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Introduction 
Australia is a large, dry and often hot continent.  Australian farmers and 

agribusiness managers must be very adaptable to survive.  Climate researchers are 
steadily improving the skill of their forecasts.  Agricultural researchers are improving 
our knowledge of how systems respond to climate change and drought.  Economists 
continue to improve our understanding of decisions under risk, including weather 
and climate risks. 

In this paper we review the nature and extent of climate change and risks for 
Australia.  Then we review the research and practice in adapting farm businesses.  
Sharing of financial risks is fairly easy, but sharing of climate risks is very difficult.  
We review the lessons of the past and the possibilities for the future.  We believe that 
researchers, farmers and agribusiness must all work together to manage climate 
change and risks in the future.  Communicating about such complex issues among 
diverse groups of people is not easy.  Finally we propose a framework, based upon 
real options, for thinking about an d solving problems in adapting to climate change 
and sharing of climate risks. 

Climate Change and Variability in Australia 
The Bureau of Meteorology (BOM) identifies a number of major rainfall zones of 

Australia based on seasonality, as in Figure 1. 

 

Figure 1: Major seasonal rainfall zones of Australia. 
(Source: BOM, 2006a) 

As a result of the influence of a high pressure be lt, much of Australian rainfall is 
low and variable. Approximately 80 per cent of the continent has an average annual 
rainfall less than 600 mm. The vegetation of the arid interior adapts to dry 
conditions and responds quickly when rainfall is received.  D ryland agriculture and 
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pastoralism have adapted to the harsh climate of the vast inland tropical area (BOM 
2006a). 

Queensland in the Northeast has a rising and highly variable mean annual 
temperature, as shown in Figure 2. 

 

 

Figure 2: Mean annual temperature anomalies in Queensland, Australia. 
(Source: BOM , 2006b) 

The bars are temperatures reported as anomalies from the 1961-1990 average.  By 
converting raw temperatures to anomalies, averages can be calculated over diverse 
localities.  The line is the 11 year moving average to show decadal variation. 

In some parts of Australia, rainfall has been declining, as in Southwestern 
Australia, as shown in Figure 3. 

 

Figure 3: Average rainfall in Southwestern  Australia. 
(Source: BOM , 2006b) 
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More generally, the consensus of climate projections for Australia, based on  Pittock 
(2003a,b) is: 

(i) annual average temperatures are projected to increase by 0.4 to 2.0 °C by 
2030, and 1.0 to 6.0 °C by 2070, relative to 1990.  Associated changes 
are increases in potential evaporation and heatwaves, and fewer frosts. 
Warming is expected to be greater inland than near the coast.  

(ii) Annual rainfall is projected to decline in the S outhwestern  Australia in 
the range of –20 to +5 per cent by 2030, and –60 to +10 per cent by 2070, 
while in the south-east changes of –10 to +5 per cent by 2030 and –35 to 
+10 per cent by 2070 are projected.  In other parts of Northern and 
Eastern Australia, increases or decreases in rainfall are possible, 
depending on  locality.  However, when rainfall changes are combined 
with increases in potential evaporation, a general decrease in available 
soil moisture is projected across Australia, with droughts likely to become 
more severe.  Downside risk in agricultural production is projected to 
increase. 

(iii) Most regions are projected to experience an increase in the intensity of 
heavy rain events and the frequency of other extreme events such as 
floods, fires, droughts and high winds will increase. 

Simulation and projection studies paint a complex spatial story for Australia 
(Howden and Jones 2001, 2004; Howden and Meinke 2003, Harrison 2001, Pittock 
2003a, White et al.  2003, Kokic et al. 2005; Van Gool and Vernon 2005) regarding 
the nature and impacts of climate change and climate variability.  For example, 
Howden and Jones  (2004) report how the value of Australia’s wheat production 
could be affected by a projected climate regime towards 2070.  Response surfaces of 
mean wheat yields to CO2, rainfall and temperature were developed for 10 sites 
representative of the wheat growing regions of Australia.  The wheat simulation 
model I_Wheat (Meinke et al . 1998, Asseng et al . 2004) was run for a factorial 
combination of CO2 increase, rainfall and temperature change using modified 100-
year climate records (Reyenga et al. 1999) to generate response surfaces at each site.  
Their results suggest that the projected climate regime towards 2070 poses a 
significant risk for the Australian wheat industry, although adaptation strategies 
could substantially reduce this risk.   

Howden and Jones project a skewed distribution of national impacts but also a 
marked spatial variation in possible impacts with wheat production in south - 
western Australia being deleteriously affected while southern Queensland and 
higher rainfall regions of New South Wales benefit. Their 2070 projection is for a 5 
per cent increase in the median value of the nation’s wheat crop.  However, due to 
the projected rise in Australia’s population and increased use of feed grains in feed-
lot and intensive agriculture, Howden and Jones forecast the value of Australia’s 
wheat exports to decline substantially, even assuming farmers react through 
adaptation . 

The impact of climate change on cropping area was also investigated in an earlier 
study by Reyenga et al. (2001).  They noted that climate change  would likely alter 
the spatial distribution of cropping in Australia, given the importance of climate and 
soil characteristics in determining average yields and the frequency of failed 
sowings. They suggested that the viability of some cro pping regions across Australia 
would decrease if the number or sequence of poor seas ons increased. 
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ACG (2005) in a study commissioned by the Australian Greenhouse Office 
considered the impacts of climate change in seven regions of Australia, selected due 
to their potentially large adverse impacts of climate change.  The agricultural regions 
they included were the Murray-Darling Basin, S outhwestern  Australia and the 
rangelands of Australia.  In developing their findings they drew on previous analyses 
relevant to those regions (CSIRO 2001, Jones 2001, IOCI 2002, AGO 2002, Pittock 
2003a). 

The ACG reported CSIRO modeling for the Murray-Darling basin that projected 
stream flows to decline by up to 20 per cent by 2030 and up to 45 per cent by 2070, 
although much variation surrounded these projections.  ACG forecast problems of 
water shortages and increased competition for water.  Drought frequency and its 
severity within the basin are also projected to increase with adverse impacts on rural 
businesses, infrastructu re and greater loss of soil and biodiversity is expected.  
Accelerated woody weed invasions were one likely impact of drought. 

In the rangelands of Australia, ACG reported that changes in flood and drought 
patterns would generate a range of spatial impacts .  In southern rangeland regions 
where rainfall is anticipated to decline, animal production would commensurately 
decline through reductions in carrying capacity.  The converse was likely to apply in 
northern rangelands. 

Most climate models forecast warmer conditions across Australia with the 
implication that dairy and beef cattle will experience even greater heat stress, 
causing greater mortality and limitations on productivity.  Howden and Turnpenny 
(1997) advocate further selection of cattle lines with greater thermoregulatory 
control, but they point out that this could be difficult because it may not be 
consistent with high production potential (Finch et al. 1982, 1984). 

Beer and Williams (1995), Williams et al. (2001), and Cary (2002) report the 
potential impact of climate change on bushfire danger in Australia.  These studies 
each found a general increase in fire danger, as measured by the McArthur forest 
fire danger index, with the enhanced greenhouse effect.  Extreme fire danger is 
highly correlated with periodic drought conditions, leading to drying of fuel, and 
extremely hot summer and autumn days are conducive to fire spread.  Both these 
conditions are expected to increase with global warming under all plausible 
scenarios, at least in southern Australia (Pittock 2003a). 

Climate science endeavour in Australia has concentrated on improving our 
understanding of global climatology and ensuring that climate projections are 
underpinned by increasingly sophisticated process models.  However, it needs to be  
emphasized that the eventual impacts of climate change and climate variability will 
not simply result from physical or environmental changes, no matter how accurately 
they may be forecast.  Rather it is the direct and indirect impact of climate change 
and climate variability on the demand and supply of agricultural inputs and outputs 
(Kingwell 2006) that will generate economic impacts. Market signals linked to altered 
production possibilities will underpin the generation of sectoral, spatial and 
temporal impacts.  Even if an agricultural region is not subject to much climate 
change nonetheless the prices it receives for its traded goods will be affected by the 
impacts of climate change on agricultural production in other regions or countries.   

Adapting to Drought 
Agricultural decision making in Australia has always been undertaken in an 

environment of considerable uncertainty.  Because most farm inputs are allocated 
well before yields and product prices are known, farmers must allocate resources 
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each season on the basis of their expectations about yields and prices (Anderson 
2003).  The accuracy of expectations affects resource use efficiency with associated 
effects on farm income. 

While agricultural producers face many sources of uncertainty, climate variability 
has been highlighted as one of the most important.  Anderson (1987) estimated that 
climate variability is responsible for just under 40 per cent of the variation in 
Australia’s gross value of agricultural production and farm income.  The value of 
agricultural production in the drought affected year of 2002-03 was just one quarter 
of that received in 2001-02. The drought was estimated to cost the economy $6.6 
billion, or about one percent of GDP. Federal and state assistance to farmers during 
the drought and recovery period is estimated to be $1.2 billion (Drought Review 
Panel 2004). 

Climate variability erodes the accuracy of expectations held by producers about 
future yields and reduces productivity and resource use efficiency.  Producer 
responses to climatic variability are also thought to have adverse productivity and 
resource degradation consequences.  The former occurs because producers choose 
strategies (e.g. crop or livestock activities which perform well under poor climatic 
conditions) which reduce the level of risk but that are less productive on average 
than other strategies.  Resource degradation can result from the adoption of 
practices such as fixed long fallows that were introduced to buffer crop production 
against the variable climate, but are now suspected of contributing to deep drainage 
and erosion (Gilfedder et al. 1999).  Finding better ways of managing climate 
variability is likely to be of ongoing interest with climate change research predicting 
increases in aridity and drought frequency for major areas of agricultural production 
in Australia (Pittock 2003). 

Climate forecasting technologies 

Seasonal climate forecasting is one of a number of technologies available to 
agricultural producers to reduce production risk.  Most significant progress in 
forecasting technologies has been made in inter-annual or seasonal climate 
predictions.  The best-defined pattern of inter-annual rainfall variability is the 
climatic anomalies referred to as the El Nino-Southern Oscillation (ENSO) (Hammer 
et al. 2001). ENSO involves sustained shifts in Sea Surface Temperatures (SST) in 
the eastern equatorial Pacific.  A sustained warming of this area is accompanied by 
negative values of the Southern Oscillation Index (SOI), which is the standardised 
difference in atmospheric pressure between Tahiti and Darwin, and often a 
reduction in average rainfall over eastern Australia (El Nino).  Conversely, a cooling 
of the area is associated with positive values of the SOI and often higher than 
average rainfall over eastern Australia (La Nina). 

Research and experience over the last few decades has shown that ENSO plays 
an important role in explaining rainfall patterns in many parts of the world 
including Australia (Meinke and Stone 2004).  Advances in our understanding of 
climatic interactions, combined with improvements in monitoring and computing 
power, now provide a degree of predictability about climate fluctuations (Hansen 
2002a). 

Climate forecasts offer information on climatic conditions in the coming season 
and are usually presented in the form of a probability of receiving a certain amount 
of rainfall, commonly described as discrete intervals like ‘above or below median’ or 
‘poor, average and good’.  They offer skilful but uncertain information about climatic 
conditions in periods of 3 to 12 months ahead.  Because climate will always contain 
uncertainty due to the chaotic behaviour of the atmosphere, climate forecasts are 
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best interpreted as shifts of the climatological probability distribution (Hansen 
2002).  The value of these new probability distributions lies in the fact that they 
enable the decision-maker to better allocate resources between poor years and good 
years (Hayman et al. 2005). 

The significance of the Southern Oscillation for Australian rainfall has only been 
recognised since the 1970’s (Sturman and Tapper 2006).  Annual rainfall in eastern 
Australia correlates in a general sense with the SOI and major droughts are 
frequently associated with large ENSO events, as shown in Figure 5. 

 

Figure 5: Southern Oscillation Index and the Occurrence of Drought in 
Australia. (Source: Clewett et al. 2003)  

Seasonal climate forecasts have been issued in Australia since 1989.  The current 
seasonal outlooks issued by the Bureau of Meteorology (BOM) are based on 
Australian rainfall/temperatures and SST records for the tropical Pacific and Indian 
Oceans (BOM 2006).  Forecasts are also issued by the Queensland Department of 
Primary Industries and are based on phases (incorporating both the value of the SOI 
and its rate of change) in the SOI.  The identification of ‘phases’ (Stone and 
Auliciems 1992; Stone et al. 1996) was an important advance in climate forecasting 
and led to improvements in forecast quality in a number of regions affected by 
ENSO.  Statistical based forecasting systems, using either the SOI or SST have been 
the major source of seasonal forecasts used in agricultural practice (Hammer et al. 
2001).  Further progress in the development of seasonal climate forecasting systems 
is likely to rely more on dynamic climate models which are expected to provide 
improved forecast skill in the near future (Meinke and Stone 2005). 

Use and value of seasonal climate forecasts 

Recent advances in the accuracy of climate forecasts have led to some optimism 
about their potential economic value.  Improved understanding of atmosphere and 
oceans through ENSO has been described by Glantz (1996) as ‘Science’s gift to the 
20th century.’  In a report to the US Academies of S cience, Easterling (2000) claimed 
that seasonal climate forecasts based on the understanding of atmosphere and 
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oceans was the premier advance of the atmospheric sciences in the 20th century 
(Hayman et al. 2005). 

Improved climate forecasts provide opportunities for producers to better match 
decisions to pending climatic conditions.  Value arises from decisions which either 
reduce losses associated with expected adverse climatic conditions or take 
advantage of expected good climatic conditions.  Crop producers potentially benefit 
from climate forecasts through the selection of crop types, varieties and input levels 
better suited to impending climatic conditions.  Similarly, graziers potentially benefit 
by tactically adjusting stocking rates to better match livestock demand to future 
pasture conditions.  Both types of producers can use climate forecasts to make 
better decisions about the use of off-farm financial instruments to manage risk.  
There is also potential for environmental value arising from the use of climate 
forecasts in the form of reduce d land degradation, although there is little current 
evidence of this. 

Despite various sources of potential value, to realise the benefits from climate 
forecasting a number of conditions must simultaneously be met.  First, the decision 
maker must be facing a choice, the outcomes of which are sensitive to future 
climatic conditions, and hence potentially sensitive to incremental information 
provided by a climate forecast.  Second, a climate forecast must give a prediction of 
relevant components of climate variability at an appropriate scale with sufficient 
accuracy and lead time for decisions (Hansen 2002b); and third, the forecast must 
be effectively communicated so that decision makers can appl y it to their decision 
context. 

Surveys of climate forecast use in Australia suggest that between 30 and 50% of 
farmers take seasonal climate forecasts into account when making farm 
management decisions (White 2001).  This is relatively high compared with farmers 
in other countries, although the term ‘use’ is open to interpretation.  Despite 
purported use, agricultural producers frequently raise concerns about the accuracy 
and timeliness of climate forecasts, experience difficulties in applying forecasts to 
farm management decisions and seek evidence of the economic val ue of climate 
forecasts to reduce risks associated with their adoption. 

There has been renewed interest in the economic value of seasonal climate 
forecasts.  Reviews of relevant studies can be found in Hill and Mjelde (2002), Mjelde 
et al (1998), Katz and Murphy (1997), Paull (2002) and Stern and Easterling (1999).  
Most field and farm based studies have concluded that seasonal climate forecasts 
can be valuable in some decision environments.  The significance of results depends 
on attributes of the climate forecasting system and attributes of the decision making 
environment. 

A common focus of studies has been on the value of seasonal climate forecasts in 
the management of a single enterprise.  Hammer et al (1996) and Marshall et al 
(1996) assessed the value of climate forecasts for wheat management in Queensland. 
Lythgoe et al (2004) undertook an analysis for wheat production in south eastern 
Australia.  Bowman et al (1995) assessed the value of climate forecasting to wool 
producing enterprises in Victoria.  Mjelde and Dixon (1993) and Mjelde et al (1993) 
looked at attributes of forecast quality in corn production in Illinois.  There have 
been relatively few whole-farm studies of the value of climate forecasts in mixed 
cropping environments (Mjelde et al. 1997; Mjelde and Hill 1999; Petersen and 
Fraser 2001; Podesta et al. 2002).  This is unusual in an Australian context given 
that mixed cropping and livestock operations characterise a large proportion of 
broadacre agriculture in Australia. 
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The literature highlights a long list of impediments to the adoption of climate 
forecasts which can be broadly categorised as either to do with features of the 
decision making environment which make forecast use difficult (various restrictions 
in producer flexibility, government policies that dissuade use and difficulties that 
decision makers have in dealing with probabilities and uncertainties) or problems 
with the forecast themselves (e.g. accuracy, timeliness, relevance, communication).  
Hayman et al (2005) compare seasonal climate forecasts with other agricultural 
innovations that farmers are encouraged to adopt. They noted a number of key 
adoption challenges for seasonal climate forecasts including their level of complexity, 
inability to trial and general incompatibilities with how agricultural producers 
generally make decisions. On the positive side, they also suggested that the cognitive 
effort required in understanding and using climate forecast can be applied across 
the whole farm (economies of scale) and across a range of decisions and enterprises 
(economies of scope). Seasonal climate forecast are probably best interpreted as a 
technology to enhance rather than replace risk management strategies. They are 
probabilistic in nature and since they are largely based on ENSO phenomenon (3-7 
year cycle), there will be periods of both low and high confidence in projections. 
Recognising when and when not to adapt management to the current forecast 
presents a challenge to both farmers and then advisers.   

Farm characteristics and seasonal climate forecasts 

The nature of farm businesses in Australia affects both their exposure to the risk 
of climate change and climate variability and their ability to respond to both.  
Currently, many farm businesses in Australia have high equity, both in aggregate 
and percentage terms.  Farms are often diversified with portfolios of on -farm 
enterprises and off-farm investments (Martin et al. 2005).  Larger businesses often 
are additionally spatially diversified (MacKay 2005).  Kingwell and Pannell (2005) 
point out that this diversity has enabled businesses to cope with variation in climate 
and to capitalise on changes in the relative prices of agricultural commodities.  It 
has enabled generations of farmers to be equipped with a range of management 
skills, created flexibility, and supported entrepreneurial action . 

In spite of the potentially large long run impacts of climate change for Australian 
agriculture, nonetheless, for most farm businesses, even large businesses, climate 
change is unlikely to be a first-order issue.  The commercial longevity of most farm 
businesses depends on their financial performance in the next few years rather than 
the more distant impacts of climate change, so it is rational for farmers to devote 
their energies toward the more pressing commercial issue of appropriately 
responding to climate variability and market opportunities over the next handful of 
seasons.  Only when dealing with issues of farm succession or farm expansion may 
climate change impacts surface, and even th en, perhaps only in passing.  

Howden et al. (2003) reviewed the adaptive capacity of the Australian agricultural 
sector to climate change .  They found that most potential adaptation options for 
Australian agriculture were extensions or enhancements of existing activities for 
managing current climate variability.  In broadacre farming a range of coping and 
adaptation options are either available or are being developed. 

John et al. (2005) examined the impact of climate change in a low rainfall 
broadacre farming region of Australia and found that the projected adverse climate 
change, that included an increased incidence of drought, reduced farm profit 
significantly.  An implication was that a farmer’s financial capacity for adoption of 
some innovations would be  impaired due to reductions in financial liquidity.  
Expensive, lumpy capital investments (e.g. croppin g gear, additional farmland) 
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would be difficult to undertake, especially as these investments are often conditional 
on periods of favourable seasons.  Th e reduced frequency of favourable seasons and 
the increased incidence of drought are likely to inhibit some capital replacement and 
expansion decisions of farmers. 

Sharing the Risks of Drought 
Current drought policy in Australia relies on the Exceptional Circumstances 

program, which aids farmers after extreme consecutive seasons, and Farm Business 
Deposits which allow smoothing of income by deferring income from good to poor 
seasons, effectively reducing the level of income tax.  These programs do not directly 
cover farmers’ exposure to weather and climate risk and because they are ex post, 
there are no efficiency gains in farm production.  Consequently, researchers are 
investigating other instruments such as multi peril crop insurance, weather 
derivatives and yield index insurance. 

Multi peril crop insurance 

Traditional multi peril crop insurance schemes have failed wherever they have 
been implemented (Goodwin and Smith 1995).  The U.S. and Canadian schemes 
have not been commercially viable with loss ratios approaching 3 (Gardner 1994, 
Sigurdson and Sin 1994).  In other words, the costs of the scheme have been three 
times greater than the premiums paid by farmers.  Nor has the situation improved 
recently (Skees et al. undated).  Multi peril crop insurance schemes are complicated 
policies for subsidising farmers. 

The final report compiled by the Multi Peril Crop Insurance Taskforce (2003) put 
to rest the concept of multi peril crop insurance in Western Australia.  The 
premiums that farmers would have to pay are reasonable, as shown in Figure 5. 
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Figure 5:  Percentile of farms and insurance premiums classified by the 
coefficient of variation. (Adapted from Multi Peril Cro p Insurance Task Force 
2003) 
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On the horizontal axis are risk categories measured by the coefficient of variation, 
which equals the standard deviation of yields on a farm divided by its average yield.  
For example, a coefficient of variation of 0.24 says that the standard deviation of 
yields is 24% of average yields. On the left-hand vertical axis is the cumulative 
percentage of farmers with yield risks less than the coefficient of variation.  On the 
right-hand vertical axis is the premium for multi peril crop insurance as a 
percentage of the value of the crop.  Most farmers would pay fairly low premiums.  
About 37% of farmers have a coefficient of variation less than 0.24 and would pay 
less than 0.6% of the value of their crop for insurance.  Over 50% of farmers would 
pay less than 1.5% and 75% of farmers would pay less than 3.5%.  These are 
relatively low premiums, reflecting the reliable wheat production in the state and 
suggest that crop insurance would be affordable in Western Australia. 

Unfortunately there are many problems with multi peril crop insurance: moral 
hazard, adverse selection, high transaction costs and systemic risk.  The most 
serious of these is adverse selection .  The premiums that should be paid by the 
riskiest 10%, 20%, 30% and 40% of farms in 8 shires of Western Australia are 
shown in Table 1 below. 

Table 1:  Premiums for the Riskiest Farms in Each Shire. 

  Riskiest Farms 

Shire Average (%) 10% 20% 30% 40% 

Dalwallinu 1.2 5.1 3.8 3.1 2.7 

Wongan-Ballidu 1.3 7.6 5.6 4.1 3.1 

Dandaragin 1.9 9.2 6.0 4.8 4.1 

Katanning 2.2 7.1 5.4 4.0 3.4 

Merredin 2.3 7.3 5.1 4.3 4.3 

Kulin 2.5 7.9 5.8 5.5 4.9 

Esperance 2.6 9.4 7.1 5.8 4.9 

Jerramungup 4.1 10.9 9.8 8.3 7.3 

Average 2.1 7.7 5.9 4.8 4.2 

(Source Multi Peril Crop Insurance Task Force 2003) 

There is some variation in premiums among shires.  However there are risky 
farms in every shire and most of the variation is among farms within shires.  An 
area yield insurance program might set premiums at the average for each shire.  The 
riskiest farmers would consider insurance a bargain, the least risky farmers would 
consider insurance too expensive and adverse selection would destroy the program. 

To sustain a multi peril crop insurance program, government could pay all or 
part of the premiums or underwrite the risks.  Alternatively, insurance could be 
made compulsory for all farmers.  Instead of government subsidies, some farmers 
could subsidise others.  The Multi Peril Crop Insurance Task Force (2003) calculated 
a maximum transfer from less to more risky farmers of $14 per hectare per year.  In 
Australia, neither of these alternatives is politically possible. 
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Weather derivatives and yield index insurance 

A weather derivative is a contract based on the events of a weather variable 
measured at a given location (Dischell and Barrieu 2002, Stoppa and Hess 2003).  
Because weather variables are collected by a disinterested third party, such as the 
Bureau of Meteorology, the buy and seller of the contract have the same information 
and there is no adverse selection.  Farmers cannot affect the weather and there is no 
moral hazard, unless the seller of the contract rene ges or goes bankrupt.  However, 
this is quite possible because drought in Australia can be wide-spread affecting the 
entire agriculture production and marketing system.  Sellers of weather derivatives 
face systemic risk (Goodwin 2001, Hertzler 2005, Miranda and Glauber 2001, 
Stoppa and Hess 2003).  An effective antidote for systemic risk is a market exchange 
(Collinson 2001) similar to a stock market or a futures market. 

In the U.S. energy market, trade in weather derivatives began in 1996 through  
over the counter contracts and soon expanded to the Chicago Mercantile Exchange 
(2006).  Financial operations in the energy industry are large and sophisticated.  In 
contrast, financial operations in agriculture are often done at night around the 
kitchen table.  Even so, with the total value of the agricultural industry, at 3% of the 
Australian GDP and secondary support industries much larger, the widespread 
adoption of weather derivatives might provide enough  liquidity for exchange traded 
contracts or enough scale for over the counter contracts or for both. 

The main advantage to agriculture, support industries and government is in 
sharing weather risks with institutional investors .  There are advantages to the 
investors as well.  The change  in the value of weather derivatives will have very little 
correlation with their other investments.  By selling weather derivatives, investors 
can add uncorrelated securities to their portfolios.  They will also receive a premium 
from farmers in return for sharing the risks.  The main disadvantage to agriculture 
and support industries is paying the premium.  On average, they may make less 
profit; however, they will not face the potentially crippling consequences of an 
extreme adverse season.  The government will also benefit from reduced assistance 
to agriculture. 

Interestingly, profit may not be reduced.  Weather derivatives will encourage the 
efficient allocation of capital.  Currently, without direct cover for seasonal risk, farms 
diversify their production, usually at the expense of efficiency.  Kingwell (1993) use d 
an optimising farm model to determine the influence of risk aversion on profit.  The 
optimal farm plans for the more risk averse farmers showed a reduction in profit of 
2-6% and 10% fewer cropping hectares.  By using weather derivatives to reduce the 
production risk, these farmers could increase their returns to offset the cost of the 
premium to purchase the weather derivative . 

There are still some major issues to sol ve, however, before the agricultural and 
support industries can effectively use weather derivatives.  The primary problem is 
basis risk.  Basis risk occurs because weather is imperfectly correlated with yields 
on a farm and weather derivatives imperfectly hedge against yield risks.  Basis risk 
can be reduced by using yield indexes, which are essentially stochastic production 
functions of weather.  Then contracts can be written on the yield index instead of 
weather variables.  Unfortunately, it is difficult to find simple yet highly correlated 
yield indexes, and economists do not yet agree on how to price them (Jewson and 
Brix 2005, Hertzler 2004, Musshoff, et al. 2006).  For these reasons, it will be 
difficult to trade yield indexes on an exchange, which will increase transaction costs.  
Instead, a broker will sell yield index contracts over the counter.  Figure 6 diagrams 
how it might work. 
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Figure 6:  Risk sharing through a broker who diversifies and spread risks 
through out the world. 

On the left are systems subject to climate risk.  On the right are other systems 
subject to other risks.  Two of these other systems are markets for weather and 
financial derivatives.  In the middle of the figure is a broker who makes risk sharing 
possible.  Farmers, communities and catchment authorities might buy contracts 
from the broker.  As with traditional insurance, the broker must design contracts for 
each client and individually assess the insurance premiums.  As in finance, the 
risks are assessed using publicly available data, in this case, weather data.  An 
index is estimated from the data to correlate as closely as possible with outcomes for 
each client.  By pooling the risks of several clients, the broker’s portfolio becomes 
less risky.  The broker will, in turn, share some risks.  The broker may buy 
reinsurance from large companies who are exposed to weather in the Northern 
Hemisphere and want to diversify their portfolios to include weather in the Southern 
Hemisphere.  In addition, the broker may buy weather derivatives and financial 
derivatives on market exchanges. 

Real Options:  The Future of Climate Risk Management? 
While climate scientists are improving their forecasts , economists are helping 

farmers and natural resource managers to make better decisions.  In economics , 
there have been two major streams of thought about optimal decisions under risk.  
The first stream began with von Neumann and Morgenstern and led to expected 
utility theory (Anderson et al. 1977, Hardaker et al. 1997).  A recent generalisation is 
the state-contingent approach to decisions under uncertainty (Quiggin and 
Chambers 2004 and Quiggin and Chambers 2006).  The second stream began with 
Einstein and led to stochastic dynamic programming (Kennedy, 1986).  Recently, 
stochastic dynamic programming has evolved into an approach called real options 
(Dixit and Pindyck 1994, Copeland and Antikarov 2001). 

Suppose we are gambling.  We place our bets and roll the dice.  Then we watch 
and wait until the dice stop tumbling to learn the outcome and calculate our gains 
and losses.  This is the conception of probability and risk underlying expected utility 
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theory and the state-contingent approach .  But suppose, in this electronic age, we 
could react quickly and modify our bets while the dice are still tumbling.  This is the 
conception of probability and risk underlying stochastic dynamic programming.  It is 
the conception that is most useful for adapting to climate change and sharing 
climate risks because the climate dice are always tumbling.  Adding asymmetric 
outcomes, in which losses are risky and gains are good luck, extends stochastic 
dynamic programming to become real options. 

Real options can be highly mathematical (Duffie 1996, Dixit and Pindyck 1994) or 
a simple framework for organising our thoughts (Copeland and Antikarov 2001) or 
both.  A simple framework for real options uses decision diagrams.  These are an 
adaptation of decision trees to include all possible states of nature as well as 
decisions which depend upon the current state and probabilities of future states.  As 
two examples, grazing decisions must adapt to climate change and yield index 
insurance could help farmers avoid the downside risks of drought. 

Grazing Decisions 

A grazier may adapt to climate change by conserving fodder and altering stocking 
rates.  A simple decision diagram is shown in Figure 7. 
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Figure 7:  Grazing decisions with climate change. 

Along the top and bottom of the figure, current and future seasons are the states 
of nature.  Decisions are fodder conservation and stocking rates.  In the interior of 
the figure, states of nature are represented by ovals.  The dollar outcomes of 
decisions are contained in the rectangles.  States of nature are linked to dollar 
outcomes by decisions and, in turn, dollar outcomes are linked to future states of 
nature by probabilities.  In this simple example, the only states of nature are wet or 
dry seasons.  On the left, the current season has been revealed as a dry season.  The 
grazier can decide yes, conserve fodder, or no, do not conserve fodder.  Each of these 
has a cost.  Future wet and dry seasons are equally probable.  Once the future 
season is revealed, the grazier will choose a high or low stocking rate.  On the right, 
the outcomes of the stocking rate decision will depend upon whether or not fodder 
was conserved. 

Should fodder be conserved?  Before climate change, the forecast for dry seasons 
is 1 out of every 2 seasons and the real option value (ROV) of fodder conservation is: 

ROV = -100 + ½ 200 + ½ 200 = $100 

Conserving fodder cost $100.  Once fodder is conserved, high stocking rates are 
optimal, even in dry seasons.  The returns from stocking rates are multiplied by 
probabilities to get the expected returns.  Subtracting the costs from the expected 
returns gives a real option value of $100.  Similarly, the real option value without 
fodder conservation is: 

 ROV = 0 + ½ 200 + ½ 40 = $120 

The grazier can expect to be $20 better off without fodder conservation.  Therefore, 
the real option value, in the current season, is $120. 

After climate change, suppose dry seasons are forecast for 3 out of 4 seasons and 
the real option value of fodder conservation is: 

 ROV = -100 + ¼ �200 + ¾ 200 = $100 

However, the real option value without fodder conservation is: 

 ENB = 0 + ¼ �200 + ¾ 40 = $80 

Therefore, in the current season, the real option value is $100.  In this simple 
example, a grazier will adapt to  climate change.  If fodder conservation was not an 
option, the real option value would decline by $40, from $120 before climate change 
to $80 after climate change .  With fodder conservation, the real option value  declines 
by only $20,  from $120 to $100. 

Yield Index Insurance 

Farmers routinely share financial risks by using futures markets and grain pools 
and by purchasing options.  None of these financial contracts are perfectly 
correlated with farm-gate prices, but the correlation is enough to make risk-sharing 
practical.  In the future, farmers may also purchase yield index insurance.  The 
index is a prediction of harvest depending upon the weather.  If the prediction is 
highly correlated with actual harvest, yield index insurance will also become 
practical.  Figure 8 shows a very simple example for a yield index based on growing 
season rainfall. 
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Figure 8:  Pricing of yield index insurance. 

The forecast is for 600 mm of rain.  Actual rainfall may be 960 mm, 600 mm or 
240 mm.  For these rainfalls, the yield index predicts outcomes of $540, $1,005 and 
$220, respectively.  If insurance is purchased, a minimum outcome of $600 is 
guaranteed.  Nine in ten seasons the actual rainfall will be 600 mm and there will be 
no insurance payout.  One in 20 seasons, rainfall will be 960 mm, the yield index 
predicts low yields and the insurance payout will be 600 – 540 = $60.  Also, one in 
20 seasons, rainfall will be 240 mm, the index predicts even lower yields and the 
insurance payout will be 600 – 220 = $380.  The price of yield index insurance that 
equates the real option value with and without insurance is $22.  This is the 
actuarially fair price.  In practice, insurers charge more to cover their costs and 
receive a return on investment in a risky business.  Farmers may still buy 
insurance, however, if they are averse to risk or if sharing the risks is more 
economical than retaining risks and adapting the farming system. 

Decision diagrams are an excellent method for thinking about systems subject to 
climate change and climate risks.  They incorporate states of nature and 
probabilities that depend upon the states of nature.  They make clear that decisions 
and outcomes are adaptive, and irreversible.  However, the diagrams have gaps.  For 
example, a yield index could predict outcomes for all possible levels of growing 
season rainfall, not just 960 mm, 600 mm and 240 mm.  Similarly, the forecast for 
rainfall need not be 600 mm.  It could be 590 mm or 743 mm or any other level.  
More subtly, yield index insurance could be purchased at different times during the 
growing season for different prices.  Additional levels and times could be drawn in a 
much bigger decision diagram.  An alternate approach would keep the decision 
diagrams simple and use the mathematical power of real options to fill in the gaps 
(Duffie 1996, Hertzler 2004). 
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Conclusions 
Adapting to climate change and sharing climate risks is a challenge for Australia.  

Farmers have proven themselves to be adaptable and, if better climate forecasts, 
new methods of farming and new methods of sharing climate risks can be developed 
using weath er derivatives and yield index insurance, agriculture and its support 
industries may continue to prosper.  However this will require collaboration between 
researchers and producers.  The real options framework provide s a way to think 
about adapting and sharing risks and give us a language for communicating about a 
complex problem. 
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