelligence,

economic theory, methodological

overview on model

Potentially very high At least mnemonics and file

location/structure of results

Model runs Additionally: details on

methodology

Depending on model

from high to almost zero

Maximal: Model language, file

structure, mnemonics;

Minimal: zero

First GUI set-up Negative, not needed

without GUI

GUI extension Negative, not needed

without GUI

Source: own research

GJAE 63 (2014), Number 4

282

training session, classroom use and individual applica-

tions underline that GUIs can indeed help to improve

accessibility to results of economic model.

The second use case is running the model, i.e. to

perform a policy or market scenario.10 The standard

case is that users are at first trained in analysing re-

sults. Having mastered successfully that step clearly

increases the motivation to learn more about the

model. In order to perform a policy scenario, the user

needs to map a change in legislation into a quantita-

tive change in exogenous parameters. That requires an

understanding of the legislation, of the model’s meth-

odology and finally, about how to code the change.

GGIG can clearly only ease the last bit. To what ex-

tent that is possible depends largely on the complexity

of both the policy presentation in a model and the

scenario. Besides defining controls which change

policy related exogenous parameters, GGIG comprises

a “scenario definition tool” where pre-existing GAMS

code snippets can be changed in an editor and com-

bined to a scenario. The same observations also hold

for scenarios that change other exogenous parameters

such as macro-variables.

The models mentioned in Table 2 differ con-

siderably in their approaches to define a model run.

The two extremes will be presented briefly in the fol-

lowing. In the single farm model FARMDYN, a larger

part of the ~170 controls mentioned in table 2 allows

to define a model run both with regards to assets of

the farm (land, labour, stable, machinery ...), the

shocks (mainly prices for output and inputs) and mod-

el properties (time horizon, methodological features).

A direct editing of changes in the GAMS code is not

necessary. For CAPRI, however, the opposite is typi-

cal: a user defines a scenario in the GAMS code di-

rectly, potentially supported by the scenario definition

tool. Existing scenarios are stored in sub-directories

and can be re-used. The CAPRI GUI however allows

to switch certain modules respectively model features

on or off, and to select the years, regions and spatial

resolution of the model run.

In opposite to the first use case, the contribution

of a GUI to reduced learning costs is therefore far

more depending on the model. Especially partial equi-

10 From a technical viewpoint, a model runs means that

GGIG passes the status of the control to a GAMS (or R)

program. That means that GGIG can also be used to run

GAMS programs which, for example, build up the mod-

el database. We will, however, not analyse that type of

application in here. Firstly, typically a few, quite expe-

rienced people are typically involved in these tasks, and

secondly, it is far less standardized across models.

librium models often depict policy instruments close

to the law book; CAPRI, to give an example, distin-

guishes between ~60 different subsidies schemes at

farm level. Defining controls at that detail is a tre-

mendous task with probably limited returns, as GAMS

coding gives far more flexibility e.g. to define groups

of subsidies and to apply changes at group level.

CAPRI provides some further observations

for the second use case of running the model; not

astonishing, they are fewer than those for the first one.

By now, more and more institutions not previously

involved in the development of CAPRI apply the

model. In most cases, on the job training is not a

viable option, as it requires prolonged staff exchange.

Hence, a small group of newcomers (or less experi-

enced users) attended short block courses of 1-3 days,

not only to learn how to exploit and analyse results

as in the yearly training sessions, but also to perform

more complex tasks such as to define and run policy

scenarios or to construct an ex-ante baseline. The GUI

was typically assessed as the easiest part to learn,

 and the contrast in learning time and success rate is

striking between tasks which require own coding

efforts and tasks which can be performed by solely

using the GUI. A similar experience provides a recent

course where a group of master students used the

GTAP in GAMS code from Tom Rutherford (RUTH-

ERFORD and HARBOR, 2005) successfully in conjunc-

tion with GGIG to develop and analyse their own

scenarios, mostly without any support by an experi-

enced user.

Given the number of training sessions and cours-

es, these observations relate to more than one hundred

persons, with quite different pre-existing knowledge

and talents. The observations differ considerable from

those made in early CAPRI training sessions using

earlier versions of CAPRI with no or a far less well

developed GUI. In these earlier versions, users had to

edit the GAMS code and to use GAMS tools to in-

spect results. Users typically achieved far less, while

the trainers permanently had to support participants in

overcoming problems related to GAMS coding or

assessing results. One might hence summarize that, at

least based on the experiences with CAPRI and

GGIG, GUIs are indeed able to considerably reduce

learning time and steering errors with regard to eco-

nomic model applications.

The last use case relates to the implementation of

a GUI in GGIG. For the smaller projects reported in

Table 1, a trained coder could set up a GUI and a set

of exploitation tables in a few hours. In opposite to the

smaller- to medium-scale examples mentioned above,

GJAE 63 (2014), Number 4

283

CAPRI has a much more complex GUI. Setting up a

first working version took considerably longer, also as

its implementation led to improvements to GGIG it-

self and thus was mixed with code development in the

GUI generator itself. Equally, there were some legacy

questions as the GAMS code needed to work over a

longer testing period both under the old and new GUI.

From the other examples, the river basin model was

the only one where the GUI was added after the main

development phase, and perhaps not astonishing, it

went along with some refactoring of the GAMS code.

The experiences with CAPRI and the river basin model

might serve as an indication that it is generally best to

develop the GAMS code from the beginning in paral-

lel to the GUI.

After the first version of the CAPRI GUI was set

up in GGIG, GAMS coders involved in CAPRI pro-

jects have added new features to the projects’ GUIs.

The same holds for researchers contributing to some

of the other projects mentioned above. These experi-

ences seem to underline that at least once a starting

implementation based on GGIG is given, the learning

time required to expand a GUI seems quite low.

To summarize and conclude, the use cases seem

to underline that it is advantageous to complement

economic models with a GUI, at least if their use be-

yond the core group of original developers is required.

The largest reduction in learning costs with a GUI can

be achieved if users solely exploit existing scenarios.

The experiences in that respect seem to indicate that

the learning time can be so low that result sets of

complex economic models can be used in the class-

room or to let informed clients access results. It clear-

ly motivates potential model users if they are able to

analyse model runs based on their knowledge with

regard to markets, policies, economic theory and eco-

nomic model methodology without having first to

learn a lot of technical detail. Based on that experi-

ence about what the model is able to deliver, they can

take an informed decision if they want to acquire the

necessary skills to master more complex tasks, such as

to define and run policy scenarios. For clients, having

easy access to results also reduces the black-box char-

acter of complex models and might build trust (as

long as results make sense). More specifically, the

experiences with GGIG so far might also serve as an

indication that users seem to learn quickly to use

GGIG based GUIs, while the efforts needed to build a

GUI in GGIG are limited.

6 Summary and Conclusions

Result analysis of economic models and more so

model runs require considerably learning efforts as

users need to familiarize themselves with the model-

ling language used, mnemonics and further technical

detail. Graphical User Interfaces (GUI) have the po-

tential to not only reduce learning costs, but also to

more efficiently steer models and exploit results.

However, developing a proprietary GUI for an

economic model is typically a costly task which re-

quires knowledge in software engineering. With

GGIG (GAMS Graphical Interface Generator), a rela-

tively simple GUI builder XML for GAMS and R

projects is now available where components are de-

fined in an XML file. GUIs generated with GGIG

carry user operable controls of which the settings are

passed via an include file to GAMS. They allow

spawning GAMS processes and merging the results

from different GAMS runs for exploitation, supported

by a rather flexible reporting tool. GGIG also com-

prises a set of further utilities, e.g. for SVN updates or

to build a documentation of GAMS symbols and files

in HTML pages, similar to javadoc. First applications

underline that GAMS coders without formal software

training are able to build their own GUI, whereas

users learn quickly to use the GUI for result analysis

and model runs.

References

ABRAN, A., A. KHELIFI, W. SURYN and A. SEFFAH (2003):

Usability meanings and interpretations in ISO standards.

In: Software Quality Journal 11 (4): 325-338.

ANG, C. (2004): Optimized recovery of damaged electrical

power grids. Master Thesis. Naval Postgraduate School,

Monterey, California. In: DOI:http://worldcat.org/oclc/

66268376.

BANSE, M., H. GRETHE and S. NOLTE (2005): European

Simulation Model (ESIM) in the General Algebraic

Modeling System (GAMS): Model Documentation.

Humboldt University of Berlin, Universities Hohenheim

and Göttingen.

BAZZANI, G. (2005): An integrated decision support system

for irrigation and water policy design: DSIRR. In: Envi-

ronmental Modelling and Software 20 (2): 153-163.

BOUMA, F., B. ELBERSEN, J. ROOS-KLEIN LANKHORST and

I. STARITSKY (2010): Deliverable 5.6: Technical De-

scription of Final CCAT Tool, LEI The Hague. In:

http://www.wageningenur.nl/upload_mm/a/1/1/6801a81c

-7fde-4f46-a244-9a2fc5894250_D5_6TechnicalDescrip

tionCCATFinalToolFINAL1.pdf.

GJAE 63 (2014), Number 4

284

BRITZ, W. (2012): RegCgeEU+ in GAMS, documentation

including the Graphical User Interface, CAPPRI-RD

Deliverable 3.2.4. In: http://www.ilr1.uni-bonn.de/agpo/

rsrch/capri-rd/docs/d3.2.4.pdf.

– (1999): IT - An Unimportant Ingredient of Large Scale

Models? In: Agrarwirtschaft 48-(3/4): 159-162.

– (2011): The Graphical User Interface for CAPRI version

2011. University Bonn, Institute for Food and Resource

Economics. In: http://www.capri-model.org/docs/Gui

2011.pdf.

– (2014a): GGIG Graphical Interface Generator Program-

ming Guide. University Bonn, Institute for Food and

Resource Economics. In: http://www.ilr.uni-bonn.de/

agpo/staff/britz/GGIG_programming_guide.pdf.

– (2014b): GGIG Graphical Interface Generator User

Guide. University Bonn, Institute for Food and Re-

source Economics. In: http://www.ilr.uni-bonn.de/agpo/

staff/britz/GGIG_user_Guide.pdf.

– (2014c): The Graphical User Interface for CAPRI version

2014. University Bonn, Institute for Food and Resource

Economics. In: http://www.capri-model.org/docs/Gui

2014.pdf.

BRITZ, W. and J. KALLRATH (2012): Economic Simulation

Models in Agricultural Economics: The Current and

Possible Future Role of Algebraic Modelling Lan-

guages. In: Kallrath, J. (ed.): Algebraic Modelling Sys-

tems: Modelling and Solving Real World Optimization

Problems. Springer, Heidelberg, Germany: 199-212.

BRITZ, W. and A. LEIP (2009): Development of marginal

emission factors for N losses from agricultural soils

with the DNDC–CAPRI meta-model. In: Agriculture,

Ecosystems & Environment 133 (3-4): 267-279.

BRITZ, W., P. PEREZ DOMINGUEZ and G.P. NARAYANAN

(2013): Analyzing results from agricultural large-scale

Economic Simulation Model: State-of-the-art and Way

Ahead. In: submitted to German Journal of Agricultural

Economics.

BRITZ, W. and P. WITZKE (2012): CAPRI model documen-

tation 2012. University Bonn, Institute for Food and Re-

source Economics. In: http://www.capri-model.org/docs/

capri_documentation.pdf.

Brooke, A., D. Kendrick and A. Meeraus (1988): GAMS: A

User's Guide. The Scientific Press, Redwood City, Cali-

fornia.

BULATEWICZ, T., A. ALLEN, J.M. PETERSON, S. STAGGEN-

BORG, S.M. WELCH and D.R. STEWARD (2013): The

Simple Script Wrapper for OpenMI: Enabling interdis-

ciplinary modeling studies. In: Environmental Model-

ling & Software 39: 283-294.

DE WOLF, D. and Y. SMEERS (2000): The Gas Transmission

Problem Solved by and Extension of the Simplex Algo-

rithm. In: Management Science 46 (11): 1454-1465.

DOL, W. and F. BOUMA (2006): The GSE philosophy: a

concept of model building as a team activity. LEI-

Wageningen UR, The Hague.

DOL, W. (2006): GAMS Simulation Environment. LEI The

Hague. In: http://www3.lei.wur.nl/gamstools/gse.doc.

EU (2009): Impact Assessment Guidelines, SEC(2009) 92.

HARRISON, W.J. and K.R. PEARSON (1996): Computing

Solutions for Large General Equilibrium Models Using

GEMPACK. In: Computational Economics 9 (2): 83-

127.

HAVLÍK, P., H. VALIN, A. MOSNIER, M. OBERSTEINER, J.S.

BAKER, M. HERRERO, M.C. RUFINO and E. SCHMID

(2013): Crop Productivity and the Global Livestock

Sector: Implications for Land Use Change and Green-

house Gas Emissions. In: American Journal of Agricul-

tural Economics 95 (2): 442-448.

HEIDECKE, C. and T. HECKELEI (2010): Impacts of changing

water inflow distributions on irrigation and farm income

along the Drâa River in Morocco. In: Agricultural Eco-

nomics 41 (2): 135-149.

HERTEL, T.W. (ed.) (1997): Global Trade Analysis: Model-

ling and Applications. Cambridge, University Press.

IHAKA, R. and R. GENTLEMAN (1996): R: a language for

data analysis and graphics. In: Journal of computational

and graphical statistics 5 (3): 299-314.

ISO 9241 (1992/2001): Ergonomics requirements for office

with visual display terminals (VDTs). International Or-

ganization for Standardization, Geneva.

JANSSEN, S., K. LOUHICHI, A. KANELLOPOULOS, P. ZAN-

DER, G. FLICHMANN, H. HENGSDIJK, E. MEUTER, E. AN-

DERSEN, H. BELHOUCHETTE, M. BLANCO, N. BORKOW-

SKI, T. HECKELEI, M. HECKER, H. LI, A. OUDE LANSINK,

G. STOKSTAD, P. THORNE, H. VAN KEULEN and M. VAN

ITTERSUM (2010): A Generic Bio-Economic Farm Mod-

el for Environmental and Economic Assessment of Ag-

ricultural Systems. In: Environmental Management 46

(6): 862-877.

KALLRATH, J. (2012): Algebraic Modeling Languages:

Introduction and Overview. In: Kallrath, J. (ed.): Alge-

braic Modelling Systems: Modelling and Solving Real

World Optimization Problems. Springer, Heidelberg,

Germany: 3-10.

KNAPEN, M.J.R., S.J.C. JANSSEN, O.R. ROOSENSCHOON,

P.J.F.M. VERWEIJ, W. DE WINTER, M. UITERWIJK and

J.E. WIEN (2013): Evaluating OpenMI as a model inte-

gration platform across disciplines. In: Modelling &

Software 39: 274-282.

KUHN, A., V. MULINDABIGWI, M. JANSSENS, G. STEUP, T.

GAISER, H. GOLDBACH, I. GRUBER and E. GANDONOU

(2010): Impacts of Global Change on food security in

Benin. In: Speth, P., M. Christoph and B. Dieckkrüger

(eds.): Impacts of Global Change in the Hydrological

Cycle in West and Northwest Africa. Springer, Berlin:

454-483.

KUHN, A., P. VAN OEL and F. MEINS (2012): The Lake

Naivasha Hydro-Economic Basin Model (LANA-

HEBAMO) - A Technical Documentation. DFG Re-

search Unit 1501, Sub-Project B2, Technical Paper

10/2012. Universität Bonn.

LANIAK, G.F., G. OLCHIN, J. GOODALL, A. VOINOV, M.

HILL, P. GLYNN, G. WHELAN, G. GELLER, N. QUINN, M.

BLIND, S. BECKHAM, S. REANEY, N. GABER, R. KENNE-

DY and A. HUGHES (2013b): Integrated Environmental

Modeling: A Vision and Roadmap for the Future. In:

Environmental Modelling & Software 39: 3-23.

LANIAK, G.F., A.E. RIZZOLI and A. VOINOV (2013a): The-

matic Issue on the Future of Integrated Modeling Sci-

ence and Technology. In: Environmental Modelling &

Software 39: 1-2.

LEIP, A., G. MARCHI, R. KÖBLE, M. KEMPEN, W. BRITZ and

C.C. LI (2008): Linking an economic model for Europe-

an agriculture with a mechanistic model to estimate ni-

GJAE 63 (2014), Number 4

285

trogen losses from cropland soil in Europe. In: Biogeo-

sciences 5 (1): 73-94.

LENGERS, B. and W. BRITZ (2012): The choice of emission

indicators in environmental policy design: an analysis of

GHG abatement in different dairy farms based on a bio-

economic model approach. In: Review of Agricultural

and Environmental Studies 93 (2): 117-144.

M`BAREK, R., W. BRITZ, A. BURRELL and J. DELINCE

(2012): An integrated Modelling Platform for Agro-

economic Commodity and Policy Analysis (iMAP).

JRC Scientific and Policy Reports, Luxembourg. Publi-

cations Office of the European Union, Luxembourg,

25267 EN.

MCDONALD, S., K. THIERFELDER and T. WALMSLEY (2012):

Globe v2: A SAM Based Global CGE Model using

GTAP Data. Oxford Brookes University, Departement

of Economics, Oxford, UK. In: http://www.cgemod. org.

uk/globev2_2012.pdf.

MOSS, J.E., J.C. BINFIELD, L. ZHANG, M. PATTON and I.S.

KIM (2011): A Stochastic Analysis of the Impact of

Volatile World Agricultural Prices on European and UK

Agriculture. In 85th Annual Conference of the Agricul-

tural Economics Society, Warwick University: 18-20.

MORARI, M. and I.E. GROSSMANN (eds.) (1991): Chemical

Engineering Optimization Models with GAMS. CACHE

Process Design Case Studies 6. CACHE Austin, Texas.

OECD (2007): Documentation of the AGLINK-COSIMO

Model. Organization for Economic Co-operation and

Development, Paris. In: http://ww.oecd.org/officialdocu

ments/publicdislaydocumentpdf/cote=AGR/CA/APM(2

006)16/FINAL&docLanguage=En.

PEARSON, K., M. HORRIDGE and A.N. PRATT (2003):

Hands-on Computing with RunGTAP and WinGEM to

Introduce GTAP and GEMPACK. The Center for Glob-

al Trade Analysis. In: https://www.gtap.agecon.purdue.

edu/resources/download/2692.pdf.

PODHORA, A., K. HELMING, L. ADENÄUER, T. HECKELEI, P.

KAUTTO, P. REIDSMA, K. RENNINGS, J. TURNPENNY and

J. JANSEN (2013): The policy-relevancy of impact as-

sessment tools: Evaluating nine years of European re-

search funding. In: Environmental Science and Policy

31: 85-95.

RAILSBACK, S.F., S.L. LYTINEN and S.K. JACKSON (2006):

Agent-based simulation platforms: review and develop-

ment recommendations. In: Simulation 82 (9): 609-623.

REBENNACK, S., J. KALLRATH and P.M. PARDALOS (2010):

Energy Portfolio Optimization for Electric Utilities:

Case Study for Germany. In: Bjorndal, E., M. Bjorndal,

P.M. Pardalos and M. Ronnqvist (eds.): Energy, Natural

Resources and Environmental Economics. Springer,

Berlin, Heidelber: 221-246.

RICHMOND, B. and S. PETERSON (1997): An introduction to

systems thinking. High Performance Systems, Hanover,

New Hampshire.

RIZZOLI, A.E., J.J.F. WIEN, R. KNAPEN, L. RUINELLI, I.

ATHANASIADIS and B. JONSSON (2009): Updated ver-

sion of final design and of the architecture of SEAM-

LESS-IF Report No.47, SEAMLESS integrated project,

EU 6th Framework Programme, contract no. 010036-2.

In: http://www.SEAMLESS-IP.org.

ROBINSON, M. and P. VOROBIEV (2003): Swing. Second

Edition. Manning, Greenwich, Connecticut.

RUTHERFORD, T. and A. HARBOR (2005): GTAP6inGAMS:

The Dataset and Static Model. Prepared for the Work-

shop “Applied General Equilibrium Modeling for Trade

Policy Analysis in Russia and the CIS”. The World

Bank Resident Mission, Moscow, December 1-9, 2005.

In: http://www.mpsge.org/gtap6/gtap6gams.pdf.

SALAMON, P., F. CHANTREUIL, T. DONNELLAN, E. ERJAVEC,

R. ESPOSTI, K.F. HANRAHAN, M. VAN LEEUWEN, F.

BOUMA, W. DOL and G. SALPUTRA (2008): How to deal

with the challenges of linking a large number of indi-

vidual national models: the case of the AGMEMOD

Partnership. In: German Journal of Agricultural Eco-

nomics 57 (8): 373-378.

VAN ITTERSUM, M., F. EWERT, T. HECKELEI, J. WERY, J.

ALKAN OLSSON, E. ANDERSEN, I. BEZLEPKINA, F.

BROUWER, M. DONATELLI, G. FLICHMANN, L. OLSSON,

A.E. RIZZOLI, T. VAN DER WAL, J.E. WIEN and J. WOLF

(2008): Integrated assessment of agricultural systems –

A component-based framework for the European Union

(SEAMLESS). In: Agricultural Systems 96 (1-3): 150-

165.

VAN LEEUWEN, M., F. BOUMA, F. CHANTREUIL, W. DOL, E.

ERJAVEC, K.F. HANRAHAN, P. SALAMON and G. SAL-

PUTRA (2012): AGMEMOD Model. In: The Future of

EU Agricultural Markets by AGMEMOD. Springer,

Dordrecht, Netherlands: 45-74.

VAN MEIJL, H. and G. WOLTJER (2012): The development

of the MAGNET strategy. Paper presented at the 15th

Annual Conference on Global Economic Analysis, Gene-

va, Switzerland. In: https://www.gtap.agecon.purdue. edu/

resources/res_display.asp?RecordID=3956.

VERWEIJ, P.J.F.M., M.J.R. KNAPEN, W.P. DE WINTER, J.J.F.

WIEN, J.A. TE ROLLER, S. SIEBER and J.M.L. JANSEN

(2010): An IT perspective on integrative environmental

modelling: the SIAT case. In: Ecological Modelling 221

(18): 2167-2176.

WIECK, C., S.W. SCHLÜTER and W. BRITZ (2012): Assess-

ment of the Impact of Avian Influenza Related Regula-

tory Policies on Poultry Meat Trade and Welfare. In:

The World Economy 35 (8): 1037-1052.

WITTEN, I.H.E. FRANK and M.A. HALL (2011): Data Min-

ing Practical Machine Learning Tools and Techniques.

Third edition. Elsevier, Amsterdam.

WOLTJER, G. (2013): Simplifying general equilibrium anal-

ysis through a modular structure: MAGNET. Paper for

the 16th Annual Conference on Global Economic Analy-

sis "New Challenges for Global Trade in a Rapidly

Changing World", June 12-14 2013, Shanghai, China.

In: https://www.gtap.agecon.purdue.edu/resources/res_dis

play.asp?RecordID=4097.

DR. WOLFGANG BRITZ

Universität Bonn, Institut für Lebensmittel- und

Ressourcenökonomik

Nussallee 21, 53229 Bonn

e-mail: wolfgang.britz@ilr.uni-bonn.de

