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Abstract. In this article, I derive a score test for the equality of one or more
parameters across groups of observations following estimation of a single-index
model. The test has a wide array of applications and nests Pearson’s chi-squared
test as a particular case. The postestimation command scoregrp implements the
test and works with logit, logistic, probit, poisson, or regress (see [R] logit,
[R] logistic, [R] probit, [R] poisson, and [R] regress). Finally, I show some
applications of the test.

Keywords: st0321, scoregrp, score test, logit, logistic, probit, Poisson, regress

1 Introduction

In many practical situations after estimation of a regression model, there is interest in
performing a test for equality of one or more parameters across groups of observations.
The analysis of variance (ANOVA) and analysis of covariance models are probably the
better-known examples, but many other situations fall under this general description.
For example, one may want to implement a test to decide whether to include a factor
variable or an interaction with a factor variable as a regressor. Other generic examples
are tests of structural change when one wants to decide whether to impose a single model
to the pooled data or estimate the model in each subsample separately. Yet another
example is the situation where one wants to decide whether a panel-data estimator or
even a mixed model is more appropriate. Some goodness-of-fit tests are also based on
the comparison of estimated parameters across groups of observations (for example, the
goodness-of fit test for the logistic regression proposed by Tsiatis [1980]).

For models estimated by maximum likelihood, three asymptotically equivalent tests
may be used for hypothesis testing: the likelihood-ratio test (LRT), the Wald test, or
the score (or Lagrange multiplier) test. The score test has the advantage of requiring
only estimation of the restricted model, that is, estimation of the model under the
null hypothesis. This advantage is particularly relevant in situations when it becomes
computationally expensive to estimate the unrestricted model. The score test has better
small-sample properties than the Wald test (Boos 1992; Fears, Benichou, and Gail 1996)
and is effective relative to the LRT (Godfrey 1981). However, in practice, the score test
is rarely used because it lacks a general estimation command such as Stata’s lrtest

(see [R] lrtest) for the LRT or test (see [R] test) for the Wald test.

c© 2013 StataCorp LP st0321
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As we will see, a score test for the equality of parameters across groups following
estimation of single-index models is easy to implement. Moreover, I will also show
that for some particular situations, this test is identical to Pearson’s chi-squared test
applied to individual-level data. In the following section, I derive the test and show its
relation with Pearson’s chi-squared test. Next I present the Stata command scoregrp,
which implements the test after estimation with logit, logistic, probit, poisson, or
regress (see [R] logit, [R] logistic, [R] probit, [R] poisson, and [R] regress). Finally,
I illustrate the use of scoregrp in some examples.

2 Score tests for group effects

2.1 The score test

Suppose that we have specified a probability model for a dependent variable Y and have
a collection of n independent and identically distributed observations. Further, admit
that the observations of Y may be classified into G mutually exclusive groups, each
group with ng observations and g = 1, . . . , G. Assume that for the ith observation of
group g, the expected value of Y is a known function of µig; that is, E(yig) = g(µig). The
index µig is a linear combination of covariates; that is, µig = x′

igθ, where xig is a vector
of the observed covariates for the ith observation on group g, and θ′ = [θ1, θ2, . . . , θk]
is a k × 1 vector of unknown parameters associated with the x covariates.

If we let the known density function for Y be represented by f(y;θ), then we can
write the likelihood function as

L(θ;Y) =

G∏

g=1

ng∏

i=1

f(θ; yig) (1)

where yig is the ith observation of Y on group g. The maximum likelihood estimates
are the values of θ that maximize (1). They are obtained by solving the k equations
that result from differentiating the logarithm of the likelihood function with respect to
θ. Thus the maximum likelihood estimates θ̂ are those values of θ such that

s(θ) =

G∑

g=1

ng∑

i=1

sig(θ) =

G∑

g=1

ng∑

i=1

∂lnf(θ; yig)

∂µ
xig = 0 (2)

For θ̂ to be a maximum likelihood estimate, the matrix of second derivatives of the
log-likelihood function, the Hessian matrix, evaluated at θ̂, must be negative definite.
This matrix equals

H =

G∑

g=1

ng∑

i=1

Hig =

G∑

g=1

ng∑

i=1

∂2lnf
(
θ̂; yig

)

∂µ2
xigx

′
ig (3)

The vectors s and sig have a dimension of k×1. To refer to the element of the vector
sig that is associated with a specific coefficient, say, coefficient θj , we will use the generic
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notation sθj ,ig. Similarly, H and Hig are k × k matrices, and the notation hθjθl,ig will
refer to the specific element of matrix Hig that corresponds to the coefficients θj and θl.
At times, I will give a different interpretation to a subscripted matrix, but the intended
meaning should be clear from the context.

Suppose now that one wants to test the equality of a subset of the parameters (say, a
total of k1 parameters) across groups of observations. Without loss of generality, admit
that θ′ = [α′,β′] and that α is a vector containing all the parameters to be tested. Our
null hypothesis is then

Ho : α1 = α2 = · · · = αG

Implementing Rao’s score test for this hypothesis leads to the statistic

T = s
(
ϑ̂
)′ [

−H
(
ϑ̂
)]−1

s
(
ϑ̂
)

(4)

where s(ϑ̂)′ is a score vector calculated with respect to all the coefficients implied by the
alternative hypothesis but evaluated at the maximum likelihood solution obtained under
the null hypothesis. Thus ϑ′ = [α′

1,α
′
2, . . . ,α

′
G;β

′] is the “expanded” set of coefficients
that is consistent with the alternative hypothesis. Under the null hypothesis, the score
test in (4) is asymptotically approximated by a chi-squared distribution with k1(G− 1)
degrees of freedom. Partitioning the score vector and Hessian matrix in (4) with respect
to the two sets of coefficients, α and β, we can rewrite (4) as

T = −
[

sα
sβ

]′ [
Hαα Hαβ

Hβα Hββ

]−1 [
sα
sβ

]

The second set of score values evaluated at the restricted estimates is 0; thus sβ(ϑ̂) =
0. Hence, using the well-known result on the inverse of partitioned matrices, we can
rewrite (4) as

T = −s′α

[
Hαα −Hαβ [Hββ ]

−1
Hβα

]−1

sα (5)

The important thing to note is that all matrices in (5) are easily obtained follow-
ing estimation of the restricted model. The matrix Hββ is the Hessian matrix of the
restricted model obtained by excluding the rows and columns corresponding to the pa-
rameters in α. The other matrices are obtained as partial sums of the observation-level
components of the Hessian and gradient vectors shown in (2) and (3). The expression
for the score test in (5) may be presented in an alternative way, which will prove useful
in subsequent analysis. Using a known result on matrix identities (see, for example,
Demidenko [2004, 651]), we can restate the test statistic on (5) as

T = −s′α

[
H−1

αα +H−1
ααHαβ

[
Hββ −HβαH

−1
ααHαβ

]−1
HβαH

−1
αα

]
sα

or more succinctly as
T = −s′αH

−1
ααsα +∆ (6)
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where

∆ = −s′αH
−1
ααHαβ

[
Hββ −HβαH

−1
ααHαβ

]−1
HβαH

−1
ααsα

The matrixHαα is block diagonal; it is thus easily invertible regardless of the number
of groups because it only requires the inversion of the diagonal matrices that have
dimension k1. The other matrix that needs to be inverted has the dimension of β (that
is, a dimension equal to the number of covariates not tested). In practical applications,
it may be simpler to define a matrix G with dimensions n×G, where the gth column is
a vector with elements that take the value 1 if the observation belongs to group g and
0 otherwise. Letting X be a matrix containing all covariates in the model and M be a
diagonal matrix with generic element hαα,ig, then we can write all the matrices that go
into the formula for the test as Hαα = G′MG, Hαβ = G′MX, and Hββ = X′MX.

2.2 Relationship with the Pearson χ2 statistic

To further explore the relation with the Pearson χ2 statistic, let us now consider the
situation where one wants to test whether the constant of a regression model differs
across groups. In this case, k1 = 1 and we can rewrite (6) as

T = −
G∑

g=1

s2α,•g
hαα,•g

+∆ (7)

where the symbol “•” is used to represent a summation across all elements of i. The
above expression makes obvious the relationship between our test and Pearson’s χ2 test.
Without covariates, ∆ = 0, and the score test for the equality of the intercept across
groups of observations becomes the Pearson χ2 test.

Poisson regression

Consider a typical Poisson regression model with expected value

λig = exp(α+ x′
igβ)

To implement the score test in the Poisson regression model, we need to note that the
generic elements for the score vector are sα,ig = yig − λ̂ig and for the M matrix are

hαα,ig = −λ̂ig.

If the regression model has no covariates, then λ̂ig = y and ∆ = 0. If we plug these
values into (7), then we obtain the well-known Pearson χ2 test for count data.

T =

G∑

g=1

ng(yg − y)2

y
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Logit regression

Consider now a typical logistic regression with binary dependent variable:

Prob(yig = 1|x) = Λig =
exp(α+ x′

igβ)

1 + exp(α+ x′
igβ)

Now the generic elements for the score vector are sα,ig = yig − Λ̂ig and for the M

matrix are hαα,ig = −Λ̂ig(1− Λ̂ig). If we let p denote the proportion of 1s in the total
sample and let pg denote the proportion of 1s in each subgroup, then in a model without
covariates, the test simplifies to

T =

G∑

g=1

ng(pg − p)2

p(1− p)
(8)

which is the known Pearson χ2 test for binary data.

Linear regression

Finally, let us consider a typical linear regression model such as

yig = α+ x′
igβ + uig

where uig is normally independent and identically distributed with 0 expected value
and variance equal to σ2. The elements of the score vector are sα,ig = (yig − ŷig)/σ

2

and those of the Hessian are hαα,ig = −σ−2. Without covariates, ŷig = y and the test
simplifies to

T =

G∑

g=1

ng(yg − y)2

σ2
(9)

which is identical to the one-way ANOVA formula. However, in this circumstance, the
test will not produce the same result as the usual ANOVA because the test uses the
maximum likelihood estimate of σ2. As a curiosity, I note that when applied to binary
data, (9) produces the same results as the Pearson test for binary data in (8).

3 The scoregrp command

The scoregrp command is a user-written command for Stata that implements the
test described above after estimation with the commands logit, logistic, probit,
poisson, or regress. It is partially implemented in Mata and requires installation of
the user-written command matdelrc, programmed by Nicholas J. Cox. Because of the
way scoregrp is programmed, the command should work well in situations when the
number of groups is very large. Additionally, incorporating other single-index models
into scoregrp should be a straightforward task requiring only the coding of the score
and Hessian for the new models.
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3.1 Syntax

The command has a very simple syntax:

scoregrp
[
indepvars

]
, group(varname)

[
nocons

]

The argument indepvars consists of a list of the variables whose coefficients we want
to test. By default, it is assumed that the constant is included among indepvars, but
we can exclude it with the nocons option.

3.2 Options

group(varname) specifies the variable that identifies the group. group() is required.

nocons specifies that the constant not be included among the coefficients to be tested.

4 Examples

To illustrate the use of scoregrp, let us use union.dta, downloaded from the Stata
website. After reading in the data, we start by implementing Pearson’s χ2 to test
whether the proportion of unionized individuals remains constant over time.

. webuse union
(NLS Women 14-24 in 1968)

. tabulate union year, nofreq chi2
Pearson chi2(11) = 107.8144 Pr = 0.000

The same result is obtained if we run a logit regression without covariates and test for
differences in the constant term across years.

. quietly logit union

. scoregrp, group(year)

Score test for logit regression

Test result is chi(11) = 107.8144 Pr = 0.0000

Next let us consider a logit regression with three covariates, age, grade, and black,
and again test for differences in the constant term across years.

. quietly logit union age grade black

. scoregrp, group(year)

Score test for logit regression

Test result is chi(11) = 97.6887 Pr = 0.0000
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The results clearly reject the null hypothesis, and thus we include yearly dummy
variables in the logit regression. In the following, we check whether to include an
interaction between the variables grade and black.

. quietly tabulate year, generate(y)

. quietly logit union age grade black y1-y11

. scoregrp grade, group(black) nocons

Score test for logit regression

Test result is chi(1) = 0.6684 Pr = 0.4136

The hypothesis that the coefficient on the interaction is 0 is not rejected. The
following test is akin to a test of permanence of structure and compares whether all
coefficients in the two subsamples defined by the variable south are identical.

. quietly logit union age grade black y1-y11

. scoregrp age grade black y1-y11, group(south)

Score test for logit regression

Test result is chi(15) = 789.5522 Pr = 0.0000

Finally, we use scoregrp to test whether one should account for unobserved hetero-
geneity across individuals.

. quietly logit union age grade black y1-y11

. scoregrp, group(idcode)

Score test for logit regression

Test result is chi(4433) = 1.46e+04 Pr = 0.0000

The results suggest that the data have substantial unobserved heterogeneity.

5 Conclusion

In this article, I derived a score test to check whether one or more coefficients differ
across groups of observations following estimation of a single-index model. The user-
written command scoregrp is a Stata implementation of the test. The present version
of the command works after logit, logistic, probit, poisson, or regress and may
be easily extended to other single-index models.

For many practical applications, scoregrp offers no computational advantage and
can be slower than existing alternatives based on LRT or Wald tests. But with large
datasets and particularly when the unrestricted model is complex (for example, a
random-effects or mixed model), then scoregrp is likely to be the faster approach.
Researchers may also want to use scoregrp in situations when an LRT or a Wald test
is not an option. Consider the cases of panel-data estimators for logit and Poisson re-
gression with fixed effects. In these cases, a Wald or an LRT test to check whether one
should include the fixed effect is not possible, because the alternative model is estimated
by conditional maximum likelihood. As shown earlier, implementation of the test with
scoregrp is straightforward.
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