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1 Introduction

In most Western states in the US, water use is governed by the prior appropriation doctrine, which
allocates water based on the principle of “first in time, first in right”. Water rights that are estab-
lished later in time, or junior rights, will be curtailed during a water shortage to ensure sufficient
water to satisfy senior rights. This means that junior water rights holders face greater risk in water
availability. Burness and Quirk (1979) showed theoretically that in the absence of water mar-
kets, prior appropriation doctrine induces heterogeneous risk among water users, which leads to
an inefficient allocation of water. Recent studies have empirically tested this hypothesis that risk
heterogeneity in water availability drive wedges in the behavior of otherwise similar farmers, and
have found generally supportive results. When facing water constraints, farmers usually respond
by adjusting along the extensive margin (Hornbeck and Keskin, 2014). As a result, farmers with
junior water rights tend to plant more land to drought-tolerant but low-profit crops than otherwise
similar farmers holding senior water rights, which results in 5-10% loss in land rent Xu et al.

(2014b); Cobourn et al. (2016); Brent (2016).

Given that the prior appropriation doctrine is not likely to be altered in the near future, are
there ways to potentially mitigate this risk in water availability? Previous studies have looked at
two potential channels of risk mitigation: access to additional water sources (i.e., a water portfolio),
and establishing water markets. For the water access channel, Hornbeck and Keskin (2014) showed
that access to groundwater supply expand farmers’ extensive margin in the long run, and as a result
farmers are able to switch to water intensive crops, which would ultimately lead to an increase in
farmland value. Mukherjee and Schwabe (2015) demonstrated that in addition to groundwater,
access to supplementary water from water districts also increases farmland value. For the water
market channel, Burness and Quirk (1979) showed that in theory a competitive water transfer

market is sufficient to achieve the efficient allocation of water, and the empirical efficiency gains



from these markets are huge (e.g., Calatrava and Garrido, 2005; Ghosh et al., 2014). However,
both channels are constrained by the current geographical and institutional environment. Access
to groundwater is subject to the geographical distribution of underground aquafers, and large-scale
water transfer markets are still very thin in the western U.S (Brewer et al. 2007; Bretsen and Hill
2006). In this paper, we present another channel that mitigates the risk of water availability -

irrigation districts.

Irrigation districts are semi-governmental farmer cooperatives that allocate irrigation water
acquired under prior appropriation water rights to their members. They differ from private farmers
in three ways. First, they typically hold a broader portfolio of water rights that spans different se-
niorities, which reduces water supply volatility. Secondly, water is proportionally allocated inside
most irrigation districts. Proportional allocation of water spreads the risk from individuals to all
district members analogous to insurance pools, which reduces the chance of critical curtailment
for every individual member. Lastly, water transfers between district members are less costly, and
less likely to be opposed by a third party. The intra-district water transfer mechanism, which is
effectively a small-scale water market, allows water allocation within the districts to reflect the
marginal value of water use, and provides an efficiency gain over strict application of prior appro-
priation doctrine at the level of the individual water user. Because of the reasons above, members
of irrigation districts will bear less risk of curtailment, and thus be able to expand their production

towards more water-intensive crops.

The goal of this study is to empirically test whether there exist systematic differences in
land-allocation decisions between farmers residing in and out of irrigation districts, in additional
to their water rights ownership. Our empirical analysis focuses on the East Snake River Plain
(ESRP) in Idaho, a major agricultural production region that relies heavily on irrigation. We take

advantage of a series of rich, geo-referenced datasets, including a unique geospatial database of



water rights for the state and the high-resolution Cropland Data Layer (CDL) to identify cropping
choices made by each farm entity in the region. A panel dataset is constructed spanning 2007-
2014, which includes water rights, crop choice, and control variables such as soil characteristics,
temperature and precipitation. We use a fractional multinomial logit model to explain the land
allocation decisions by farmers, which help us capture the influences of irrigation districts on land

allocation.

This study contributes to the existing literature in two ways. First and foremost, we are
able to disentangle the economic benefits provided by irrigation district from the effect of water
rights seniority. This bridges the gap in the existing literature, which have provided estimates
separately on the seniority effect and the irrigation district effect. Specifically, existing studies
on the seniority effect used variations in seniorities either at the individual farmers’ level (e.g.,
Cobourn et al., 2016; Xu et al., 2014b), which ignores the economic benefits of irrigation districts;
or at the irrigation district level (Brent, 2016), which underestimates the seniority effect as a whole.
Study on the economic value of districts (Mukherjee and Schwabe, 2015) did not consider the effect
of seniority in determining water availability. This leads to an overestimation of the influence by

irrigation district under the prior appropriation doctrine.

Secondly, we use a direct approach to model farmers’ crop-specific land allocation decisions,
which allows us to disentangle the land allocation dynamics as a function of different natural and
institutional characteristics. Previous studies examine these differences indirectly through either
hedonic approaches (e.g., in Brent, 2016; Schlenker et al., 2007), or at an aggregate level (e.g.

Hornbeck and Keskin, 2014; Deschenes and Greenstone, 2007).

Our empirical results show that farmers in irrigation districts plant land to a more profitable
set of crops than otherwise similar farmers outside districts. On average, irrigation districts grow

more sugarbeets and potatoes, which are more drought-sensitive, higher-value crops. As a result



of these differences in planting decisions, members of irrigation districts earn on average $16.20
per acre, or 6.0% more per year than those outside of irrigation districts. This is comparable to
about 0.15 AF/acre in water delivery found in Buck et al. (2014), two-standard-deviation increase
in water rights seniority found in Xu et al. (2014b), Brent (2016) and Cobourn et al. (2016), and
larger than the benefit of having access to water districts in Mukherjee and Schwabe (2015). Our
result indicates that there can be huge potential efficiency gains by deviating from strict application

of prior appropriation doctrine on individuals.

The rest of the paper is organized as follows. Section 2 discuss the background on irrigation
districts, Section 3 motivates the empirical strategy, Section 4 describes the data, and Section 5

provides the empirical results.

2 Background on Irrigation Districts

Most irrigation districts were originally established in the early 1900s, and the main purpose at
that time were to exploit the natural monopoly of irrigation water supply. Irrigation districts facili-
tated the construction of water infrastructures such as pipes and canals, which exhibited high fixed
infrastructure cost and increasing return to scales of water supply(Michelsen et al., 1999). They
greatly reduced bargaining and transaction cost between irrigators who share the infrastructure at
that time, and was regarded as an institutional innovation that speeded up the process of settling

and development in the US West (Rosen and Sexton, 1993).

Irrigation districts still hold an important position in the current water appropriation arena.
About a quarter of the irrigated areas of the U.S. West rely on irrigation districts; this number can

be as much as one-half in some states like California (Smith, 1989). Like other special districts in



the United States, irrigation districts are defined by fixed geographical boundaries. Any farmer who
resides in an irrigation district is considered to be a member of the district, and is entitled to district
water supply. Irrigation districts still need to hold prior appropriation water rights through each
state’s water appropriation system as individual farmers do. However, comparing to individual
farmers, water rights held by irrigation districts are usually larger in quantity, more diverse in the

spans of seniority, and are used to serve a collection of district members.

When irrigation districts face curtailment, water request will be awarded proportionally
to their members according to their requests. Given that irrigation districts typically hold large
amounts of water spanning across diverse water portfolios, the probability is very small for an
irrigation district to be critically or completely curtailed. As a result of this risk alleviation, a
farmer inside an irrigation district is able to plant a more water-intensive crop mix if the farmer has
a concave production function (Burness and Quirk, 1979; Cobourn et al., 2016) or is risk-averse

(Calatrava and Garrido, 2005; Li et al., 2016), which leads to economic gains.

Some irrigation districts also establish informal water transfer mechanisms between its mem-
bers, typically held at the district office. These transfers are much less likely to be objected since
water transfer between district members ensures that any non-consumptive water stays in the hy-
drological system. The potential efficiency gain from agricultural water transfers are huge, even
if the market operates only locally (e.g., Ghosh et al., 2014; Calatrava and Garrido, 2005). How-
ever, outside irrigation districts, the presence of these markets are very limited under the current
political and legal environment (see, e.g., Brewer et al. 2007; Bretsen and Hill 2006). Some states
including Idaho have set up water banking programs to facilitate water transfers. But those banks
typically have limited scope, and often place extra limitations on the sources and the geographical
location that a transfer can take place (Clifford et al., 2004; Ghosh et al., 2014). Even if water

transfer between two parties can be completed, the negotiation process are usually very costly, and



often faces third-party objections.! In contrast, members of irrigation districts have easy access to
a water-market with relatively small transaction cost. This small-scale water transfer market can

thus achieve efficiency gains for district members.

Those two traits of irrigation districts corresponds to the two potential solutions that Bur-
ness and Quirk (1979) suggested in their seminal paper. First, if farmers’ production functions
are homogeneous, then equal sharing of all available water is Pareto optimal. Secondly, the estab-
lishment of a competitive water transfer market achieves Pareto optimal even if water is initially
allocated under the prior appropriation doctrine, and farmers’ production functions are heteroge-
neous. However, for individual farmers, both of these two solutions are currently constrained by
the legal and political environment. The economic advantage of irrigation districts over individ-
ual farmers comes exactly from their ability to implement both solutions within districts, where
farmers outside irrigation districts fail to achieve. By deviating from strict applications of prior ap-
propriation doctrine at the individual level, as well as by offering risk pooling, irrigation districts

are able to reduce the heterogeneous risk in water availability.

As a result of the risk alleviation, we hypothesize that farmers inside irrigation districts will
plant more high-value, water intensive crops in their land allocation then otherwise similar farm-
ers outside of irrigation districts. By doing so, we intentionally leave out farmers’ adjustments in
irrigation intensity from our model. In the context of agricultural production further West, both
irrigation districts status and the prior appropriation hierarchy remains constant at least for the
past 50 years. Thus, any variations in agricultural production cause by institutional differences
in water availability will be reflected in the long-run rather than short-run response. In theory,
when facing water availability constraints farmers can choose to adapt along the intensive margin

or along the extensive margin. However, by decreasing irrigation intensity, farmers maintain the

IPrivate communication with IDWR.



current cropping pattern but become more susceptible to droughts and curtailments, which is ulti-
mately a short-term coping method. In contrast, by changing their land allocation patterns towards
drought-tolerant crops or plant less land as a whole, farmers become less sensitive to droughts and
curtailments by trading off maximum profitability (Hornbeck and Keskin, 2014). Thus, intensive
margin adjustments reflects the short-run responses, and should have little influence to farmers’
long-run reaction to institutional differences. Thus, following Hornbeck and Keskin (2014),Xu
et al. (2014b) and Cobourn et al. (2016), we focus on modelling the relationship between agricul-

tural land allocation differences and water institutions.

Our analysis on the role of irrigation district is done under the assumption that water is allo-
cated only between agricultural users. It is worth noting that a large set of economic literature (e.g.
Bretsen and Hill, 2006; Libecap, 2010, 2011) looked at irrigation districts from the perspective of
water allocation for multiple use, and especially, the conflict of interest between irrigation districts
and urban water users. Those studies typically look at urbanized states like California and Arizona,
where the opportunity cost of water is defined by the willingness to pay for stable water supply
by the growing urban population, which is much higher than the marginal value of water used for
irrigation purposes. The inability for irrigation districts to sell water to domestic users (Rosen and
Sexton, 1993; Bretsen and Hill, 2008) or to adopt water-saving measures (Griffin, 2006; Michelsen
etal., 1999) will then induce economic losses to the urban water user. The premise in those studies
are drastically different from our study, and so does the policy implications. When agricultural in-
terests dominate the local economy, as in Idaho, Montana or West Oregon, the opportunity cost of
water used by one farmer is just water used by another farmer. As a result, the collective nature of
irrigation districts help them bypass strict application of prior appropriation, and achieve economic

benefits.



3 Empirical Strategy

We aim to draw inference from a multi-crop production model which predicts the crop allocation
dynamics of farmers based on their water availability, soil characteristics, and price information.
Specifically, we are interested in how the prior appropriation water rights places a constraint on
farmers’ land allocation decisions, and how residing inside an irrigation districts may alleviate that

constraint.

We start by writing a generic multi-crop decision function. The fraction of land that farmer
1 allocate to crop j, v;;, depends on that farmer’s expected water availability W, soil and climate
characteristics Z;, and the price of input factors and output commodities for crop j as well as other

alternative crops, P. We write the problem as:
Yyij = f(Wi, Zi, P) (1)

The water availability for farmer i, W;, can be disentangled into several factors: water acquired
from the appropriation system 17, water supply from precipitation W/, supplemental groundwater
sources W, whether she is a member of an irrigation district Wf D and other factors that affect

water availability 11/ such as extreme heat conditions. We write that as:
Wi = f(I/Viav Wz, Wz‘p> VVz‘ID’ Wz‘o) 2)

And specifically, supply from the appropriation system can be further disentangled into three ef-
fects: supply effect, seniority effect, and portfolio effect. The supply effect a measures the total
available surface water in the appropriation system. More water available in the system means
more chance of getting water for everyone. Seniority effect 1+ measures the relative seniority of a

right in the appropriation system. Senior rights are less likely to get curtailed than junior rights.



Portfolio effect o measures the diversity of water source held by a farm entity. The more diverse
the source is, the less likely a farm is going to be critically curtailed. The diversity here includes
larger dispersion in surface water rights o° (Cobourn et al., 2016), and possibly holding additional

groundwater sources 09 (Mukherjee and Schwabe, 2015). We write it as:
W= f(Wa(a,,u,a(as,ag)), we, W}D,WO> 3)

The supply effect « is unobserved in our model, and will be instead controlled by the year fixed
effect. Priority effect p is proxied by the average of water right quantile. Surface water portfolio
effect o* is portrayed by the standard deviation of the water right quantile.> Groundwater sources

09 is defined as a dummy variable of whether a farm holds any additional groundwater rights.

There are several ways to achieve a reduced-form model from the above characterization.
Under the water-intensive versus drought-tolerant crop dichotomy, meaningful economic predic-
tions can be reached with estimable reduce-form equations. These models usually assume that
farmers choose to grow two type of crops, the higher-profit but water intensive crop, and the lower-
profit but drought tolerant crop. Under this framework, Hornbeck and Keskin (2014) showed that
in the long-run, groundwater depletion leads to a shrinkage of extensive margin by irrigating fewer
lands and planting more drought-tolerant crops. Xu et al. (2014a) showed the converse argument
that an increase in water availability will lead to an increase in land allocated to the water-intensive
crops. Cobourn et al. (2016) further strengthened this argument by directly modeling the structure
of water rights under the prior appropriation doctrine. They showed that both an increase in wa-
ter rights seniority and an increase in the diversification of water rights motivate farmers to grow
water-intensive crops. Although the water-intensive versus drought-tolerant type of model can

not be used alone to produce an estimable multi-crop allocation model, it provides an important

2Specifically, define the standard deviation of a single water right to be zero, which can be viewed as a portfolio
with no diversification at all.



theoretical construct that farmers adjusting to changing water availability by moving along their

extensive margins.

The economic literature has also laid out multi-crop allocation models. For example, Moore
and Negri (1992) proposes that under common multi-crop maximization settings, a linearized
reduce-form model of multiple crop allocation can be achieved by assuming that the restricted
profit function has a normalized quadratic functional form. However, their model does not lead
to meaningful economic predictions as to what are the marginal effects of water supply on crop
allocation. Another possible way of constructing a multi-crop allocation model is to adopt the
conditional logit framework by McFadden (1974). Assume that the underlying profit of farmer i
growing crop j on a unit of land can be linearly explained by a set of explanatory variables plus a
random error term, i.e.,

Hj = Xlﬁj + Eij “4)

It can be shown that if the random error term ¢;; follows an 1.i.d. type I extreme value distribution,

then the probability of farmer i choosing crop j, v;;, has the form:

erp(Xi3;)
it Adnint 3 5)
o Zi:l XiBy,

If we interpret y;; as the share of crop j in land allocation (rather than the probability of choosing
alternative j in a traditional conditional logit framework), then Equation 5 gives rise to the fractional

multinomial logit model, which is the focus of this paper.

Fractional models assume that the dependent variables are generated by assigning shares to
a series of choices. For each individual, the dependent variables are the shares for each choice
categories. Those shares sum up to one, and are bounded by zero and one. There are three major

advantages of adopting a fractional multinomial logit framework over traditional univariate linear

10



models. First and foremost, it allows us to capture the dynamics of crop allocation changes with
regard to different natural and institutional endowments. We are able to identify systematic dif-
ferences in the cropping patterns exhibited between farmers inside and outside irrigation districts,
with or without additional groundwater supply, etc. Univariate linear models, on the other hand,
works like a black box in the sense that the model does not identify or explain any land use differ-
ence. Secondly, if the true data generating mechanism (DGM) is fractional, then a traditional linear
estimator is mis-specified, which may provide inconsistent estimates as well as poor fits. The linear
model will be especially problematic if the dependent variables takes near-boundary values (0 or
1) with non-trivial probabilities. Fractional logit models, on the other hand, correctly specifies the
underlying DGM, and should be the preferred model to estimate data with share structures. Lastly,
fractional multinomial logit model is able to capture the heterogeneity in partial effects, where in
linear model partial effects are assumed to be homogeneous. In our application, it is particular
interesting to capture the heterogeneous treatment effects of irrigation districts between farmers

who are currently exposed to different level of risks in water supply.

The fractional multinomial logit model is a multivariate extension to the bivariate fractional
logit model laid out by Papke and Wooldridge (1996). In that paper, Papke and Wooldridge pro-
posed a quasi-maximum likelihood (QMLE) estimator for the fractional logit problem, along with
the correction to achieve consistent standard errors following Gourieroux et al. (1984b,a). Papke
and Wooldridge (2008) extended the univariate fractional logit model to a panel setting, and pro-
posed to use either weighted non-linear least squares, QMLE, or a control function approach
to estimate the panel fractional logit problem. In the economic literature,> Mullahy (2015) ex-
tended Papke and Wooldridge (1996, 2008)’s model to a multivariate setting, and demonstrated
that QMLE is still consistent when there exists multiple share categories. Mullahy (2015) also

showed that the Papke and Wooldridge (1996) standard error correction provides consistent stan-

3See, e.g., Sivakumar and Bhat (2002) for the development of fractional multinomial logit in the transportation
literature.
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dard error estimates for the fractional multinomial logit model. Empirically, fractional multinomial
logit model has been widely used in agricultural land allocation modelling (e.g., see Kala et al.

2012; Fiszbein 2015; Cobourn et al. 2016).

The land allocation of farmer i for crop j, y;;, is measured as the fraction of land allocated to
cropj in all allocable lands. The right hand side is a linear combination of all explanatory variables

with a multinomial logit transformation, with the form:

exp(x;
( Zﬁj) p( 6‘7) (6)
i exp(if)
of which z; = X 3, represents the right hand side combination for choice j withj € {1, ..., J}. The
entire model can be consistently estimated with a quasi-maximum likelihood estimator proposed
by Papke and Wooldridge (1996), via maximizing the Bernoulli log-likelihood function with the

form

N N J
(L) =D > yiin(G(xifBy)) (7)
=1

i=1 j=1
of which L; is the likelihood for observation i € {1,..., N}, y;; is the fraction of choice j €
{1, ..., J} made by observation i, x; is a vector of of explanatory variables for observation i, and /3;

is the choice-specific vector of coefficients of choice j.

The parameter estimates from the quasi-MLE problem represent the logit-transformed odds
ratio for that specific choice against the baseline choice. In order to draw marginal or discrete
conclusions, one need to obtain the average partial effects (APE). The marginal effect of the multi-
nomial models has the form:

Op;

k

= p;(Br; — B;) ()

where p; is an 1*N vector of predicted probabilities for choice j, and B; = Z;]nzl BrmPm 18 the

probability weighted average of [3;. The discrete effect for a zero-one dummy variable has the

12



form:

DEjk: = Pr(y = j|Xxk:1) - Pr(y = j|Xxk:0) )

which is the change of predicted probability in the choice y; when the dummy variable x; switch
from zero to one. Both the discrete and the marginal effects differ among different levels of right
hand side variables, and thus different individuals. This means that the researcher has to aggregate
the partial effects for different individuals in order to obtain APE. There are two ways to induce the
average partial effect from the individual-heterogeneous partial effects. The partial effects at the
mean (PEM) calculates the partial effects by setting all covariates at their sample mean, and use
the partial effect at that point to represent the APE. The partial effects on average (PEA) calculates
partial effects for every observation, and take the average of that as the APE. In this paper we will
use the PEM method when calculating APE, although it should be pointed out that there is no

agreement as to which one is preferred (Greene, 2008).

Our baseline fractional multinomial logit model has the following setup:

G~ (yije) = o+ B;IrrDisty + i + 01507 + 62507, + (X + 0Ty + €3¢ (10)

where G1(.) is the inverse of the multinomial logit function with G(.) defined in equation 6;
is the fraction of crop j planted by farm i in year t; [rrDist; is a indicator variable of whether
observation i is an irrigation district; 4, is the mean of water rights quantiles; o7 is a dummy
variable indicating whether the farm owns groundwater rights in addition to surface water rights;
o;, 1s a measurement of surface water right portfolios; X is a matrix of control variables, including
soil, weather, and price expectations. « is the intercept; and ¢ is the error term. Time dummies 73,
are added to control for time-related heterogeneity, e.g., unobserved surface water supply effect.*

Table 1 provides the description of variables included in our model, and Table 2 provides the

4Basin dummy can be added too, but adding them will cause model non-convergence.
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summary statistics for them.

We propose to fit a pooled fractional multinomial logit model on a wide panel dataset with
T=8. Although we possess a dataset with a panel structure, we do not intend to explicitly con-
trol for individual-specific heterogeneities using panel data methods for several reasons. First of
all, panel data method for fractional multinomial logit model is not well-developed. Papke and
Wooldridge (2008) proposed a control function method to estimate panel fractional probit mod-
els. However, there are two obstacles in applying their method in this study. First, the likelithood
function for a multimonial probit model can only be meaningfully constructed on binary variables,
but not on share variables. This prohibits the extension of panel fractional probit model to become
multivariate. Secondly, Papke and Wooldridge’s estimator requires within transformation of data,
which would eliminate all time-invariant variables in the process. Since most of the variables in

our model are time invariant, running a fixed-effect like model is impossible.

Secondly, using pooled cross-section model is sufficient to to explain the long-run impact of
irrigation institutions. Our purpose is to draw inference mainly from between rather than within
variations in land allocation. Since the institutional factors of water availability, prior appropriation
seniority and irrigation districts, are fixed over our model period, any year to year land allocation
differences for one specific farmers will not be a result of institutional factors. Rather, within vari-
ations mainly reflect crop rotation patterns and the expectation on weather conditions. Thus, using
land allocation variations from a cross-sectional or short panel dataset are sufficient to identify
the causal impact from water institutions if other determinants of water availability are properly

controlled for.

Furthermore, irrigation institutions are exogenous in the sense that there does not exist any
reverse causality that land allocation can affect irrigation institutions. Also, we are not worried

about endogeneity emerging from sample selection or spatial sorting, which most hedonic models

14



suffer from (Klaiber and Smith, 2013). Agricultural land sales in Idaho are usually accompanied
by the selling of the water rights associated with that land parcel. Thus, even the ownership of a
specific farm may change, the associated water rights or the claims to irrigation district water will

not.

To minimize the impact of omitted variable bias, we control for as many factors as we can,
guided by the structural agricultural production function. We have included factors that reflects
water availability, soil conditions, and weather conditions that impact agricultural production and
yield. Admittedly, there are factors that we are not able to control for because of data limitation,
but any differences in endogeously determined inputs in the production such as water storage
capacty, irrigation technology or fertilizer should be seen as part of the long-run impact of irrigation
districts on farmers’ production process. For example, we do not control for irrigation technology
in our model, which affects irrigation efficiency and water requirements. For this to bias our
result, irrigation districts have to use systematically inefficient technology than individual farmers.
Furthermore, this systematically inefficient technology should not be a result of the reduced risk
exposure. We have no reason to believe either of them are true. That is to say, our result is rather

robust against potential omitted variable problems.

4 Data

Our empirical analysis focuses on the East Snake River Plain (ESRP) in Southeast Idaho (see
Figure 1). The ESRP is a major agricultural production region in the intermountain West, and the
region’s economy is highly dependent on the agricultural sector. The main water source of the
region is Snake River and its tributaries, and its water flows depend highly on winter precipitation

and snow melts. Agricultural production in the region heavily relies on irrigation water: 74.7%

15



of farmlands are irrigated (NASS, 2012) in the region, which consumes 85.6% of all waters in the
ESRP (Kenny et al., 2009). About 60% of the irrigated croplands are serviced by surface water and
including surface water storage facilities. The other 40% are serviced by groundwater pumping

(NASS, 2014).

[Insert Figure 1 here.]

One of the most important reasons that we focus on the ESRP is that Idaho maintains a
spatially explicit water rights database provided by the Idaho Department of Water Resources
(IDWR).> From this database we are able to identify the spatial boundaries of water rights entities,
which we assume to be the boundary of farms. Additionally, we acquire the water right titles,
source of water, and priority dates associated with the farm. This allows us to conduct analysis
at the individual water rights level. And, more importantly, knowing the spatial boundaries of the
farm entities allows us to match it with other spatially referenced dataset such as land use, soil and

weather.

We are able to identify 6429 unique water rights residing in ESRP. Among them, 1679 farms
hold at least one surface water rights, and 15 of them are irrigation districts. Figure 2 shows
the geographical locations of irrigation district in the ESRP. We exclude those who hold only
groundwater titles. Groundwater users do not face curtailment risk from the appropriation system,
which make their water supply much more reliable than surface water users. This means that
groundwater users are likely to behave systematically different from surface water users. Since
our goal is to find valid counterfactual for farms residing inside surface water irrigation districts,
groundwater users should not be included in our sample. We also exclude all observations that
have areas less than 1 acre. Although the cutoff point is rather arbitrary, water rights with areas

smaller than a certain threshold cannot be possibly identified as farmlands for major crops.

3 Available from https://research.idwr.idaho.gov
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For irrigation districts, we are only able to identify the water rights boundaries for each
district, which usually coincide with their administrative boundaries. However, we are not able to
distinguish property boundaries for individual farms inside irrigation districts. This means that land
allocation decisions for irrigation districts are the measured at the aggregate level as the weighted
mean of all farms residing in that district. This is a limitation of our dataset, and we provide
robustness checks to show that this caveat does not undermine our main result. We also need to
assume that every parcel of farmland inside the boundary of an irrigation district use district water,
unless the parcel has access to other water sources. This assumption is widely used in previous
literature when intra-district water delivery data is not available (Schlenker et al., 2007; Buck et al.,

2014).

[Insert Table 1 here.]

[Insert Table 2 here.]

To better capture the marginal effect of priority effect on water availability, we perform
a standardized rank transformation on water rights priority dates. Specifically, all surface water
rights are ranked by their priority dates from the earliest to the latest, and are standardized to a
zero-one range, of which we call the “quantile” of a right. The first water right in the system will

be assigned a quantile of 0, the median water right of 0.5, and the last right of 1.

[Insert Table 2 here.]

The reason for this transformation is that the distribution of priority dates are not uniform
in time. As shown in Figure 3, most surface water rights are filed during the progressive era, and
fewer rights are filed after 1930. This means that a one-year seniority in the progressive era will

represent a much larger increase in the rank of priority than a one-year seniority in the 1990s. So
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if we put priority dates directly into a linearized regression model, the marginal effect of a one-
year seniority change will be heterogeneous across time. A rank transformation, on the contrary,
guarantees that the quantile of each right is uniformly distributed in the appropriation system, and

the marginal effect on a one-percentage quantile change becomes more homogeneous.

[Insert Table 3 here.]

We also acknowledge that the quantile of a water rights, through expressed in a percentage
form, does not equal to the actual probability of curtailment. The link between water rights quan-
tile and the actual probability of getting curtailed is non-linear, and to capture that relationship
sophisticated hydrological-statistical models are required. The rank transformation thus serves as
a second-best alternative, an improvement from using priority dates, or date range dummies (as in

Xu et al. (2014b); Brent (2016)).

We obtain land allocation data from National Agricultural Statistics Service (NASS)’s Crop-
land Data Layer (CDL). CDL is a crop-specific land cover dataset for the continental US based on
satellite imagery and calibrated classification algorithms (National Agricultural Statistics Service,
2014). It provides a moderate resolution imagery that classifies agricultural land use types. The
dataset is available for year 2005, and from year 2007 onwards. For each farm entity, we are able
to identify the percentage of land allocated to six major crops of the region: alfalfa, barley, corn,

potato, sugarbeet and wheat, as well as land idlement.

Soil data is obtained from the SSURGO database, a soil database developed by USDA-
NRCS. The SSURGO dataset contains a crop-specific yield estimate for each soil type, and from
which we construct an average irrigated crop yield map for wheat and corn. This allows us to
capture the possibility that a parcel of land is especially suitable for certain crops but not for

others, which may explain some of the empirical cropping choices. We also include common soil
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quality indicators in our model, such as irrigated and non-irrigated soil capacity class, percent of

clay, percent of slopes, and the k-factor.

Weather data is obtained from the PRISM climate dataset developed by Oregon State Uni-
versity, which provide small-scale climate maps and estimates. We believe that three weather
indicators are important in determining crop productivity and water availability: growing degree
days(GDD), extreme weather conditions, and growing season cumulative precipitation. We are not
arguing that our list of climate variables are exhaustive. Rather, we believe that this three variables

are representative to the expectation of short term crop growth and water demand.

Growing degree days is a non-linear transformation of temperature, which assumes that
plant growth is linear only between moderate temperature ranges from 8°Cto 32°C(Ritchie and
NeSmith, 1991). The use of growing degree days is common in estimating agroeconomic models
(e.g. Schlenker et al., 2007; Deschenes and Greenstone, 2007), and is suggested by literature as a
preferred method than using monthly average temperature (Schlenker et al., 2007). Extreme heat
conditions® are detrimental to crop growth, and will significantly reduce crop yield (Burke and
Emerick, 2016) Extreme heat conditions also contribute to increasing rates of plant evapotrans-
poration, which cause increase water demands for crops as a result. Growing season cumulative
precipitation’ measures the supplemental water supply provided by precipitation process, which

offsets demands for irrigation water.

[Insert Table 1 here.]

[Insert Table 2 here.]

®Here defined as daily maximum temperature exceeds 35°C
"Defined as cumulative precipitation between June.1 and Sep.30
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5 Results

We begin by our “full model”, which includes surface water and groundwater portfolio indicators,
sets of control variables, and year dummy. Estimation results are shown in Table 3, and the average
partial effects (APE) are shown in Table 4. Papke and Wooldridge (1996)’s robust standard errors
are reported in Table 3, and are used to generate standard errors for the APEs via Krinsky-Robb

simulations.
[Insert Table 3 here.]
[Insert Table 4 here.]

We also calculated the average partial effects on profits (APEP), shown in the first column
of Table 5. APEP is analogous to the concept of the traditional parameter estimates and standard
errors in a linear model.. We do this by aggregating crop shares with respect to their profits per

acre, as well as their respective standard errors, i.e.,
E(APEP,) = Z APE; ;. % profit,

and

J
V(APEP;,) =) _V(APE;;) * profit;
7j=1

where APEP, is the average partial effect on profits for explanatory variable k, and APE}, is
the average partial effect of crop shares for crop j, explanatory variable k. Here we assume that
the standard error of each crop-specific APE is independent of each other, and thus the variance
of APEP is the sum of the variances of all crop-specific APEs times the square of their respective

profits.
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[Insert Table 5 here.]

The average crop-specific profit statistics is calculated by subtracting the average cost from
the average revenue between 2005 and 2013, which is shown in Figure 4. Revenue for a crop in a
given year is calculated by multiplying the price received with the average yield of that crop in the
state of Idaho, which is provided by USDA-NASS (National Agricultural Statistics Service, 2012).
Cropping cost statistics are compiled from different sources, including USDA economic research

services and the University of Idaho’s crop costs and returns series.

[Insert Figure 4 here.]

Our model shows that irrigation districts allocate significantly more land to potato, sugarbeet,
and wheat; less land to alfalfa and corn. This confirms our hypothesis that irrigation districts
generally plant more water-intensive crops and less drought-tolerant crops, with the exception of
wheat and corn. A farmer residing in an irrigation district will have an edge of a $16.20 per acre,
or 6.0% in profits, comparing to an otherwise equal farmer residing outside of an irrigation district.
Holding additional groundwater rights significantly help farmers. Comparing with surface water
only farmers, farmers who hold both groundwater and surface water rights on average allocate
more crop to corn, potato, sugarbeet, and fallows more, less land to alfalfa and barley. These
systematic differences leads to a $31.23 per acre, or 11.5% advantage if a farmer or an irrigation

district holds groundwater rights.

Both seniority variables in our model, the mean and the dispersion of water rights quantiles,
have insignificant APEs in the model. This result differs from other studies, such as Xu et al.
(2014b); Cobourn et al. (2016). However, this result is probably a reflection of the low statistical
power that our model exhibits, and should not be interpreted as a nullification of the Burness and

Quirk (1979) hypothesis. Other factors that have significant impacts on farm profits including
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expected growing degree days, expected precipitation, soil yield capacities for wheat and corn,
and the soil k-factor. The sign of all these variables are as expected: farmers are more profitable
when they expect warmer weather and more precipitation, as well as if they hold lands with more

productive soils.

Heterogeneity in Partial Effects

One of the advantages of using fractional multinomial logit models is that it can capture the
heterogeneities in partial effects among different observations. As Papke and Wooldridge (2008)
pointed out, the difference between linear and non-linear models is not important with regard to
the estimation results of average partial effects, but is important in determining whether and to
what extent are the partial effects differ at different percentiles of the distribution of the variable
in interest. In light of that, we calculate partial effects for the irrigation district dummy at differ-
ent quantiles of water rights seniorities. Figure 5 shows the discrete effect of irrigation districts
along the distribution of water rights seniority quantiles, holding all other variables at their average
values. Result shows that the largest benefit by residing in an irrigation district happens for the
most junior water right holders, at about 17.94(6.08)$/acre, while the lowest benefit happens for
the most senior water rights holders, at 14.37(5.95)$/acre. This indicates that the treatment effect
of irrigation districts are modestly larger for farmers holding more junior rights than those holding

senior rights.

[Insert Table 5 here.]

Both the risk-sharing and the water transfer mechanism provided by irrigation districts pro-
vide theoretical support to the increasing return from irrigation districts over farmers holding junior
rights. A senior right holder may find herself reluctant to join an irrigation district since her wa-

ter right is already secure enough against supply volatility that additional risk-sharing mechanism
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provided by irrigation district may not provide much gain for her. On the contrary, a junior right
holder may find herself in need of hedging against water volatility, and irrigation districts provide
precisely that mechanism. Thus we would expect that irrigation districts provide more benefit to
junior than senior water right holders. Similar logic also applies to the intra-district water transfer
mechanism. A senior right holder has the option to grow a less water-intensive crop mix, and sell
the additional water rights for monetary compensation. A junior right holder, on the other hand,
has the option to grow a more water-intensive crop mix by buying additional water rights. This
leads to the observation that junior rights holders can grow a more profitable crop mix than their

endowments allowed to, and thus can have larger observed profits by joining an irrigation district.

APE in Linear vs. Logit Models

As discussed earlier, panel fractional multionomial logit model is not available for the pur-
pose of this study. To check for whether individual heterogeneities may potentially bias our esti-
mates, we propose to estimate two linear models, the pooled ordinary least square (OLS) and the
panel random effect (RE) models . In doing so, we assume that all regressors are exogenous from
the random unobserved individual effects as well as the idiosyncratic error term. This assump-
tion cannot be formally tested using a Hausman-type test against the fixed effect (FE) model since
our main variable of interest are time-invariant. However, this assumption can be justified on two
grounds. First, the variables used in our model are all exogenously determined in the sense that
any cropping choice made by the farmer will not alter their water rights, irrigation district status,
soil quality, weather patterns, or the price for each crop. Secondly, we try to control for as many

factors in farmers’ production processes as the data permits.

Column 2 and 3 of Table 5 present the results from OLS and RE estimates. Although a
Hausman test rejects the hypothesis that OLS and RE are equivalent, the point estimates for the

two models are very close, especially in our main variable of interest. Other than QMeanSurf,
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which is statistically insignificant, the difference in point estimates between OLS and RE for water
rights and irrigation district variables are less than 2%. This suggests that the inference of our main

variables of interest should not be affected by ignoring individual-specific heterogeneities.

Furthermore, point estimates for the two variables that are significant in fractional multino-
mial logit, IrrDist and GrndSurf, are very close to that in the two linear models. The effect of
residing in a irrigation district is 16.2 $/acre in fractional multinomial logit, 15.62 $/acre in OLS,
and 15.68%/acre in RE. The effect of holding additional groundwater rights is 31.2$/acre in frac-
tional multinomial logit, 34.91 and 33.94 in OLS and RE. The observation here echoes Papke and
Wooldridge (2008), which in their case the fractional probit APEs are very close to that in linear
models. This gives additional assurance that our point estimates on the effect of irrigation district

is robust against different functional form specifications.

Aggregation of Irrigation Districts

Also, we need to address the problem that farms inside an irrigation district are measured at
the aggregate level, whereas farms outside the districts are measured at the individual level. This
means that the measured land allocation made by irrigation districts are essentially a weighted
mean of the individual farmers residing inside that district. This is acceptable as long as land

allocation with respect to farm size is homogeneous, i.e.,

E(y|X, A) = E(y|X)

where A is the size of the farm, y is the land allocation vector, and X is all explanatory variables

other than farm size. In this case, the expectation of the aggregated land allocation is the same as
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if they were the mean of each farm, i.e.,

X2 AdBa(y|X, A

ED(Y‘XvAD> ZD A
d=14%d

= E(y|X)

where D is the aggregated measurement of land allocation, and d € [1, D] is the farms being

aggregated.

We empirically test the area-homogeneity assumption by running an augmented regression
model and see how the area of the farm may influence farmer’s crop allocation. To do so, we
use a subsample that only contains farmers residing outside of an irrigation district, and runs two
fractional multinomial logit models: one with the area of the farm, and the other with the natural

log of farm area.
[Insert Table 6 here.]

The APE and APEP on the area variables are shown in Table 6. The model with log(Area)
shows that an increase in log area decreases land allocation in alfalfa, and increases in all crop
types other than barley. When aggregating these land allocation changes out, the marginal profit
change due to log(Area) is statistically not significant at the 5% level. The model with Area depicts
a similar picture, with a negative APE on alfalfa, and positive APE on all types other than barley
and fallow. The margianl profit change is significant at the 5% level, indicating that controlling for
all other factors such as water rights, soil and weather, an increase of one acre in farm acreage leads
to an increase in profit of about $0.008 per acre. To put that in perspective, if irrigation districts
had no premium, than the average observed farm size inside an irrigation districts would have to
be 2090 acres larger than the average size of an individual farm. There are only 3% of the farms
in our sample that meets this cutoff. If we assume that the empirical distribution of farm size is

similar between farms inside and outside irrigation districts, than it is highly unlikely that the the
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farm area is the main factor that drives the premium from residing in an irrigation district.

Furthermore, the aggregation process of irrigation districts will result in an over-representation
of dryland crops because of the nature of our definition of farms. For individual farmers, we ob-
serve the spatial boundary of their water rights, and treat those as farm boundaries. It is likely that
the water rights boundaries are smaller than the actual farm boundaries. Lands that are owned by
that farm, but not covered by a water source, will practice dryland agriculture through all years
(private communication with IDWR). These portions of lands will then be excluded from our sam-
ple. This is not the case with irrigation districts. Water rights boundaries of irrigation districts
usually line up with their administrative boundaries. Thus, all lands inside an irrigation district
will be aggregated, including those that practice dryland agriculture throughout, and potentially be
excluded in the case of individual farmers. Thus, the spatial boundaries of irrigation districts will

over-represent dryland agriculture, which will result in an underestimation of their premiums.
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Figure 1: Map of the Eastern Snake River Plain. The blue line denotes the main stem of the Snake
River. Purple‘areas are individual water rights, orange areas are irrigation district lands. Lower-
right panel denotes the relative location of the ESRP (Red line denotes the watershed boundary of

ESRP)
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Figure 2: Irrigation Districts in the East Snake River Plain. Blue line is the Snake River. Captions
are the names of the respective irrigation districts.
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Figure 5: Partial effects of IrrDist at different levels of water rights quantile. The x-axis shows
the distribution of water rights quantile, with 0 being the most senior, and 1 being the most junior
water right. The y-axis shows the monetary value ($/acre) of the discrete effect of residing in an
irrigation district.
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Table 1: Description of Variable Names and Sources

Variable Name Variable Description Unit Source
Area area of individual farms Acres

DistArea area of irrigation districts Acres

IrrDist irrigation district dummy

GrndSurf groundwater dummy IDWR
QmeanSurf mean of water rights seniority quantile

QsdSurf standard deviation of water rights seniority quantile

corn fraction of corn planted

wheat fraction of wheat planted

barley fraction of barley planted

alfalfa fraction of alfalfa planted USDA CDL
sugarbeet fraction of sugarbeet planted

potato fraction of potato planted

fallow fraction of land fallowed

exml3 average number of extreme heat days in last 3 years days

gddI3 average number of growing degree days in last 3 years degree days PRISM
precl3 average total summer precipitation in last 3 years mm*100

icclass irrigated soil capacity class

nicclass non-irrigated soil capacity class

slope average slope of land

ydwheat average yield factor for wheat bu/hectare  SSURGO
ydcorn average yield factor for corn bu/hectare

claypc percentage of clay in soil

kfactor soil k-factor

pbarley average normalized price for barley in the last year

pcorn average normalized price for cornin the last year

pwheat average normalized price for wheat in the last year USDA NASS
psugarbeet average normalized price for sugarbeet in the last year

ppotato average normalized price for potato in the last year
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Table 2: Summary Statistics of Variables. Number of observation N=7792.

Variable Name | Mean Median Min Max Std Dev
Area 206.701 94.689 2.340 6530.334  447.33
Dist_Area 37227.763 29642.514 3802.455 98166.152 28673.725
IrrDist 0.015 0 0 1 0.123
GrndSurf 0.103 0 0 1 0.304
QmeanSurf 0.54 0.546 0.001 1 0.28
QsdSurf 0.041 0 0 0.458 0.084
corn 0.144 0 0 1 0.286
wheat 0.119 0.005 0 1 0.232
barley 0.146 0.007 0 1 0.268
alfalfa 0.47 0.429 0 1 0.393
sugarbeet 0.019 0 0 1 0.105
potato 0.053 0 0 1 0.166
fallow 0.048 0 0 1 0.148
exml3 12.031 4.708 0 94.923 16.107
gddl3 1497.274 1482925 ' 860.119 2004.202 256.3
precl3 52.273 49.368 15.762 148.713 24.314
icclass 3.393 3.109 2 6 0.684
nicclass 5.557 6 3 6 0.938
slope 2.748 2.025 1 15.818 2.155
ydwheat 78.213 80 30 120 21.299
ydcorn 65.862 60 40 149.876 26.994
claypc 12.07 11.667 1.5 42.254 7.509
kfactor 0.271 0.254 0.02 0.57 0.13
pbarley 3.183 3.244 2.548 4.616 0.62
pcorn 3.271 3.469 2.149 4.15 0.616
pwheat 3.923 4.132 3.188 4.728 0.573
psugarbeet 30.306 29.593 20.725 45.118 8.208
ppotato 4.532 4.016 3.557 6.378 0.993
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Table 3: Fractional multinomial logit parameter estimates

Variables barley corn potato sugarbeet wheat fallow
IrrDist  0.0499 -0.107 0.53%** 1.63%%* 0.443%%% 0.167
(0.0828) (0.0869) (0.0779) (0.128) (0.0591) (0.136)
QmeanSurf -0.099 -0.139 0.00372 0.271 0.143 0.325*
(0.0964) 0.112) (0.146) (0.266) 0.1) (0.154)
QsdSurf  0.341 -0.116 -0.049 -1.41 0.23 0.527
(0.256) (0.362) 0.41) (0.824) (0.264) (0.494)
GrndSurf  -0.247%** 0.626%*%* 0.356%* 0.705%*%* -0.015 0.492%#%
(0.0733) (0.0854) (0.111) (0.163) (0.0753) (0.115)
pcorn  -0.964%* 0.769 2.24%%% -0.942 -0.148 -6.82%%*
(0.373) (0.449) (0.542) (0:991) (0.395) (0.784)
pbarley 0.0817 -0.347#%* -0.302%%* -0.213 -0.208#** -0.575%%*
(0.0661) (0.0719) (0.102) (0.155) (0.0614) (0.108)
pwheat 0.263 -0.113 -0.826* 0.325 0.896** 4 .82% %
(0.266) (0.297) (0.374) (0.672) (0.279) (0.597)
psugarbeet 0.0863** -0.0204 -0.236***  0.113 0.00119 0.634%#%*
(0.0326) (0.0392) (0.0471) (0.0859) (0.0342) (0.0685)
ppotato  -0.353 0.00678 1.14%% -0.386 -0.205 -3.78%**
(0.191) 0.221) (0.268) (0.494) (0.202) (0.43)
exml3 -0.0248***  -0.013%** 0.00759 -0.0544*** -0.00764* 0.00345
(0.00491) (0.00354) (0.0048) (0.00978) (0.00353) (0.0043)
gddl3  -0.00407*** 0.00422*** 0.000943 0.00215% 0.000528 -0.00474 %=
(0.000308) (0.000446)  (0.000534) = (0.000961) (0.000315) (0.00053)
precl3 -0.0218***  (0.00259 0.0216*** = -0.0211* 0.0159%%** -0.0593 %
(0.00232) (0.00375) (0.00404) (0.00877) (0.0027) (0.00443)
icclass  -0.268%*%* 0.0305 -0.344%*%  -0.876%**%  -0.42%%* -0.112
(0.0554) (0.0579) (0.088) (0.222) (0.0644) (0.0695)
nicclass  0.19%** 0.593%*%* 0.385%%#%* 1.25%%* 0.496%*%* 0.766%*%*
(0.0338) (0.0762) (0.0695) (0.164) (0.0429) (0.0678)
slope 0.0376 0.0371 0.0969** 0.217%%%* 0.115%*%* 0.154%%*%*
(0.0202) (0.0193) (0.0295) (0.0599) (0.0229) (0.0194)
ydwheat  0.000569 0.0187***  -0.0139*** -0.0121 -0.00646***  -0.0187***
(0.00175) (0.00313) (0.00297) (0.00638) (0.00195) (0.00248)
ydcorn -0.00276 0.00633***  -0.00497 0.00645 -0.00197 -0.0144 %%
(0.00178) (0.00157) (0.00276) (0.00472) (0.00205) (0.00248)
claypc  -0.0452%**  -0.0412***  -0.0689*** -0.02 -0.0225%**  -0.0457*%*
(0.00437) (0.0078) (0.00927) (0.0141) (0.00578) (0.00588)
kfactor 3.78%** 2.19%#* 5.82%%* 5.33%%* 3ok 1.22%%*
(0.219) 0.371) (0.382) (0.651) (0.269) (0.301)

Number of Obs: 7792
Log pseudo-likelihood: -10525.69

Note: Papke and Wooldridge (1996)’s robust standard error reported in parenthesis. Alfalfa is the
baseline choice and thus omitted. Year dummy and constant are suppressed from the table. A triple
asterisk indicates p < 0.001; a double asterisk indicates p < 0.01; a single asterisk indicates p < 0.05.
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Table 4: Average partial effects of fractional multinomial logit estimates

Variable alfalfa barley corn potato sugarbeet wheat fallow
IrrDist  -0.0792%**  -0.0126 -0.0161%* 0.0233%** 0.0406%** 0.0433%*** 0.000669
(0.0149) (0.00962) (0.0058) (0.00379) (0.00164) (0.00692) (0.00532)
GrndSurf  -0.0438***  -0.0379%%*%* 0.0483*** 0.0156* 0.01%*%* -0.0117 0.0193%*%*
(0.0127) (0.0111) (0.00778) (0.00771) (0.00289) (0.0112) (0.00614)
QmeanSurf -0.00672 -0.0146 -0.0107 -0.000413 0.0032 0.0168 0.0124
(0.0169) (0.0143) (0.0104) (0.00961) (0.004) (0.0134) (0.00683)
QsdSurf  -0.0382 0.0361 -0.013 -0.0059 -0.0182 0.0208 0.0182
(0.0528) (0.0302) (0.0248) (0.0205) (0.0111) (0.0298) (0.0192)
pcorn  (0.147#%%* -0.0929%#* 0.0726%** 0.127%%* -0.00842%** . ~(0.0144%** -0.26
(2.64¢-09) (1.71e-08) (5.02e-11) (5.68e-13) (7.19e-07) (1.07e-09) (0.486)
pbarley 0.046%** 0.0215%** -0.0188***  -0.0112%%* -0.00163*** . -0.0162%** -0.0196%***
(0.00157) (0.000503) (0.00121) (0.00105) (0.000291) (0.00121) (0.00191)
pwheat -0.167%** -0.00423%**  -0.0287***  -0.0568%** 0.000378 0.0774** 0.179
(2.12e-08) (9.64e-07) (6.51e-07) (1.36e-07) (0.000875) (1.51e-05) (0.447)
psugarbeet -0.014%%* 0.00813*** -0.00318***  -0.0132%** 0.00109 -0.003%#* 0.0242
(2.08e-09) (5.05e-07) (5.6e-08) (2.73e-10) (0.000742) (3.75e-08) (0.0567)
ppotato  0.0957*** -0.02427%%** 0.0124%** 0.0666%** -0.00268***  -0.00469***  -0.143
(1.29¢-07) (1.31e-07) (1.69¢-08) (1.09¢-10) (2.9e-07) (6.84e-08) (0.233)
exml3 0.00302%*%*  -0.00257***  -0.000544 0.000655%* -0.000605%* -0.000296 0.000348
(0.000566) (0.000744) (0.000297) (0.000244) (0.000262) (0.000473) (0.000181)
gddl3  0.000161%** -0.000499*** 0.000318*** 6.23e-05***  3e-05%** 0.000104#**  -0.000177
(1.39¢-06) (8.98e-05) (3.11e-10) (4.35e-08) (5.26e-09) (1.09¢e-07) (0.000115)
precl3 0.00123***  -0.00259***  0.000336*** = 0.00121%*** -0.000233***  (0.00231*** -0.00226%**
(0.000153) (9.61e-05) (2.18e-05) (6.07e-06) (2.97e-05) (1.42e-05) (0.000313)
icclass  0.0678%** -0.0195* 0.0106%** -0.0114 -0.00933 -0.0384+* 3e-04
(0.0097) (0.00887) (0.00277) (0.00908) (0.0334) (0.0126) (0.00311)
nicclass -0.111%%%* -0.00073 0.028 0.00958 0.013%#%* 0.0385%* 0.0226*
(0.000215) (0.00453) (0.0327) (0.03) (0.00149) (0.0167) (0.0115)
slope -0.0204***  0.000209 7.84e-05 0.00309 0.00224** 0.0101%** 0.00468***
(0.00273) (0.00353) (0.00208) (0.00214) (0.000857) (0.00344) (0.000974)
ydwheat 0.000583*** " (0.000211*%*  0.00139***  -0.000652*** -0.000137*** -0.000696*** -0.000701%*%**
(8.38e-05) (1.52e-05) (3.25e-06) (3.27e-05) (1.92e-05) (2.84e-05) (2.93e-05)
ydcorn 0.000518**  -0.000244*** 0.000511*** -0.000206*** 9.09e-05***  -0.000135*** -0.000536***
(0.000191) (2.69¢-05) (6.19¢-06) (1.75e-05) (5.54e-06) (2.93e-05) (2.08e-05)
claypc 0.00981***  -0.00367***  -0.00169%** -0.00262***  -3.36e-05 -0.000671 -0.00113%#%**
(0.000936) (0.000352) (0.000343) (0.000387) (9.32e-05) (0.000376) (0.00015)
kfactor -0.82%** 0.307%** 0.0524%* 0.222%%* 0.0479%** 0.199%#** -0.00883
(0.0521) (0.0148) (0.0192) (0.00583) (0.0027) (0.0209) (0.0112)
Note: Robust standard error reported in parenthesis, calculated via the Krinsky-Robb method. Dis-

crete effects

are reported for binary variables IrrDist and GrndSurf. Marginal effects are reported for all
other variables. Year dummies and constant are suppressed from reporting. A triple asterisk indicates p <
0.001; a double asterisk indicates p < 0.01; a single asterisk indicates p < 0.05.
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Table 5: Model estimates of average partial effect on profits ($/acre)

Models
(1) (2) (3)
Variables FML OLS RE
IrrDist  16.2(5.98)** 15.62%**%(4.373)  15.68%(9.082)
GrndSurf 31.2(8.06)*** 34.91*%*%%(5.439)  33.94%**(10.47)
QmeanSurf -5.8(10.4) -2.095(6.373) -5.492(10.52)
QsdSurf -29.2(25.5) -47.15%*%*%(17.43) -48.79(30.76)
pcorn  157(0.000444)***  81.46***(12.09)  80.87***(10.13)
pbarley -8.07(1.12)%** -5.971*%(3.147) -5.466*(2.805)
pwheat -92.1(0.786)*** -67.59%*%%(9.737) -71.13*%*%(8.184)
psugarbeet -13.5(0.52)*** -6.719%*%*(1.270) -6.278***(1.050)
ppotato  73.6(0.000349)***  42.44*%**(8.114)  44.13%%%*(6.625)
exml3 0.278(0.34) 0.167(0.216) 0.629%%*(0.261)
gddl3  0.266(0.00666)***  0.235*%**(0.0207) 0.159***(0.0292)
precl3  1.2(0.0459)*%** 0.922%%%((0,148)  0.251*(0.151)
icclass 4.78(23) 7.819%%(3.337) 8.935(5.943)
nicclass 6.92(28.9) -3.344(2.245) -1.401(3.727)
slope -0.646(2.18) -0.796(1.233) -0.890(1.989)
ydwheat 0.394(0.0344)***  0.787***%(0.136)  0.920*%%*(0.220)
ydcorn  0.327(0.05)*** 0.630***(0.114)  0.415%*(0.162)
claypc -0.641(0.421) -1.345%*%%(0.332) -1.766***(0.536)
kfactor 46.1(18.3)* 76.25%*%*%(18.23) ~84.61***(28.60)

Note: Column 1 shows the average partial effect on profits derived from the frac-
tional multinomial logit (FML) model. Column 2 and 3 show linear estimates of
farm profits using pooled ordinary least square (OLS) and panel random effect (RE)
models. Robust standard errors reported in parenthesis. A triple asterisk indicates p
< 0.001; a double asterisk indicates p < 0.01; a single asterisk indicates p < 0.05.
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Table 6: Fractional multinomial logit model estimates on farm area vari-

ables
ey (2)
APE: Crop Type(%) logArea Area

alfalfa -0.0522(0.00267)***  -8.1e-05(9.91e-06)***

barley 0.00162(0.00526) 6.74e-06(5.02e-06)
corn 0.0137(0.00254)*** = 1.73e-05(2.53e-06)***
potato  0.00909(0.00232)*** " 1.58e-05(1.36e-06)***
sugarbeet 0.00266(0.000881)** 5.04e-06(5.95¢-07)***
wheat 0.0192(0.00419)***  3.93e-05(3.45e-06)***

fallow  0.00601(0.00229)**  -3.14e-06(2.78e-06)

APEP: profit ($/acre)
profit 4.604(2.464) 0.00772(0.00315)*

Note: Model (1) includes the natural log of farm area (in acres) as an explanatory
variable, and model (2) includes the level of farm area. All other control variables
except the irrigation district dummy are included. Robust standard errors reported
in parenthesis. A triple asterisk indicates p < 0.001; a double asterisk indicates p
< 0.01; a single asterisk indicates p < 0.05.
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