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Abstract 

Perhaps the most widely followed price in the market is the price of crude oil. The volatility of this 
commodity is evident to consumers through the gasoline prices that consumers see on the retail side. The 
U.S. Energy Information Agency provides widely followed forecasts for the retail gasoline price (along 
with other energy products) produced with their short-term energy outlook (STEO) model. The purpose 
of this research is to compare a number of forecasts using different techniques to the STEO model. This 
is accomplished through the use of Holt Winters, structural, ARIMA, and vector error-correction models. 
We also construct a composite forecast by averaging the respective forecasts from the four models. From 
the empirical analysis, we find evidence from the structural model and the vector error-correction model 
that the movement in the gasoline prices can be explained by the West Texas Intermediate (WTI) 
benchmark and the spread between BRENT and WTI benchmarks. In terms of forecasting performance, 
the additive Holt Winters model outperforms the other models within sample. Out sample, the composite 
forecast is the best performing model. The composite forecast has a MAPE of 6.3% versus a MAPE of 
8.1% from the STEO model.  
 

Key Words: Retail Gasoline Prices, Forecasting, short-term	energy	outlook	model; Holt-Winters 

model; ARIMA model; structural model; vector error-correction model 
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Can U.S. EIA Retail Gasoline Price Forecasts Be Improved Upon? 
 

1. Introduction 
Crude oil is not only one of the most actively traded commodities but is also a vital component of 

the world economy. The importance of the price of oil to the U.S. economy is clear in that 10 out of 11 of 

the postwar U.S. recessions were preceded by a large increase in the price of crude oil (Hamilton, 2011, 

p. 264). As the main input into gasoline, changes in the price of crude oil are important. At the consumer 

level the most immediate and visible aspect of oil price fluctuations is the volatility in gasoline prices 

seen at gas stations. An example of a less obvious effect on the consumer’s budget is the change in the 

prices of used vehicles in response to changes in the prices of gasoline at a six-month delay (Allcott and 

Wozny, 2014). To reiterate crude oil is a volatile commodity that affects the bottom line of businesses 

and consumers and accurate price predictions are a necessity.   

The U.S. Energy Information Administration (EIA) is the main and most widely followed source 

of forecasts for the energy sector. Focusing specifically on U.S. refiner wholesale gasoline prices, in 

August 2016 the EIA forecast for 2017 an average of $1.97/gal in the first quarter, $2.35/gal in the 

second quarter, $2.41/gal in the third quarter, and $2.30/gal in the fourth quarter (EIA, 2016). These 

numbers are in comparison to a fourth quarter average of $1.95/gal in 2016.   

	

Fig.	1.	Crude	Oil	and	Gasoline	Spot	Prices	in	Dollar	per	Barrel	from	Sep	2003	to	Oct	2015	
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The Energy Information Administration (EIA) estimates that about two-thirds of the price of 

gasoline is attributable to the cost of crude oil.1 As Fig.	1 demonstrates, fluctuations on gasoline prices 

tend to track fluctuations in crude oil prices very closely. The U.S retail gasoline price is determined by 

four elements:  the price of crude oil, refining costs and margins, retail and distribution costs and 

margins, and taxes. All but the first element tend to be relatively stable and easier to forecast. The 

majority of volatility in gasoline prices is from the crude oil component.  

 The principal aim of this research is to determine the best method to provide forecasts of gasoline 

prices by comparing forecasts from Holt Winters, structural, ARIMA, and vector error-correction 

models.  We also construct a composite forecast by averaging the respective forecasts from the four 

models. Forecast accuracy is compared using RMSE, MAE, MAPE, and percent correct direction of 

change. From the empirical analysis, we find evidence from the structural model and the vector error-

correction model that the movement in the U.S. gasoline spot prices can be explained by the West Texas 

Intermediate (WTI) benchmark and the spread between the BRENT and WTI benchmarks2. In terms of 

forecasting performance, the Holt Winters model outperforms other models within sample. Out sample, 

the composite forecast provides the most accurate forecasts. The composite forecast has better 

performance based upon MAE, MAPE, and correct direction of change relative to forecasts form the 

EIA.  

The remainder of the article is organized as follows. Initially, we provide a review of literature to 

put our research in perspective. Next, we present the theoretical aspects of the models used to make 

forecast gasoline prices. Then we introduce our data and perform the estimation of the respective models. 

After the estimation, the results are presented and the forecasts from the distinct methodologies are 

compared. Finally, we make concluding remarks.  

																																																								
1	 https://www.eia.gov/energyexplained/index.cfm?page=gasoline_factors_affecting_prices 	
2	The	most	popular	traded	grades	are	Brent	North	Sea	Crude	(known	as	Brent	Crude)	and	West	Texas	Intermediate	
(known	as	WTI).	Brent	refers	to	oil	produced	in	the	Brent	oil	fields	and	other	sites	in	the	North	Sea.	This	oil	price	is	the	
benchmark	for	African,	European	and	Middle	Eastern	crude.	
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2. Literature Review 

An important issue in the forecasting literature revolves around the existence of long-run 

relationships among gasoline prices and oil prices. This issue is important to discuss even though the 

forecast object of this paper is the price of gasoline. Bumpass, Ginn, and Tuttle (2015) find evidence of a 

long run relationship between crude oil price and retail gasoline prices. In examining the long-run 

demand for gasoline, Akinboade, Ziramba, Kumo (2008) found long-run relationships among gasoline 

demand, income, and gasoline price. Zhang, Lohr, Escalante, and Wetzstein (2010) found evidence of a 

co-integrating (long-run) relationship between gasoline prices and oil prices. Additionally, Hammoudeh, 

Ewing, and Thompson (2008) found long-run relationships among majors crude oil benchmarks. These 

articles demonstrate the imporatance of conducting a test concerning the existence of long-term 

relationship among gasoline prices and oil prices and the need to consider literature forecasting the price 

of crude oil. 

Forecasting the price of oil is accomplished through a number of methods and is widely explored 

in literature. Forecasts of oil prices and gasoline prices have been made using the crack spread, defined as 

the difference between crude oil prices and its derivative product prices (Murat and Tokat, 2009; 

Baumeister, Kilian, and Zhou, 2013). Alquist, Kilian, and Vigfusson (2013) compare a number of models 

to determine which forecasts the real price of oil most accurately. The mean squared prediction error is 

the main accuracy measure to judge their results. These authors find that a vector autoregression provides 

more accurate forecasts compared to a no change forecast when considering a time horizon of six 

months. The no change forecasts performs better at horizons longer than six months. This finding is in 

contrast to some authors such as Maslyuk and Smyth (2008), who have found evidence that crude oil 

prices follow a random walk process. If crude oil truly followed a random walk process than the no 

change forecast would have been superior even in the six-month horizon in which Alquist, Kilian, and 

Vigfusson (2013) found the vector autoregression to be superior. Chen (2014) uses oil-sensitive stock 

price indices to forecast crude oil price movements. This model is able to provide forecasts that are more 
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accurate a no-change forecast.	It seems that at least in the short run there can be information gains from 

trying to forecast the oil price with econometric models.  

Researchers can also incorporate geological and technological constraints into econometric 

models in order to make forecasts of future oil prices. Benes et al. (2015) find that such a model can 

outperform, based on root mean squared error, a random walk in forecasting prices and outperform the 

EIA forecasts of oil production at horizons up to five years. The price of oil is also dependent upon the 

world economy. Kilian and Hick (2013) find that global growth news can predict much of the increase in 

the real price of oil from the middle of 2003 until the middle of 2008 (Kilian and Hicks, 2013).  

Baumeister and Kilian (2015) compare the forecast performance of six different models to the 

EIA forecasts for the real price of oil. It is similar to this research in that two of the models used are a 

vector autoregression and a structural model with the gasoline and WTI spread. The authors also 

construct a composite forecast of different models. The composite forecast outperforms the EIA oil price 

forecasts based on mean squared prediction error and directional accuracy. Baumeister, Kilian, and Lee 

(2016) also find that a composite forecast outperforms other models when examining real-time retail 

gasoline prices (which take into account delays in the availability and revisions). These articles 

demonstrate the need to consider multiple models when making forecasts. 

In addition to standard economic variables, some researchers have begun using consumer survey 

data to forecast gasoline prices. Anderson, Kellog, and Sallee (2013) find that the average consumer 

believes that the expected future price of gasoline is the current price of gasoline. Anderson et al. (2011) 

use consumers expected inflation from the Michigan Surveys of Consumers (MSC) to make predictions 

of gasoline prices. The accuracy of models incorporating this data are similar to a no change forecast on 

average. Some evidence did indicate that forecasts just after the late-2008 economic crisis did outperform 

the no-change forecasts. Baghestani (2015) uses expected inflation and consumer sentiment from the 

MSC in a vector autoregression to forecast gasoline prices. This author finds that the model outperforms 
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a univariate integrate moving average model. Baghestani (2015) also finds that incorporating MSC data 

leads to much better forecasts just after the late-2008 economic crisis.  

In addition to the literature forecasting the price of gasoline there are a number of studies that 

examine what factors are influencing the retail price of gasoline. Some of these variables are more 

obvious such as weather, income and taxes (Bello & Contin-Pilart, 2012). Lesser-known factors may 

include the price of gasoline in bordering countries and ease of crossing the border. Fullerton et al. (2014) 

include the monthly volume of passenger vehicles entering El Paso, Texas and the retail price of gasoline 

in Mexico as regressors in a model explaining the price of gasoline in El Paso.  

The issue of whether to use a univariate model or a multivariate model for forecasting is 

important in the forecasting literature. Which model is better is highly dependent on the forecast object. 

For example, Preez and Witt (2003) find that a simple ARIMA model performs better than a multivariate 

time series model when forecasting tourist arrivals to the Seychelles. Bidarkota (1998) finds that an error 

correction model provides more accurate forecasts than a univariate model when forecasting the real 

interest rate. In dealing with energy market volatility, using GARCH models Wang and Wu (2012) found 

that multivariate models performed better when forecasting certain assets prices, but univariate models 

perform better forecasting crack spread volatility. Abosedra (2005) finds that a univariate forecast of 

crude oil prices does not perform as well as a one-month ahead futures price. Thus, it is important to test 

whether to use a univariate or multivariate model for each particular situation and our research is 

important because it will determine which is best at forecasting gasoline prices.  

 A related line of research is whether there is asymmetry in the movements of gasoline prices and 

crude oil prices. Bacon (1991) describes this relationship as “Rockets and Feathers.” The gasoline prices 

will shoot up like a rocket in response to a crude oil price increases but they fall slowly like a feather as 

the price of crude oil declines. A number of studies have looked at this relationship (Kristoufeka and 

Lunackova, 2015; Bachmeier and Griffin, 2003). The literature is still undecided on this issue (Honarvar, 

2009). Some authors find that wholesale gasoline prices respond symmetrically to an oil price shock in 
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the long-run and any evidence asymmetries is likely due to the form of cointegration in the model 

(Bumpass, Ginn, and Tuttle, 2015). 

 

Table 1: Summary statistics of key nominal energy prices

 

 
 
 

Table 2: Unit root tests 

 
 

Statistic
GASOLINE
($/gal.)

WTI
($/bbl.)

BRENT-WTI
($/bbl.)

GASOLINE
($/gal.)

WTI
($/bbl.)

BRENT-WTI
($/bbl.)

	Mean 2.913 76.518 3.623 1.039 4.284 0.028
	Median 2.922 76.495 0.090 1.072 4.337 0.001
	Maximum 4.114 133.880 27.310 1.414 4.897 0.277
	Minimum 1.522 28.310 -6.880 0.420 3.343 -0.117
	Std.	Dev. 0.689 23.365 7.902 0.255 0.344 0.087
	Skewness -0.219 -0.102 1.174 -0.572 -0.755 0.819
	Kurtosis 1.921 2.357 3.256 2.314 2.890 2.922
	Jarque-Bera 7.683* 2.580 31.591** 10.070** 12.973** 15.234**
Note:	Jarque-Bera	test	statistic	is	used	to	test	the	null	hypothesis	of	normality.	*	and	**	denote	the	rejection	of	the	null	hypothesis	at	the	5%	and	1%	

levels,	respectively.

Price Log	price

Variable
Transformation

gasoline	spot X -2.740 1.064 **
log(X) -2.854 * 1.063 **
∆X -7.167 ** 0.111

∆log(X) -7.477 ** 0.119
WTI X -2.821 0.965 **

log(X) -3.155 * 0.996 **
∆X -7.100 ** 0.129

∆log(X) -7.762 ** 0.206
BRENT-WTI X -2.274 0.874 **

∆X -9.403 ** 0.111
log(BRENT)-log(WTI) X -2.195 0.988 **

∆X -10.805 ** 0.097
Note:	The	ADF	test	is	used	to	test	the	null	hypothesis	of	a	unit	root	for	the	variables	and	their	assosiated	

transformed	variables.	;	the	KPSS	test	is	applied	to	test	for	the	null	hypothesis	of	level	stationarity.	

*	and	**	denote	the	rejection	of	the	null	hypothesis	at	the	5%	and	1%	levels,	respectively.

ADF KPSS
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Table 3: Lag Order Selection Criteria 

	 
 

 
 
 

Table 4: Johansen Test for Cointegration 

 
 

 
 
 

Table 5: Wald Test-Granger Causality 

  

	Lag LogL LR FPE AIC SC HQ
1 -612.446 671.620 3.467 9.757 10.024 9.866
2 -572.130 		76.223* 		2.126* 		9.268* 		9.736* 		9.458*
3 -564.966 13.208 2.190 9.296 9.965 9.568
4 -559.322 10.143 2.310 9.349 10.218 9.702
5 -553.836 9.599 2.445 9.404 10.473 9.838
6 -548.326 9.385 2.589 9.458 10.728 9.974
7 -544.763 5.900 2.829 9.543 11.014 10.141
8 -538.283 10.430 2.957 9.583 11.254 10.262

	Note:	*	indicates	lag	order	selected	by	the	criterion

	LR:	sequential	modified	LR	test	statistic	(each	test	at	5%	level)

	FPE:	Final	prediction	error 	SC:	Schwarz	information	criterion

	AIC:	Akaike	information	criterion 	HQ:	Hannan-Quinn	information	criterion

Hypothesized	No.	of	
cointegrating	equations

Trace
statistic

Max-Eigen
statistic

None 51.800* 32.575*
At	most	1 19.225* 15.630*
At	most	2 3.595338 3.595338

	Note:	*	denotes	rejection	of	the	hypothesis	at	the	0.05	level

Null	hypothesis
∆gasoline	does	not	Granger	cause	∆WTI 0.983
∆WTI	does	not	Granger	cause	∆gasoline	 9.942 **
∆WTI	does	not	Granger	cause	∆(BRENT-WTI)	 0.891
∆(BRENT-WTI)	does	not	Granger	cause	∆WTI 0.320
∆(BRENT-WTI)	does	not	Granger	cause	∆gasoline	 0.320
∆gasoline	does	not	Granger	cause	∆(BRENT-WTI) 0.891
Note:	The	table	reports	Wald	test	statistics.	**	denotes	rejection	of	the	null	hypothesis	at	the	1%	level.

F-Statistic



8	
	

3. Empirical models  

Recall that the principal aim is to determine the best method to provide forecasts of gasoline 

prices using Holt Winters, structural, ARIMA, and vector error-correction models. The extant literature 

offers little in the analyses of forecasts using separate model specifications. In this way, this research 

helps to fill this void. The composition of the respective models draws upon popular models discussed in 

the review of literature. In this section, we discuss each of the respective univariate and multivariate 

models. We present a general overview of the theoretical components of the models under consideration. 

Readers interested in more detail should refer to other sources (Chase, 2013; Greene, 2003). 

 

3.1. Holt Winters model 

The Holt-Winters model is a univariate forecasting approach. This method has extensions to deal 

with a time-series containing both trend and seasonality. The Holt-Winters method has two versions in 

dealing with seasonality, additive and multiplicative. Based on performance of these two versions, we use 

the additive version for gasoline forecasts and only present this version. The additive formulation of 

Holt-Winters method is given by the following set of equations: 

𝑙! = 𝛼 𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸! − 𝑆!!! + 1− 𝛼 𝑙!!! + 𝑏!!!  

𝑏! = 𝛽 𝑙! − 𝑙!!! + (1− 𝛽)𝑏!!! 

𝑠! = 𝛾 𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸! − 𝑙!!! − 𝑏!!! + 1− 𝛾 𝑠!!! 

𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸!!!|! = 𝑙! + 𝑏!ℎ + 𝑠!!!!! 

Suppose that gasoline prices in respective time periods are denoted by 

𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸!,… ,𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸! (t=1,2,…,T) and the seasonal period is denoted by m (m=12 for monthly 

data). Let 𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸!!! be the h-step forecast of gasoline prices made using data to time t.  
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3.2. Structural model 

 Now turning to a multivariate approach, we introduce a structural model. This model allows us to 

bring in information about the current and lagged prices of crude oil, the spread between crude oil 

indices, and seasonality effects. The final structural model consists of the following mean and variance 

equations: 

Mean Equation: 

log 𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒! = 𝛽! + 𝛽! log(𝑊𝑇𝐼!!!!!)
!

!!!

+ 𝛽!!!𝑆𝑃𝑅𝐸𝐴𝐷! + 𝛽!!!!!𝑆𝐸𝐴𝑆!

!!

!!!

+ 𝜖! 

Variance Equation: 

𝜎!! = 𝛼! + 𝛼!𝜖!!!!
!

!!!

+ 𝛽!𝜎!!!!
!

!!!

 

 
3.3 ARIMA model 

The ARIMA(p,d,q) is a univariate forecasting approach. The model under consideration has the 

following form: 

1 − 𝜙!𝐿!
!

!!!

1 − 𝐿 !𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸! = 𝛿 + 1 + 𝜃!𝐿!
!

!!!

𝜖! 

where L is the lag operator (𝐿𝑋! = 𝑋!!!), p is the order of the autoregressive component, d is the degree 

of differencing, and q is the order of the moving average component. The differencing may be necessary 

so as to insure that the forecast object (gasoline prices) will be stationary. Seasonality can be incorporated 

into this model by using a seasonal difference (e.g., 𝑌! = 𝑋! − 𝑋!!!").  
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3.4. Vector Error Correction Model (VEC) 

A vector autoregression (VAR) is a multivariate model that is a generalization of the univariate 

autoregressive model. If 𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸 prices, OIL prices, and the BRENT-WTI spread (SPREAD) are 

found to have a co-integrating relationship (as evidenced by the review of the literature), then it would be 

appropriate to use a vector error-correction model (VEC). Note that the variables used in VEC model 

must be stationary. From Table 2, the appropriate transformation for all variables is the first difference.  

The general form of this VEC model is 

Δ𝑂𝐼𝐿! = 𝛼! + 𝛼!Δ𝑂𝐼𝐿!!! 

!

!!!

+ 𝛽!Δ𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸!!! + 𝛼!Δ𝑆𝑃𝑅𝐸𝐴𝐷!!! 

!

!!!

!

!!!

+ 𝜏!,!𝐸𝐶𝑇1!!! + 𝜏!,!𝐸𝐶𝑇2!!! + 𝜖!" 

Δ𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸! = 𝛼! + 𝛼!Δ𝑂𝐼𝐿!!! 

!

!!!

+ 𝛽!Δ𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸!!! + 𝛼!Δ𝑆𝑃𝑅𝐸𝐴𝐷!!! 

!

!!!

!

!!!

+ 𝜏!,!𝐸𝐶𝑇1!!! + 𝜏!,!𝐸𝐶𝑇2!!! + 𝜖!" 

Δ𝑆𝑃𝑅𝐸𝐴𝐷! = 𝛼! + 𝛼!Δ𝑂𝐼𝐿!!! 

!

!!!

+ 𝛽!Δ𝐺𝐴𝑆𝑂𝐿𝐼𝑁𝐸!!! + 𝛼!Δ𝑆𝑃𝑅𝐸𝐴𝐷!!! 

!

!!!

!

!!!

+ 𝜏!,!𝐸𝐶𝑇1!!! + 𝜏!,!𝐸𝐶𝑇2!!! + 𝜖!" 

where 𝜖!" , 𝜖!" , 𝜖!" are the stationary error terms. 𝐸𝐶𝑇1!!! and 𝐸𝐶𝑇2!!! are the error correction term.  

𝜏!,!, 𝜏!,!, 𝜏!,!, 𝜏!,!, 𝜏!,!, and 𝜏!,! are the adjustment coefficients.  
 
 
4. Data 

The data in this analysis are sourced from the U.S. Energy Information Administration. The data 

represents monthly average prices of gasoline and oil respectively. The 146 monthly observations run 

from September 2003 through October 2015. We estimate our models over the period September 2003 to 

December 2014, with January 2015 to October 2015 withheld to conduct ex-post forecast evaluations of 

accuracy. All prices used are spot prices, that is, the price for a one-time transaction for immediate 

delivery of a quantity of product at a specific location.  



11	
	

More specifically, we used price data for WTI crude oil.3 This price deals with a crude stream 

produced in Texas and southern Oklahoma and is traded in the domestic spot market at Cushing, 

Oklahoma. For gasoline price data, we use RBOB (reformulated gasoline blend stock for oxygenate 

blending) gasoline for delivery in Los Angeles. The spread is the difference between BRENT and WTI 

crude oil prices.is the BRENT price is the price of the blended crude stream produced in the North Sea 

region. Each of the crude oil price series is expressed in terms of dollars per barrel. The gasoline price is 

expressed in terms of dollars per gallon. Table 1 presents summary statistics for each variable used in the 

analysis. The means and medians of the crude oil prices are very similar as expected. Note the large 

difference in the range (the difference between the minimum and maximum) of the respective crude oil 

prices. The range for WTI prices is $105.57 per barrel, and the range for BRENT prices is $105.63 per 

barrel. Additionally, because of the size of the standard deviations relative to the means for the crude oil 

prices, the coefficients of variation are above 30 (31.5 for WTI prices and 35.6 for BRENT prices), 

indicative of volatility in the respective oil prices. Gasoline prices run from $0.90 per gallon to $3.70 per 

gallon, indicative of a range of $2.80 per gallon. Gasoline prices average $2.28 per gallon over the period 

from September 2003 to October 2015. The coefficient of variation of gasoline prices is 28.1 indicative 

of less volatility compared to crude oil prices. 

In Fig. 2, we graphically depict the monthly price of gasoline over the period September 2003 to 

October 2015. 	

																																																								
3 These definitions are sourced from the EIA website: 
http://www.eia.gov/dnav/pet/TblDefs/pet_pri_spt_tbldef2.asp 
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Fig. 2. Gasoline Spot Prices in Dollar per Barrel from Sep 2003 to Oct 2015 

Evidence of seasonality exists based on Fig. 2. There is a large run up of gasoline prices through 2008 

and then a large fall in prices due to the start of the recession in 2008-2009. Gasoline prices then 

experience a notable increase, followed by a period of stability, then another large fall. Variation in these 

prices makes it difficult to provide accurate forecasts for gasoline making this analysis pertinent.  

 

5. Estimation Procedure 

The purpose of the empirical analysis is to determine which univariate or multivariate model best 

captures the behavior of gasoline spot prices. The univariate models considered are Holt-Winters and 

ARIMA models. Based on the review of literature, the structural model is constructed to taken into 

account the relationship between benchmark crude oil prices and the gasoline spot prices. In addition, we 

consider vector autoregression and vector error-correction models. The respective models employ a 

logarithmic transformation to help reduce skewness of gasoline spot prices and crude oil benchmarks 

(Brent or WTI).   

For the Holt-Winters models, we take into account the seasonality component by employing both 

additive and multiplicative seasonality adjustments. We find that the Holt-Winters model with additive 
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seasonality and a logarithmic transformation outperforms other Holt-Winters models in terms of 

forecasting performance.  

The Augmented Dickey-Fuller (ADF) test statistics provide evidence that logarithm 

transformation of gasoline spot prices and the crude oil benchmark results in stationarity of the series. 

However, for the spread between the log transformed crude oil benchmarks, the ADF test statistic 

suggests first differencing is necessary to remove the unit root (Table 2). 

The crude oil benchmark for Brent is not directly included in this analysis. The reason that both 

benchmarks are not included at the same is to avoid a multicollinearity problem. In addition, we are 

considering U.S. gasoline spot prices, not E.U. gasoline spot prices. We construct two simple regression 

models with each benchmark as a single independent variable and find that the WTI price can explain 

gasoline spot price behavior better than the Brent price. We also construct several models using 

combinations of Brent or WTI and the spread between the two benchmarks. Incorporating the Brent-WTI 

spread to models where WTI is an independent variable significantly increases the explanatory power of 

the model. However, incorporating this spread to models that use Brent as an independent variable does 

not significantly increase the explanatory power. This is consistent with the EIA report (2014). Therefore, 

in the analysis that follows, we consider the WTI benchmark and the spread between WTI and Brent 

price series as explanatory variables in the structural specification.  

It is necessary to find the optimal lag order for these models. The optimal lag suggested by the 

majority of model fit parameters is a lag of two. Model selection criteria for the first eight lags are 

presented in  

Table 3. We perform pairwise Granger causality tests in order to determine precedence. Using a 

significance level of 0.05, appropriate for a sample size of 134 observations, we conclude that WTI 

Granger causes (precedes) GASOLINE. That is, WTI crude oil prices affect gasoline prices but not vice 

versa. These test results are presented in Table 5. 
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To determine whether VAR or VEC is appropriate, we use the Johansen test procedure (Table 4). 

The trace test and the maximal eigenvalue test are calculated at the optimal lag of two. The test includes 

the gasoline price, the WTI price, and the spread. Both tests indicate two cointegrating equations at the 

0.05 significance level. The existence of co-integrated equations means that the VEC model is the 

appropriate choice over the VAR model. A seemingly unrelated regression (SUR) approach is used to 

estimate the VEC model.   

 

6. Empirical Results 

The empirical results are presented in the following order concerning the (1) Holt-Winters model; 

(2) ARIMA model; (3) structural or econometric model; (4) VEC model; and (5) a composite of the 

respective forecasts. The composite forecast was not discussed in the theoretical section, but it is simply 

the average of the forecasts generated from the aforementioned four models. The composite forecast 

attempts to combine the best features of all the respective models into a single forecast. For the forecast 

analysis, the within-sample period dates from September 2003 to December 2014 (136 months), while 

the out-of-sample period is from January 2015 to October 2015 (10 months). 

In order to make the determination of the most accurate forecasting method we use four common 

metrics. As discussed by Winkler and Murphy (1992), the use of multiple metrics is important because 

there is no “best” metric and using multiple metrics can provide greater forecasting insight.  We include 

root mean square error (RMSE) as it is one of the most common metrics and standard in most software 

packages even though some authors believe it is less reliable (Armstrong and Collopy, 1992). We avoid 

using R-squared in order to make comparisons as a high value does not guarantee accurate forecasts 

(Armstrong, 2001). The other metrics we use are mean absolute percent error (MAPE), mean absolute 

error (MAE), and the percent correct direction of change.4  

																																																								
4 The percent correct direction of change metric is defined as the percent of forecast predictions correctly made in direction 
only, not accounting for magnitude. 
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6.1. Additive Seasonal Holt-Winters Model  

The estimation results from the additive seasonal Holt-Winters model with log(gasoline spot) as 

its dependent variable are provided in Table 6. The estimated coefficients confirm the presence of 

seasonality with the highest effect in the summer months.  

 

6.2. ARMA Model 

Several ARMA(p,q) combinations are constructed. We find that the preferred ARMA model is 
ARMA(1,1) model. The estimation results from ARMA(1,1) model with log(gasoline spot) as its 
dependent variable are provided in 	

	
Table 7. There is evidence that the variation in the current gasoline price can be explained by the 

price in the preceding period, since the coefficient for AR(1) is statistically significant.  

 

6.3. Structural Model 

Several structural models are constructed using combinations of benchmark crude oil (WTI) and 

the Brent-WTI spread. We also take into account seasonality by incorporating dummy variables for each 

month into the model. To take into account for dynamic effects of benchmark crude oil on gasoline 

prices, a polynomial distributed lag specification is incorporated into the model. To account for the 

presence of heteroskedasticity in the residuals, we also use GARCH model for the variance equation.  

In addition, we correct for serial correlation in error terms by incorporating AR and MA terms for the 

error term into the model. 
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Table 6: Holt-Winters models 

 

	
	

Table 7: ARMA model 

 

 

Table 8: Vector error correction model 

 
 

Coefficient Coefficient Coefficient Coefficient

Alpha 1.000 SEAS.M05 0.068 Alpha 1.000 SEAS.M05 1.073
Beta 0.000 SEAS.M06 0.066 Beta 0.000 SEAS.M06 1.072
Gamma 0.000 SEAS.M07 0.054 Gamma 0.000 SEAS.M07 1.060
Mean 1.069 SEAS.M08 0.047 Mean 1.092 SEAS.M08 1.055
Trend 0.006 SEAS.M09 0.043 Trend 0.006 SEAS.M09 1.053

SEAS.M01 -0.084 SEAS.M10 -0.006 SEAS.M01 0.908 SEAS.M10 0.998
SEAS.M02 -0.060 SEAS.M11 -0.062 SEAS.M02 0.934 SEAS.M11 0.933
SEAS.M03 -0.005 SEAS.M12 -0.102 SEAS.M03 0.991 SEAS.M12 0.886
SEAS.M04 0.039 SEAS.M04 1.038

Holt-Winters	Additive	Seasonal	Model Holt-Winters	Multiplicative	Seasonal	Model

Note:	*	and	**	denote	rejection	of	the	null	hypothesis

constant 1.076 ** that	the	coefficient	is	not	significant	at	the	5%	and	1%		

AR(1) 0.927 ** levels,	respectively.

MA(1) 0.557 **

ARMA	Model

Coefficient

∆(BRENT-WTI) t
ECT1 t-1 0.011 ** 0.186 **
∆(GAS) t-1 0.369 **
∆(WTI) t-1 0.006 ** 0.354 **
∆(BRENT-WTI) t-1 0.185*
Note:	*	and	**	denote	rejection	of	the	null	hypothesis	that	the	coefficient	is	not	significant	at	the	5%	and

1%	levels,	respectively.

ECM
Dependent	Variable

∆(GAS) t ∆(WTI) t
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Table 9: Structural model 

 

 

 

Table 10: Lag Distribution of log(WTI) 

	

constant -1.953 ** C(1) -0.553 *
SEAS.M01 0.032 ** C(2) 1.567 **
SEAS.M02 0.033 ** C(3) 1.121 **
SEAS.M03 0.083 **
SEAS.M04 0.107 **
SEAS.M05 0.112 **
SEAS.M06 0.108 **
SEAS.M07 0.083 **
SEAS.M08 0.068 **
SEAS.M09 0.075 **
SEAS.M10 0.054 **
SEAS.M11 0.030 **

∆(LOG(BRENT)-LOG(WTI)) -0.068 *
PDL01 0.272 **
AR(1) 0.867 **

Note:	*	and	**	denote	rejection	of	the	null	hypothesis	that	the	coefficient	is	not	significant	at	the	5%	and	1%	levels,

respectively.

Structural	Model
Mean	Equation Variance	Equation	:	EGARCH(1,1)

Coefficient Coefficient

Lag Coefficient Std.	Error t-Statistic
0 0.201 0.006 32.108
1 0.268 0.008 32.108
2 0.201 0.006 32.108

Sum	of	Lags 0.670 0.021 32.108
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 The preferred structural model is chosen based on the model selection criteria (Akaike 

Information Criterion (AIC), Schwarz Criterion (SIC), and Hannan-Quinn Criterion (HQC)) and the 

adjusted R-Squared. The final structural model consists of the following mean and variance equations: 

Mean Equation: 

log(𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒!) = 𝑓 𝑝𝑑𝑙(log 𝑊𝑇𝐼! , 5,4,2) ,𝐷 log 𝐵𝑟𝑒𝑛𝑡! − log 𝑊𝑇𝐼! , 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦! + 𝜖! 

And the following variance Equation (GARCH(1,1)): 

𝜎!! = 𝛼! + 𝛼!𝜖!!!! + 𝛽!𝜎!!!!  

for 𝑡 = 1,… ,136 and 𝑖 = 1,… ,11. Log (𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒!) is the log transformed U.S. nominal gasoline spot price. Log (𝑊𝑇𝐼!) is the log 
price. Log (𝑊𝑇𝐼!) is the log transformed U.S. crude oil benchmark. 𝐷 log 𝐵𝑟𝑒𝑛𝑡! − log 𝑊𝑇𝐼!  is the first difference of the spread 
first difference of the spread between the two logged crude oil benchmarks. Seasonality represents the monthly dummy variables. 
monthly dummy variables. AR(1) is the first order autoregressive process for the error term and MA(3) is the third order moving 
the third order moving average process for the error term. For the error terms,  𝜖! is the error term in the mean equation, 𝜖!!!!  is 
mean equation, 𝜖!!!!  is the ARCH term, 𝜎!! is the variance of the residuals, and 𝜎!!!!  is the GARCH term. Note 
that the spread is incorporated into the model as the first difference in logarithm in order to mitigate the previously discussed unit 
previously discussed unit root problem (Table 2). The estimation results from the structural model with log(gasoline spot) as the 

log(gasoline spot) as the dependent variable are provided in 	

 

Table 9. 

The structural approach provides a number of interesting results. The estimated coefficients are 

positive and statistically significant for the months of February through October (the base month is 

December). Adjusting for other factors then, gasoline prices are significantly higher for all remaining 

months relative to December except for November and January. For the months of February through 

October relative to December, gasoline prices are higher by 10 to 20 percent. This seasonal pattern 

conforms to expectations that gasoline prices are higher in spring, summer, and fall relative to winter.   
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The sum of lags reported in Table 10 is the sum of the estimated coefficients on the distributed of 

current and five lags of log (𝑊𝑇𝐼) on 4th degree polynomial with no endpoint constraints. It shows us 

that the long run effect of log (𝑊𝑇𝐼) on log(𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒) is 0.866. This tells us that a 1% change in WTI 

yields a 0.866% change in gasoline prices after a period of five months. The coefficient of 

𝐷 log 𝐵𝑟𝑒𝑛𝑡! − log 𝑊𝑇𝐼!  is 0.416 and significant. It provides evidence supporting that it is 

important to consider the spread when forecasting gasoline prices.  

 

6.4. Vector Error-Correction Model 

The estimation results from the VEC model are provided in Table 8. Supported by Table 2 and 

Table 4, the first differences of gasoline prices, WTI, and BRENT-WTI spread are used in constructing 

the VEC model.  A few results emerge from this analysis. The first difference in the BRENT-WTI spread 

is only affected by the previous month’s spread. The estimated coefficients on the error correction terms 

(i.e., 𝐸𝐶𝑇1!!! and 𝐸𝐶𝑇2!!!) of the gasoline spot price and the WTI index are both statistically 

significant. This confirms that all of the markets adjust to their long-run equilibrium.  

 Using our VEC we can graph the impulse response over the forecast range for our variable of 

interest. From Fig. 3, when the impulse is the BRENT-WTI spread, the response of the gasoline spot 

price is negative for a period then positive. While the responses of both WTI and BRENT-WTI spread 

are positive at each time responsive period. However, the response of the spread is decreasing over time, 

while the response of WTI is increasing over time.  

 When the impulse is the gasoline spot price, the responses of all variables are positive. However, 

only the response of the spread is increasing over time, while the responses of the gasoline spot price and  

WTI are increasing to a certain point then decreasing afterward. Likewise, when the impulse is WTI, the 

responses of all variables are positive. Only the response of the spread is increasing over time, while the 

responses of the gasoline spot price and WTI are increasing to a certain point then decreasing afterward. 
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Fig. 3. Impulse Response 
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6.5. Comparison of Forecasts 

Other than the models presented earlier, we also calculate composite forecasts by averaging the 

forecasts from all the preceding models. To aid in comparison across the models, we exhibit in  

 

Table 11 the forecast measures for both the in-sample and the out-of-sample forecasts. Table 12 

presents the out-of-sample forecasts of all models. 

As can be seen in  

 

Table 11, there is evidence supporting that the Holt-Winters model, regardless of how old it is, is 

the best model for in-sample forecasting. It performs the best in all forecast measures except MAPE. In 

terms of out-of-sample forecasting performance, while the Holt-Winters model performs relatively well 

compared to other models, the composite forecast turns out to be the best and even better than the EIA’s 

forecasts. The composite forecast has a MAPE of 6.3% versus a MAPE of 8.1% from the EIA’s STEO 

model. This result is similar to finding by Baumeister, Kilian, and Lee (2016) that a composite forecast 

outperforms other models and EIA forecasts. Moreover, the composite forecast predicts the direction of 

changes in gasoline prices more accurate than the STEO model.  

 

7. Conclusions 

A number of studies have investigated the relationship between crude oil prices and gasoline 

prices in the energy market. In this paper, we focus our attention on constructing forecasting models for 

forecasting retail gasoline prices. A variety of univariate and multivariate models are employed to 

produce forecasts. In addition, a composite forecast is created by averaging the forecasts of the models. 

Forecasts from each of these methods are compared forecasts to the EIA forecasts using RMSE, MAE, 

MAPE, and percent correct direction of change. 
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From the empirical analysis, we find evidence from the structural model and the vector error-

correction model that the movement in the U.S. gasoline spot prices can be explained by the WTI 

benchmark and the spread between BRENT and WTI benchmarks. In terms of forecasting performance, 

we find that the additive Holt Winters model outperforms the other models within sample and the 

composite forecast outperforms the other models in the out sample. Our composite forecast not only has 

better MAE and MAPE than those of the EIA’s STEO model, but also more accurately predicts the 

correct direction of change in gasoline prices. That the composite forecasts outperforms other models and 

the EIA forecasts has been documented by other authors (Baumeister, Kilian, and Lee, 2016). This paper 

further reinforces the necessity to consider multiple models and composite forecasts when predicting 

gasoline prices.  
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Table 11: Forecasting performance 

 

 

 

Table 12: Out-of-sample forecasts 

 

RMSE MAE MAPE
Correct	

Direction-of-
Change

RMSE MAE MAPE
Correct	

Direction-of-
Change

Holt-Winters	(Add) 0.058 0.040 4.239 0.733 0.183 0.176 18.559 0.889

Holt-Winters	(Multi.) 0.059 0.042 4.394 0.696 0.209 0.203 21.626 0.778

ARIMA 0.182 0.144 4.918 0.652 0.323 0.278 10.431 0.444

Structural	Model 0.117 0.085 3.041 0.727 0.375 0.357 13.676 0.889

VEC	Model 0.129 0.101 3.585 0.689 0.414 0.361 13.444 0.556
Composite 0.126 0.093 3.352 0.726 0.202 0.167 6.318 0.889
EIA 0.257 0.218 8.096 0.556
Note:	The	in-sample	period	is	Sep	2003	-	Oct	2015.	The	out-of-sample	period	is	Jan	2015	-	Oct	2015.

In-sample Out-of-sample

Month Actual Holt-Winters ARIMA VEC Structural	
Model

Composite EIA

2015M01 2.208 2.695 2.482 2.330 2.379 2.471 2.237
2015M02 2.301 2.776 2.450 2.193 2.133 2.388 2.215
2015M03 2.546 2.951 2.423 2.161 2.170 2.426 2.271
2015M04 2.555 3.100 2.400 2.179 2.291 2.492 2.355
2015M05 2.802 3.212 2.380 2.213 2.390 2.549 2.453
2015M06 2.885 3.223 2.363 2.243 2.509 2.585 2.466
2015M07 2.88 3.203 2.348 2.262 2.395 2.552 2.471
2015M08 2.726 3.201 2.335 2.269 2.197 2.501 2.491
2015M09 2.462 3.207 2.324 2.269 2.070 2.468 2.527
2015M10 2.387 3.072 2.315 2.267 1.989 2.410 2.502
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