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Our purpose is to present in detail numerical methods of measuring the value of 

nonmarket goods using market data, under either weak neutrality, weak complementarity, 

or any other preference restriction meeting the requirements discussed in this paper.  It 

has been claimed in a number of places in the literature that numerical methods cannot be 

used to measure the value of nonmarket goods unless the very restrictive Willig 

conditions are satisfied.  We show that this claim is mistaken, and that numerical methods 

can be used whether or not the Willig conditions are satisfied.  Our numerical methods 

are more flexible than the existing analytical method because ours can be used with any 

Marshallian demand system. 

Using Line Integration to Measure with Market Data the Value of a Change in a 
Nonmarket Good 
A Generalization of Earlier Measures:  Total Value in Terms of a Line Integral 

Following Neill (1986, 1988, 1991, 1995), LaFrance and Hanneman, and Larson (1991, 

1992b), let p = (p1, . . . , pn-1), represent the prices of market goods x1, . . . , xn-1.  Let all 

other market goods be represented by a composite commodity, xn, with unit price.  Let z 

be a parameter describing (the quantity or quality of) some nonmarket good.  The amount 

of z consumed is not chosen or bought by the consumer but rather is given to the 

consumer exogenously.   Let a representative utility-maximizing consumer with income y 

have Marshallian demands x(p, z, y) = (x1(p, z, y), . . . , xn-1(p, z, y)) for the non-

composite goods, and a Marshallian demand xn(p, z, y)  ≡ y - px(p, z, y) for the 

composite good.  With u representing utility, denote the consumer’s expenditure function 

by m(p, z, u), and the corresponding Hicksian demands by xc(p, z, u) = (x1
c(p, z, u), . . . , 

xn-1
c(p, z, u)) and xn

c(p, z, y)  ≡ m(p, z, u) - pxc(p, z, u).   
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Let u0 be the level of maximized utility at initial prices p0 = (p1
0, . . . , pn-1

0), 

income y0, and the level z0 of the nonmarket good.  Then let the amount of the nonmarket 

good change from z0 to z1.  Given that prices and income remain constant at p0 and y0, the 

total value of this change (in terms of compensating variation) to the individual is 

 TV z
0
, z
1( ) = m p

0
, z
0
,u

0( ) !m p
0
, z
1
,u

0( ) . (1) 

The challenge to the applied economist is to measure (1) using the information available 

from the estimate of the demand system x(p, z, y).   

Assume that m(p, z, u0) has piecewise continuous first partial derivatives of p and 

z.  Then the following can be established from line integral theory (Kaplan, p. 293) and 

Shephard’s lemma: 
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where L is a path of integration in (p, z)-space from point (p0, z1) to point (p0, z0).  

Furthermore, the line integrals in (2) are path independent (Kaplan (Theorem I, p. 292), 

so L may be any (piecewise smooth) path between endpoints (p0, z1) and (p0, z0).  The 

path independence of the line integral on the far right-hand side of (2) makes it a general 

measure which explains and encompasses previous methods of measuring TV(z0, z1).  

While the line integral framework of (2) does not entirely remove the requirement 

of identifying the marginal willingness to pay function ∂m(p, z, u0)/∂z, it does provide 

considerable flexibility to the researcher to meet that requirement. For (2) reveals that, 

given knowledge of the Hicksian demand functions, it is not necessary to identify ∂m(p, 

z, u0)/∂z along its entire domain, nor even along the “straight line” between (p0, z1) and 

(p0, z0).  Rather it is at most necessary to identify ∂m(p, z, u0)/∂z along some arbitrary 

path of integration L which runs between points (p0, z1) and (p0, z0).  Equation (2) gives 
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the researcher the increased flexibility of choosing a “convenient” path of integration, 

which has a subpath along which the marginal willingness to pay function ∂m(p, z, u0)/∂z 

may be identified.  Equation (3) illustrates.  Because the path of integration L between 

(p0, z1) and (p0, z0) in (2) is arbitrary, we can break it into three arbitrary subpaths S1, S2, 

S3 that join to form path L, and write, 
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The chief difficulty in finding total value from (3) lies in dealing with the B2 term. 

Numerical Approach 

Difficulties in the application of the concepts of weak neutrality and weak 

complementarity remain.  Thus far in the literature, the concepts have been applied to 

models with very particular functional forms for demand—forms that enable analytical 

integration from a Marshallian demand function back to a quasi-expenditure function.  

Since these few functional forms do not always best fit studies’ empirical estimation of 

demands, there is a need for the development of another, more flexible method of using 

the assumptions of weak complementarity, weak neutrality.  Our discussion in the 

previous section lays the foundation for the remainder of the paper, in which we present a 

numerical method of measuring the value of nonmarket goods using market data, under 
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weak neutrality, weak complementarity, and other conditions.  The numerical method can 

be implemented with any system of Marshallian demand functions. 

Earlier Suggestions about Using, and the Impossibility of Using, a Numerical Approach 

Both Larson (1992b) and Flores suggested applying Vartia's numerical method to 

approximate the value of nonmarket goods using market data.  Larson (1992b, pp. 108-

109) developed an expression (his equation (6)) for the value of changes in z in terms of 

Marshallian demand parameters for a good that is Hicks neutral to the nonmarket good.2 

Larson briefly suggested that numerical techniques similar to those of Vartia could be 

used to approximate his equation (6).   

Flores pursued Larson’s idea by providing three iterative equations based on 

Vartia's three algorithms to approximate Larson’s equation (6).  But the numerical 

analysis was not the central focus of Flores’s analysis, and his brief discussion is subject 

to some important limitations.  The key obstacle in implementing a numerical algorithm 

is that the integral in it cannot be approximated by direct application of Vartia’s 

algorithm.3  Below we follow up on Flores’s interesting line of inquiry, presenting an 

applicable method for calculating the value of changes in the nonmarket good under 

weak complementarity or weak neutrality.   

Bockstael and McConnell (1993) discussed restrictive conditions on consumer 

preferences, which they called Willig conditions.  Contrary to Larson’s and Flores’s 

suggestions, Bockstael and McConnell claimed (p. 1254) that when the level of a non-

market good changes, in general it is not possible to use Vartia-type numerical techniques 

to obtain an exact measure of the resultant welfare change.  They write (p. 1254),  
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Some Marshallian demand functions can be analytically integrated back to 

expenditures functions that embody weak complementarity, allowing solution for the 

compensated demand.  Analytical integration is not always possible, however.  In the 

standard price change case numerical integration as suggested by Vartia (1983) is 

commonly employed.  In assessing quality changes, the Willig condition is 

instrumental in applying Vartia’s techniques. … When the Marshallian demand shifts, 

the new Marshallian and the appropriate Hicksian cross at some unknown point. … 

To apply the numerical integration techniques of Vartia, one needs some means of 

identifying the new intersection point.  The Willig condition provides such a means. 

Palmquist (2005, p. 104, footnote 1) follows Bockstael and McConnell to write,   

Larson … analytically solves the differential equation implied the Marshallian 

demand.  Numerical solutions as in Vartia … might seem an attractive alternative.  

However, as Bockstael and McConnell … show, determining the bounds for the 

numerical integration requires additional information such as that provided by the 

Willig condition discussed here. 

In a similar vein, Smith and Banzhaf (2004, p. 456) cite Bockstael and McConnell, 

…the conventional strategies used to recover Hicksian welfare measures from 

Marshallian demands do not provide sufficient information.  …  To estimate Hicksian 

surplus for a change in [a non-market good] from the Marshallian demand for [a 

market good], preferences must also satisfy the Willig 1978 condition. 

In the following, we will show that under weak complementarity or weak 

neutrality, Vartia-type numerical techniques indeed can  be used to obtain exact measures 

of the welfare effects of a change in a non-market good from knowledge of the 
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Marshallian demand system of the market goods.  Our numerical methods can be applied 

whether or not the Willig conditions are met.  The implications of our findings are that in 

the general case inexact welfare measures, such as those discussed in Bockstael and 

McConnell, Palmquist, and Smith and Banzhaf (2004) need not be derived, since exact 

measures can be calculated from the same information. 

Numerical Calculation of the Value of a Change in a Non-market Good 

Our approaches extend Vartia’s algorithm to the problem of measuring the value of 

nonmarket goods using Marshallian demand parameters.  Our procedures measure the 

value of changes in the nonmarket good under the conventional restrictions on 

preferences, weak complementarity and weak neutrality along the choke-price subpath.  

Our approaches are based on the line integral framework of equation (2), and under weak 

complementarity can be used with any well-defined system of Marshallian demand 

functions, whether or not it can be analytically integrated back to obtain an explicit 

expenditure function, and whether or not the Willig conditions are satisfied.   

 Procedure 1 

We have already shown that under weak complementarity along Schoke, nonuse value is 

zero, and therefore the use value of the change in z is equal to total value of the change in 

z: UV(z0, z1)  = TV(z0, z1) = D1 + D3, as defined in (3).  We illustrate for the case of n – 1 

= 1 market good that is not the numeraire.  Then (3) implies 
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, z
1( ) = x
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,u

0( )dp !
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0

!p z
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0( )" x

c
p, z

0
,u
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0

!p z
0
,u
0( )" , (4)  

The second integral on the right-hand side of (4) can be found using Vartia-type 

numerical methods.  One begins the numerical procedure at quantity xc(p0, z0, u0) = x(p0, 

z0, y0), which can be observed if the functional form of the Marshallian demand is known.  
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By taking small changes in the output price p, one can numerically trace the Hicksian 

demand curve xc(p, z0, u0) by using a Vartia-type algorithm, adjusting income in each step 

by a trapezoid representing the change in consumer surplus when price p changes,  Then 

one can approximate TV(z0, z1) as nearly as desired by moving p up to the choke price 

 
!p (z0, u0), and summing the trapezoids.  Bockstael and McConnell, and Palmquist claim, 

however, that in general numerical methods cannot be used to calculate the first integral 

on the right-hand side of (4).  They point out that to calculate this integral, one would 

have to identify the quantity xc(p0, z1, u0), which generally does not equal the observable 

quantity xc(p0, z1, u0) = x(p0, z1, y0).  They explain that under the special restrictive case 

when Willig conditions hold, a result is that xc(p0, z1, u0) = x(p0, z1, y0), and so xc(p, z1, u0) 

can be identified, and so numerical methods can be used to calculate TV(z0, z1).   

We will show that even when Willig conditions do not hold, under weak 

complementarity along the choke price subpath, it is still possible to identity quantity 

xc(p0, z1, u0) and therefore to use numerical methods to estimate (z0, z1).  The key to our 

method  is that even though xc(p, z1, u0) is not directly observable, we know that under 

weak complementarity, equation (5), which implicitly defines compensating variation for 

a change in the non-market good from z0 to z1, must hold:   

 x p
0
, z
1
, y

0
!TV z

0
, z
1( )( ) = xc p

0
, z
1
,u

0( ) . (5) 

Because the algorithm to numerically calculate the first integral on the right-hand side of 

(4) must begin with the quantity 

� 

x
c
p
0
,z
1
,u

0( ) to hold, then the two equations (4) and (5)  

each contain two unknowns, TV(z0, z1) and 

� 

x
c
p
0
,z
1
,u

0( ), and therefore can be solved 

numerically for the values of those unknowns.  This solution algorithm does not depend 

on Willig conditions. 
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Next we provide an example of Procedure 1.  We use the same model used by 

Palmquist (pp. 111-112).  This model assumes a specific type of Stone-Geary utility 

function in its logarithmic form:   u(x1, x2, z) = z ln(x1+1) + ln(x2), where x1 is the non-

numeraire market good, x2 is the numeraire (composite) market good, and z is the non-

market good.  Palmquist recognized that this utility function implies that the Marshallian 

demand for the non-numeraire market good takes the form x(p, z, y) = (zy – p)/[(1+z)p], 

and that the expenditure function takes the form m(p, z, u) = -p + (1+z)[(u-zln(z) + 

zln(p))/(1+z)].  Initial income is assumed to be y0 = 10, and the initial price level is p0 = 1.  

From the expenditure function, Palmquist calculates directly the compensating variation 

for a change in quality from z0 = 5 to z0 = 6 to be 3.0015, and the equivalent variation to 

be 4.9528.   

Palmquist states directly (p. 111) that the Willig conditions are not met by the preferences 

summarized in the model outlined in the previous paragraph.  Further, he states (p. 114) 

that,  “it is only possible to confidently derive welfare measures for quality changes 

directly from estimates of the demand for the weakly complementary private good if the 

path independence [i.e. Willig] conditions hold.  (We have added the terms in brackets.)  

In fact, compensating and equivalent variation can be readily calculated numerically from 

the Marshallian demand function in this example.  In Appendix 1, we present a short 

Gauss program that calculates the compensating variation as 3.0015, the same as 

Palmquist’s analytical result.  We also used this program to correctly calculate 

compensating variation for models in other papers, including Larson’s (1992) bass 

fishing linear model, which also does not satisfy the Willig conditions.  A very similar 

program can be written to numerically calculate equivalent variation.  
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Procedure 2 

Our procedure can be implemented with a relatively simple computer program (an 

example, written for GAUSS is available from the authors.)  The researcher chooses the 

restriction on assumptions, weak neutrality or weak complementarity along Schoke (line 

3).4  The integrals approximated are D1, D3, and B2 in (4).  These integrals allow us to 

approximate TV(z0, z1), UV(z0, z1),  and NUV(z0, z1) under either weak complementarity 

or weak neutrality along Schoke.  Any desired level of accuracy can be reached by setting 

the size of the increments ∆p and the number of increments for z (lines 4 and 5).  The 

researcher also specifies the demand function, the initial levels of income (y0), price (p0), 

and the nonmarket good (z0), and the final level of the nonmarket good (z1) (lines 7-11).   

The procedure involves two loops, one nested within the other.  In the first 

(“outer”) loop, the value of z is raised in small increments ∆z from the initial value, z0, to 

the final value, z1 (the loop starts on line 21).  For each zi in the outer loop, the second 

(“inner”) loop uses Vartia’s method to trace the Hicksian demand curve from p0 to the 

minimal Hicksian choke price, 

� 

ˆ p (zi, u0)  (lines 27-32).   

Figure 1 illustrates this inner loop process for z = z0.  The inner loop measures the 

value of access to the nonmarket good, which for z = z0 is the integral (-D3) in equation 

(4).  In the first price iteration, the price rises from p0  to p0+∆p while demand falls from 

x(p0, z0, y0) = xc(p0, z0, u0) to  x(p0 + ∆p, z0 , y0) along the Marshallian demand curve.  The 

(approximate) change in consumer surplus associated with this price increase, 

represented by area ∆S1, is used to adjust income upward, raising demand to x(p0+∆p, z0, 

y0 + ∆S1).  If the price increment is small, this point is “close” to xc(p0 + ∆p, z0, u0).  Note 

that the size of the price increments has been exaggerated in Figure 1 for illustrative 
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purposes; in tests described below, we use ∆p = 0.1, resulting in hundreds of increments 

between p0 and

� 

ˆ p .  In the second price iteration, income is further adjusted by ∆S2, so y = 

y0 + ∆S1 + ∆S2.  The process continues until a Hicksian choke price is reached (i.e., the 

price is high enough such that Hicksian demand is zero).  The sum of the ∆Si is 

approximately the area behind the Hicksian demand curve xc(p, z0 ,u0) above p0, and the 

approximation can be made as accurate as desired by shrinking the size of the price 

increment ∆p.   This area is a measure of the value of access to the nonmarket good (-D3 

from equation (4)). 

The iterations of the outer loop, which increase the value of z by an increment ∆z, 

are illustrated in Figure 2.  (In Figure 2, it is assumed that there are R such increments: z1 

- z0 = R∆z.)  In the second iteration of z, the inner loop process of tracing the Hicksian 

demand curve is repeated starting from x(p0, z0+ ∆z, y0).  The difference between the area 

behind the original Hicksian demand curve and the new one (area UV1  in Figure 2) is a 

measure of the use value associated with the increase in z from z0 to z0+∆z (line 35).  

Under weak neutrality, the updated nonuse value is approximated using a trapezoidal 

approximation over z0 to z0+ ∆z (lines 36-48).  If weak complementarity is assumed, 

these calculations are skipped and nonuse value remains at zero. 

The estimates of use value and nonuse value are used to adjust the income level 

for the third and subsequent iterations of z.  As shown in Figure 2, the third Hicksian 

demand curve is traced upward using the inner loop process from the point x(p0, z0 + 2∆z, 

y0 -UV1).5  For small changes in z, this is near xc(p0, z0 + 2∆z, u0).  In general, at the end 

of the ith iteration in z, income is adjusted using the interim estimates of use values (sum 

of areas UV(1) to UV(i - 2)) and nonuse values (NUV(1) to NUV(i - 2)) if the 
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assumption is weak neutrality (line 50).  This adjusted income is used in iteration i + 1 so 

that utility is maintained (approximately) constant as z varies.  The final estimate of use 

value is the difference in area behind the Hicksian demand curve xc(p0, z1, u0), 

representing D1 , and the area behind Hicksian demand curve xc(p0, z0, u0), representing -

D3.  The intermediate steps are necessary to estimate the income adjustments needed to 

keep utility constant as z increases. 

The GAUSS program in the appendix is written to follow Larson’s (1992b) bass 

fishing example under weak neutrality along the choke-price subpath, with R = 5 

iterations in z and price increments of 0.1 (lines 3-11).  (The assumption of weak 

neutrality can be changed to weak complementarity simply by assigning assum = 2 in line 

3.  Using our numerical approach, this program calculates the use value at -$7.689 and 

the nonuse value at $10.109, which can be shown using the expenditure function in (11) 

to be correct to three digits past the decimal point.  (Larson reports approximated results 

of -$7.69 and $10.10.)  Additional iterations make our numerical approximation correct 

to more digits past the decimal point.  

Conclusions 

We have shown that in measuring the value of changes in a nonmarket good using market 

data, line integration techniques can provide several advantages over the more traditional 

use of definite integrals.  We present a numerical method of measuring the value of a 

change in a nonmarket good.  Unlike the analytical approach, which is limited to demand 

functions that can be integrated back to their quasi-expenditure functions, our numerical 

approach can be used with any well-defined system of Marshallian demand functions.  

We show that numerical methods may be useful even when the Hicksian choke price is 
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infinite.  We explore the possibility of extending the numerical approach to a multiple-

good system.  The flexibility, simplicity, and relative accuracy of this approach may 

make it a useful tool in applied research into the value of nonmarket goods. 

Finally, a word needs to be said about the statistical implications of applying 

either of the weak complementarity or weak neutrality assumptions to actual data.  If it is 

assumed that the arbitrary subpath S2 in (4) is the choke-price subpath Schoke, then much of 

what needs to be known may be subject to large statistical error bounds.  That is, data do 

not usually contain price and quantity observations that occur near choke prices, and so 

estimations of choke prices will often be far “out of sample.”  Thus, the standard errors of 

the estimates of choke prices will be large, and this may adversely affect the size of the 

statistical errors of the measurements of total value of a change in the nonmarket good.  If 

!x
i

c
p, z,u

0( ) !z  (for any i = 1, … , n – 1) or !µ p, z,u0( ) !z  is known along a subpath 

that runs closer to (p, z) values observed in the data, then statistical error bounds will be 

much less of a problem.  The trick, of course, is knowing !x
i

c
p, z,u

0( ) !z  (for some i = 1, 

. . . , n - 1) or !µ p, z,u0( ) !z .  Reasonable intuitive arguments have been made for 

assuming !µ p, z,u0( ) !z  = 0 everywhere along a choke-price subpath of integration.  

Good intuitive arguments about the functional forms of any !x
i

c
p, z,u

0( ) !z  or 

!µ p, z,u0( ) !z  may be more difficult to develop.  The Proposition in this paper has 

shown more general conditions under which the value of a change in a nonmarket good 

can be measured using market data.  Better understanding of the more general conditions 

should lead to better applied research.  Still, for many practical applications, these 

conditions, though more general, remain quite restrictive.
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Figure 1.  Approximating the area behind a Hicksian demand curve.
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Figure 2.  Approximating the change in area behind Hicksian demand curves. 
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Notes 
                                                

2 Hicks neutrality for good i means that ∂xi
c(p, z, u0)/∂z = 0 for all z ∈ [z0, z1] and for all p 

∈ Rn+.  That is, good i must be weakly neutral everywhere in (p, z)-space, not just along 

a subpath within (p, z)-space. 

3 In particular, we lack a starting point xi
c(p0, z1, u0) from which to calculate the area 

behind xi
c(p, z1, u0) over p0 to p*.  (This area corresponds to (-D3) in equations (4) and 

(7b).)  We cannot obtain the starting point xi
c(p0, z1, u0) without knowing the amount of 

money which would compensate the consumer for the change in z, which is, of course, 

the objective of the whole exercise.  This is the same point made by Bockstael and 

McConnell ( p. 1254), and repeated by Palmquist (p. 104). 

4 The computer program could be adapted for other subpaths of integration. 

5 Here we assume weak complementarity, which implies nonuse value is zero.  Under 

weak neutrality, we begin the inner loop process from the point x(p0, z0+ 2∆z, y0 – UV1 - 

NUV1). 


