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ABSTRACT 

Recent years have witnessed a proliferation of weather-index insurance (WII) pilot programs in 

developing countries. However, the uptake of this novel insurance turns to be generally low 

despite that most WII programs are heavily subsidized by central and local government. 

Although basis risk is widely referred to as the most serious drawbacks to the effectiveness of 

index-based insurance, the impact of basis risk on the potential benefits of adopting weather 

index insurance is rarely documented. This paper designs a weather index contract for cotton in 

Shandong province and examines impact of two components of basis risk, covariate risk and 

idiosyncratic risk, separately. The findings of this paper underscores the importance of 

minimizing covariate risk in designing weather index insurance contracts and sheds lights on the 

different impacts of basis risk components on potential benefits of WII. 

 
 

Introduction 

An extensive body of literature has discussed the failure of conventional insurance to provide 

smallholders affordable risk protection instrument due to informational asymmetry and moral hazard 

(Skees and Reed 1986, Quiggin, Karagiannis and Stanton 1994, Coble et al. 1997, Just, Calvin and 

Quiggin 1999, Skees et al. 2009, Skees 2011). Index-based insurance, which anchors indemnity payments 

to an objective indictor correlated with insured value, largely mitigates those problems and has been seen 

as a prospective alternative for small farms to manage risk. In particular, weather index insurance (WII) 

has become one of the most popular types of index-based insurance in developing countries, given that 

the correlation between weather-related perils such as droughts, floods and freezes and crop losses is 

widely and profoundly recognized by smallholders (Luo et al. 1994, Vedenov and Barnett 2004, Karlan et 

al. 2007). Although recent years have witnessed a proliferation of WII pilot programs in developing 

countries, unfortunately, the uptake of this novel insurance turns to be generally low despite that most 

WII programs are heavily subsidized by central and local government (Miranda and Farrin 2012, Cole et 

al. 2013). At the same time, a vast of rural poor in developing countries is still exposed to weather-related 

perils and is in need of access to affordable and efficient micro-insurance service. Explanations to this 

dilemma such as financial literacy, cash constraint and knowledge of risk have been discussed. However, 
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basis risk, also known as the Achilles Heel of weather index insurance, has not been sufficiently 

researched yet. Basis risk refers to the imperfect correlation between the predicted losses based on 

weather index and farmers’ actual losses. Essentially, from the perspective of policymakers or 

government, promoting WII as risk management intervention is trading off between basis risk and the 

problems of adverse selection and moral hazard. While it was recognized as early as when the innovative 

product emerges, until recently, basis risk has started to be discerned, quantified and evaluated from the 

perspective of farmers (Bryan 2010, Mude et al. 2012, Norton et al. 2012, Karlan et al. 2014, Jensen et al. 

2015, Elabed and Carter. 2016). In general, basis risk is widely understood as one of causes of low uptake. 

However, some studies have discussed that in some extreme case, prospective buyers might increase 

demand with basis risk (Jensen, Mude and Barrett. 2014). Detailed description on the mechanism on how 

basis risk affects farmers’ demand for WII remains to be insufficient. Basis risk is composed of covariate 

risk and idiosyncratic risk. Covariate risk, also known as design risk, is associated with the imperfect 

match between the index-predicted loss and realized losses experienced among all policy holders within 

an area. Idiosyncratic risk is defined as individual or farm-level variation around the index-predicted 

mean. Only a few studies have pointed out that the two types of risk might impact the demand of WII in 

different magnitude. (Jensen, Mude and Barrett. 2014, Jensen, Barrett and Mude. 2016) 

The limited access to historical yield data is considered to be one of the major obstacles to analyze the 

welfare impact of basis risk. In another word, the index insurance has to be designed at aggregated level 

of yield, usually county-level yield, and however the overall basis risk is determined from farm level yield. 

While the limit of farm-level yield data reinforces the advantage of index-based insurance contracts for 

which the requirement of symmetric information is abated, it arguably augments the challenge to measure 

idiosyncratic risk and assess household-level welfare. We can further decompose covariate risk is derived 

from spatial mismatch problem and prediction error. Spatial mismatch arises when the coverage of 

weather data is not perfectly overlaid with the range dimension of observed crop yield. In reality, it is 

rarely seen that every county has its own weather station. Accordingly, the weather conditions of counties 
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located distant from the weather station are less accurately measured. The most common technique to 

relieve spatial mismatch is spatial interpolation, i.e. estimate the values of “missing” weather data with 

observed ones. In general, there are two types of interpolation techniques: deterministic and geostatistical. 

Currently, geostatistical interpolation methods or Kriging are widely used in such a context. Kriging 

estimates out-of-sample weather factors via regression against observed weather factors of surrounding 

points, with errors weighted by spatial covariance. It is shown to provide an unbiased and efficient 

estimate for weather factors (Tabios, Guillermo and Salas. 1985, Juha, et al 2013, Kim, Seok-Cheol, et al. 

2015). Prediction errors refer to the difference between actual shared losses among policy holders who 

use the same index and weather-index predicted losses. Albeit impossible to eliminate it, covariate risk 

can be reduced by improving the quality of the index. On the other hand, idiosyncratic risk falls outside 

the scope of insurance contract designer (Jensen et al.2014). As a result of the absence of historical farm-

level yield data, measuring idiosyncratic risk precisely appears to be building castle up in the air. Few 

studies have explicitly discussed the magnitude of idiosyncratic risk. A few exceptions include Mude et 

al.(2012), Jensen et al.(2014) and Jensen et al.(2015) emphasize the decomposition of basis risk into 

covariate risk and idiosyncratic risk and highlight the adversely effect of idiosyncratic risk on the welfare 

effect of index insurance based on the longitudinal household dataset and ex post efficiency evaluation on 

index-based livestock insurance (IBLI) in northern Kenya. However, due to idiosyncratic risk, the 

potential benefit effects of a unit of WII vary across heterogeneous policyholders. Moreover, working 

along with the risk aversion and the variation of insured yield, basis risk has complicated effects on the 

individual demand for WII. The existing literature has not yet fully explored these questions to date.  

This paper adds to the existing literature on the impact of basis risk on smallholders in developing 

countries by examining impact of covariate risk and idiosyncratic risk separately. We design a weather 

index for cotton in Shandong province, China, price the insurance contract based on a framework 

developed by Vedenov and Barnett (2005). An artifact stochastic risk is then added to the realized yield at 

aggregate-level to simulate heterogeneous household risk exposures. Potential willingness-to-pay (WTP) 
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is elicited via the model proposed by Elabed and Carter (2015). Specifically, we construct the weather 

index by building panel model including multiple weather factors during the growth season of cotton, 

rather than focusing on univariate weather factor such as rainfall or temperature, to minimize the basis 

risk of this insurance contract. Then, scenarios with different levels of heterogeneous risk and how 

farmers’ WTP will response are presented. The findings of this paper underscores the importance of 

minimizing covariate risk in designing weather index insurance contracts and sheds lights on the different 

impacts of basis risk components on potential benefits of WII. 

The remainder of the paper is structured as follows. In the following session, we discuss the technologies 

for the construction of weather index and describe the weather-yield model, followed by the pricing of the 

WII contract. The impacts of covariate risk and idiosyncratic risk on the demand for the contract are 

presented in the next section. The implications and conclusions of our findings are discussed in the final 

section.  

Weather Index Design 

Spatial Interpolation 

Constructing a relationship between crop yield and weather variables is not ever a simple task but it is 

first rank importance for the efficiency of WII. In this study, county level data is used to build index. 

Essentially, WII insures one or more weather-related perils which can be observed from a set weather 

data. In an ideal world, the geographic area at which yield data measures should be perfectly matched the 

area at which observed weather data is measures. However, in most case, index designers would face the 

problem of “missing” weather data because there are no weather stations at many locations of interested. 

A simple possible solution to this question is to use the weather data from neighbor weather station. 

However, substantial information such as the distance has been missed and spatial adverse selection 

might arises due to unevenly distributed basis risk across regions. In this study, we use spatial 

interpolation to “fill the holes”. Specifically, we applied Ordinary kriging, which has been proved to 
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provide unbiased estimate the variability of the weather variables of interest, such as rainfall and 

temperature (Tabios and Salas 1985, Cob 1996, Cao et al 2015) to estimate the weather conditions for 

counties with no weather station.   

Ordinary kriging assumes the weather factors at site S as follows: 

 ( )        ( )  

where  ( ) is a weather factor, for example rainfall, of county  , µ  is a constant and zero-mean  ( ) is 

random disturbance defined as follows: 

 ( )   ∑  (  )  , (  )

 

   

  -      ∑  (  )   

 

   

 

where   indexes the nearby county and the weight of county  ,   (  ) is called ordinary kriging 

weight.  (  ) is the weather factor at neighbor county  . Then, the local mean  ̂( )  is estimated locally as 

weighted averages of nearby locations, as follows: 

 ̂( )   ∑  (  )   (  )

 

   

  

In this study, yearly yield data at county level is provided by Ministry of Agriculture, P. R. China, and 

monthly meteorological data is obtained from China Meteorological Data Sharing Service System. The 

dataset spans from 1980 to 2012. 5 weather stations which maintain high quality data are selected from 34 

weather stations. 14 major cotton producing counties nearby the weather stations are chosen as the sample 

areas. The map of Shandong Province and counties of interest are shown in Figure 1: 
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Index Design   

Insurers should leverage all possibly accessible information to construct weather index and minimize the 

design risk that the insured are exposed to, as noted by Jensen et al. “…lest they inadvertently peddle 

lottery tickets under insurance label”. Considerable skepticism has arisen regarding the index based on a 

simple weather factor such as rainfall or temperature even for the area where that factor plays a dominant 

role in crop growing. The goal of weather index designing is to predict yield with weather data as 

Figure 1. Map of sample counties and weather stations  
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precisely as possible to maximize potential benefits of WII. In this study, underlying weather variables 

affecting yield within the growing season of the cotton are included in the weather-yield model. To date, 

it remains open to discuss on determining the variables and optimal functional form among numerous 

candidates to model the relationship between weather conditions and crop yields. For purposes of this 

analysis, we apply dynamic fixed effect model to accommodate the existence of time effect and the time-

invariant county-specific effect such as elevation, flatness and soil type. First lag of dependent variable is 

also included in the model to allow autocorrelation process in cotton yield deterministic in order to absorb 

long-term county-specific changes. The index model is fitted as follows: 

                
              

where    is logarithm of cotton yield of county   in year  , and       is first lagged dependent variable.    

represents county-specific effect.      represents constant and the meteorological variables that strongly 

affect cotton growth and harvest, such as rainfall (monthly average rainfall in cm) and temperature 

(monthly average daily temperature in celsius).         , year dummies, absorb regular and stochastic 

time effects such as long-term trend and sudden adoption of agronomic technology and     represents 

stochastic disturbance, the variance of which reflects the magnitude of prediction errors. In the sample 

providence, the growing season of cotton in sample counties spans from April to October, thus rainfall 

and temperature of these months are considered as weather factors to predict cotton yield. We include 

quadratic forms to simulate the effects of weather inputs that either inadequate or excessive are 

detrimental to the harvest of cotton. The fitted model is presented in Table 1 (Appendix) and time series 

plots of realized yield and index-predicted yield is presented in Figure 2. The insignificant variables were 

not dropped given that statistically insignificant predictors might contribute to predict cotton yield and the 

insignificance could result from high correlation among weather inputs. One point is worth to notice that, 

in all cases, index design has to face the trade-off between the precision of predictions and econometric 
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parsimony. More complicated functional form of index would achieve high goodness-of-fit, and 

meanwhile importance has to be placed on accessibility to the public.  

 

 

   

Contract Design 

The indemnity payment of WII for year   is determined by the difference between the realization of the 

index i.e. the detrended predicted yield     and contract target minus the deductible. The contract target is 

set as long-term average yield and deductible ratio 20%, as the current practice of crop insurance contract 
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does in the sample providence, therefore, the maximum indemnity is 80%*target of the contract. The 

contract pays indemnity as follows: 

            *       
        +                        

where   
  is the target.  

An insurer is assumed to underwrite the weather-related risk of cotton yield for the 15 counties with an 

elementary contract for each county and its total indemnity of the insurer for each year is computed as 

follows:  

       ∑       

  

   

 

The actuarially fair premium of the     contract is computed as the expectation of indemnity payments. 

          (       )  ∫    ( )         ( )  
      

 

 

  

where    ( ) is non-parametric probability density of    in which the kernel function is normal density 

function. The realized yield with no insurance and predicted yield with WII are presented in Figure 3 

(Appendix). 

The impact of basis risk on the WTP 

Covariate Risk 

Covariate risk accounts for the loss that weather index cannot capture at aggregated level. It absorbs the 

basis risk shared by policyholders who buy the same index contract. These losses might be caused by or 

non-weather related shocks that affect a fair large area such as crop disease, pests or might arise due to 

imperfect model design. Here aggregated level is at county level.  Idiosyncratic risk measures the risk 
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exposure associated with household heterogeneity. We treat idiosyncratic risk as stochastic deviation 

from the county-average yield. The yield for a smallholder from county   is then simulated as follows: 

             , 

where      represents yield of county   and     represents household-level yield.     is stochastic 

disturbance following normal distribution   times of standard deviation of county-level yield. In reality, 

the stochastic disturbance is not necessarily zero mean, and its variance might have correlation with 

variance of county-level yield with high stochasticity. In this study, we set the mean equal to zero and 

non-zero in different scenarios and the standard deviation of county yield times an expansion factor k. k is 

randomly drawn from 1.1 to 4 to reflect different magnitude of idiosyncratic risk.  

The “revenue” of the farm with the protection of weather index insurance is computed as follows: 

                             

We assume individual is constant relative risk averse, therefore, the utility function of individual is as 

follows:   

 ( )  {     
    

   
                                  ,   )

   ( )                                         

 

Under the assumption of Expectation Utility Theory, the WTP is defined as the maximum amount of 

money a smallholder is willingness to pay and indifferent between WII and no insurance protection. Thus, 

WTP is elicited to equal the utility of revenue under no insurance weather index insurance: 

        
, (      )-          

, (          )- 

Since   is unknown, we impute   from 0.1 to 0.9 to represent different levels of risk aversion across 

smallholders. Figure 4 presents the relationship between WTP and CRRA for each county. Y-axis is WTP 

divided by actuarially fair premium to show the ratio of WTP to actuarially fair premium. First, the ratio 
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of WTP to fair premium fall below 1, but this does not indicate the market of WII is surely to fail because 

as we know the WTP of an insurance contract largely depends on the variation of the insured value and 

the variation yield is lower than individual yield. However, the result of relatively low WTP does provide 

explanation that WII programs highly subsidized by the government experienced low uptake rate without 

consideration of external obstacles such as lack of access or trust. Second, as we expected, WTP has an 

upward slope with the CRRA. However, by comparing WTP across the sample counties which have 

different degrees of covariate risk, we can see that the demand is not necessarily ascending with the 

decrease in the level of covariate risk. The counties with high WTP (Count 1, 6 and 8) have the highest 

variation in yield and lowest degree of covariate risk. This finding shows that the demand for WTP 

depends on the combination of the variability of yield, covariate risk and risk preference. In particular, the 

regions with high degree of overall downside risk are most likely to have strong demand for WII with low 

covariate risk. 
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Idiosyncratic Risk 

Although in this study we see idiosyncratic risk as a stochastic disturbance, much idiosyncratic loss does 

not occur randomly. It might involve heterogeneous household characteristics and small local condition. 

It is possible that the degree of idiosyncratic risk is correlated with the level of risk aversion, size of 

production and so force, which implies adverse selection. Jensen, Barrett and Mude (2014) find that little 

idiosyncratic risk is associated with household characteristics.  
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We analyze the impact of idiosyncratic risk on WTP in three scenarios. In first scenario, we assume 

idiosyncratic risk is mean zero in order to focus on the impact of the increase in yield variation. A 

standard deviation randomly drawn from 2 to 5 times of the standard deviation of aggregated yield is 

added to the county yield distribution. In scenario II, we allow the mean of the stochastic deviation varies 

across 80% to 120% of county yield. It is more close to the practice. In scenario III, two simulations are 

presented to show the WTP of high-yield smallholders and low-yield smallholders separately for targeting 

purposes. The two groups have the same variation of yield with that in scenario II. However, the yield 

mean in high-yield group is randomly drawn from a pool (1, 1.5)*county-average and the yield mean in 

low group is drawn from (0.5, 1)*county-average.  In order to illustrate the overall picture of these three 

scenarios, we take means of WTP the 15 counties and plot the relationship between WTP and CAAR 

(Figure 5).  
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The WTP does significantly not response to idiosyncratic risk in Scenario I and II. This finding echoes the 

precedent research of Jensen, Mude and Barrett (2014), in which they find households do not response to 

the increase in idiosyncratic risk (they refer as misinterpretation). This implies that the increase in 

variability of crop yield could raise smallholders’ motivation to seek to protection from insurance even 

the insurance contract is not able to cover all of the potential loss. In Scenario III, different groups with 

the same degree of yield variation show distinct demand for WII. High-yield group are inclined to 

purchase WII while low-yield show much lower WTP. However, even for high-yield group, the WTP is 

still lower than fair premium.  

Conclusion  

Because index insurance is largely free of moral hazard problems and exhibits lower administrative cost 

than conventional insurance, index insurance appears to be a potential instrument to manage risk for 

smallholders in developing rural areas. However, basis risk, the inherent weakness of index insurance, 

and the WTP for index insurance with basis risk seem to be less explored via empirical analysis and field 

experiment. This paper underscores the impact of basis risk on potential demand for in three aspects. First, 

the degree of covariate risk is likely to be large, primarily due to imperfect correlation between weather 

conditions and crop loss. The presence of such covariate risk makes the WTP for weather index insurance 

generally fall below the actuarially fair premium. In other words, farmers are probably not willing to 

purchase weather index insurance at market rate. Coupling with the degree of covariate risk, the 

variability of crop yield plays a critical role in determining the potential benefits of index insurance to 

smallholders. The counties where the high variability of crop yield is high tend to be more willing to 

purchase index insurance than counties where the crop yield does not vary very much across years. Ex 

ante examination with farm-level longitude data is necessary for index construction to minimize design 

risk. Second, the impact of idiosyncratic risk on the demand for weather index insurance can be 

decomposed into two conflicting aspects. First, it increases the magnitude of basis risk and reduces the 

benefits of the insurance contracts to the insured. At the same time, higher idiosyncratic risk implies 
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higher variation of crop yield and therefore moderates the negative effects of the increase in basis risk. 

Moreover, it is often that the overall demand for WTP is inert to response with increase in idiosyncratic 

risk. This is mildly encouraging for the development of index insurance since idiosyncratic risk is out of 

the insurer’s control. However, we should be cautious with this conclusion, because pervasive 

information imperfection will impede the realization of this hypothesis. Third, by examining the WTP of 

heterogeneous smallholders, the group whose yields are consistently higher than the yield at aggregated 

level tent to be willing to purchase WII at a higher price and the group whose yields fall below the 

aggregated mean have slightly less demand. This implies that the levels of the first order moment of yield 

have impact on the demand for WII.  
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Appendix: 

Table 1. Weather-yield model 

  

VARIABLES Log(yield) 

  

Lag.Log(yield) 0.519** 

 (0.071) 

Apr. Rainfall 0.012 

 (0.033) 

Apr. Rainfall-square 0.000 

 (0.004) 

May Rainfall -0.018 

 (0.011) 

May Rainfall-square 0.001 

 (0.001) 

Jun. Rainfall 0.019 

 (0.020) 

Jun. Rainfall-square -0.000 

 (0.001) 

Jul. Rainfall 0.010 

 (0.006) 

Jul. Average Temperature-square -0.000 

 (0.000) 

Aug. Rainfall 0.003 

 (0.005) 

Aug. Rainfall-square -0.000 

 (0.000) 

Sep. Rainfall 0.012+ 

 (0.006) 

Oct. Rainfall -0.016 

 (0.015) 

Apr. Average Temperature -1.348 

 (2.126) 

Apr. Average Temperature-square 0.666 

 (0.688) 

May Average Temperature 7.846+ 

 (3.807) 

May Average Temperature-square -2.157* 

 (0.843) 

Jun Average Temperature -9.502+ 

 (5.247) 

Jun. Average Temperature-square 1.864+ 

 (1.006) 

Jul Average Temperature -3.576 

 (5.947) 

Jul. Average Temperature-square 0.767 

 (1.085) 

Aug Average Temperature 7.007 

 (9.901) 

Aug. Average Temperature Square -1.391 

 (1.959) 

  

  

  

  

VARIABLES Log(yield) 

  

  

year2 -0.312 

 (0.207) 

year3 -0.004 

 (0.264) 

year4 -0.069 

 (0.244) 

year5 -0.178 

 (0.270) 

year6 -0.366 

 (0.368) 

year7 -0.152 

 (0.197) 

year8 -0.292 

 (0.222) 

year9 -0.091 

 (0.266) 

year10 -0.338 

 (0.243) 

year11 -0.397 

 (0.326) 

year12 -0.350 

 (0.257) 

year13 -0.728* 

 (0.301) 

year14 -0.230 

 (0.380) 

year15 -0.633* 

 (0.251) 

year16 -0.324 

 (0.300) 

year17 -0.261 

 (0.260) 

year18 -0.236 

 (0.247) 

year19 -0.229 

 (0.318) 

year20 -0.140 

 (0.285) 

year21 -0.156 

 (0.297) 

year22 0.034 

 (0.148) 

year23 -0.204 

 (0.198) 

year24 -0.068 

 (0.320) 
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year25 -0.323 

 (0.266) 

year26 -0.453+ 

 (0.229) 

year27 0.053 

 (0.208) 

year28 0.084 

 (0.205) 

year29 -0.081 

 (0.233) 

year30 0.037 

 (0.226) 

  

year32 -0.096 

 (0.230) 

year33 0.010 

 (0.194) 

Constant 4.185 

 (14.363) 

  

Observations 477 

Number of code 15 

R-squared 0.678 

  

Robust standard errors in parentheses 

** p<0.01, * p<0.05, + p<0.1 
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Figure 3. Mon-parametric PDFs for county-level yield and revenues with WII  


