|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

THE STATA JOURNAL

Editors

H. Josepn NEWTON
Department of Statistics
Texas A&M University
College Station, Texas
editors@stata-journal.com

Associate Editors

CHRISTOPHER F. BAUM, Boston College

NATHANIEL BECK, New York University

RiNO BELLOCCO, Karolinska Institutet, Sweden, and
University of Milano-Bicocca, Italy

MAARTEN L. Buis, WZB, Germany

A. CoLIN CAMERON, University of California—Davis

MARIO A. CLEVES, University of Arkansas for
Medical Sciences

‘WIiLLIAM D. DUPONT, Vanderbilt University

PHILIP ENDER, University of California—Los Angeles

Davib EPSTEIN, Columbia University

ALLAN GREGORY, Queen’s University

JAMES HARDIN, University of South Carolina

BEN JANN, University of Bern, Switzerland

STEPHEN JENKINS, London School of Economics and
Political Science

ULRICH KOHLER, University of Potsdam, Germany

Stata Press Editorial Manager
Lisa GILMORE

Nicnoras J. Cox
Department of Geography
Durham University
Durham, UK
editors@stata-journal.com

FRAUKE KREUTER, Univ. of Maryland—College Park

PETER A. LACHENBRUCH, Oregon State University

JENS LAURITSEN, Odense University Hospital

STANLEY LEMESHOW, Ohio State University

J. ScorT LONG, Indiana University

ROGER NEWSON, Imperial College, London

AusTIN NicHoLs, Urban Institute, Washington DC

MARCELLO PAGANO, Harvard School of Public Health

SopHIA RABE-HESKETH, Univ. of California—Berkeley

J. PATRICK ROYSTON, MRC Clinical Trials Unit,
London

PuiLiP RYAN, University of Adelaide

MARK E. SCHAFFER, Heriot-Watt Univ., Edinburgh

JEROEN WEESIE, Utrecht University

IaN WHITE, MRC Biostatistics Unit, Cambridge

NicHoLAS J. G. WINTER, University of Virginia

JEFFREY WOOLDRIDGE, Michigan State University

Stata Press Copy Editors
DaviD CULWELL and DEIRDRE SKAGGS

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book
reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository
papers that link the use of Stata commands or programs to associated principles, such as those that will serve
as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go
“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate
or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to
a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users
(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers
analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could
be of interest or usefulness to researchers, especially in fields that are of practical importance but are not
often included in texts or other journals, such as the use of Stata in managing datasets, especially large
datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata
with topics such as extended examples of techniques and interpretation of results, simulations of statistical
concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-
ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch,
Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com!

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone
979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $ 98 1-year subscription $138
2-year subscription $165 2-year subscription $245
3-year subscription $225 3-year subscription $345
1-year student subscription $ 75 1-year student subscription $ 99
1-year institutional subscription $245 1-year institutional subscription $285
2-year institutional subscription — $445 2-year institutional subscription $525
3-year institutional subscription $645 3-year institutional subscription $765
Electronic only Electronic only

1-year subscription $ 75 1-year subscription $ 75
2-year subscription $125 2-year subscription $125
3-year subscription $165 3-year subscription $165
1-year student subscription $ 45 1-year student subscription $ 45

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may
be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX
77845, USA, or emailed to sj@stata.com.

%s?\ STata

7)™~ i
0 ‘ﬂﬁ Press Copyright © 2013 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and
help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and
help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,
as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.
This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,
fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting
files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,
or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,
incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote
free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, STATQ, Stata Press, Mata, Mara,
and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html

The Stata Journal (2013)
13, Number 4, pp. 867—-875

group2: Generating the finest partition that is
coarser than two given partitions

Christian H. Salas Pauliac
Department of Public Policy
University of Chicago
Chicago, IL
chsp@uchicago.edu

Abstract. In this article, I develop a useful interpretation of the function group ()
based on partitions belonging to mathematical set theory, an interpretation that
in turn engenders a related command here called group2. In the context of the
partitioning of sets, while the function group() creates a variable that generates the
coarsest partition that is finer than the finest partition generated by the variables
used as arguments, the group2 command will create a variable that generates the
finest partition that is coarser than the coarsest partition generated by the variables
used as arguments. This latter operation has proven very useful in several problems
of database management. An introduction of this new command in the context
of mathematical partitions is provided, and two examples of its application are
presented.

Keywords: dm0073, group2, partitions, group, egen

1 Introduction

The egen function group() generates a variable that takes numerical values that indi-
cate “groups” of observations generated by the list of variables in the wvarlist. In this
context, a group is understood to be observations that share the same value for every
one of the variables in varlist. In other contexts, however, a group might be understood
to be observations that share the same value for any one of the variables in varlist. An
alternative interpretation of these two contexts is based on mathematical partitions,
where the total number of observations in a database is understood to be a set and
each variable is understood to be a partition whose cells are defined by the different
values of each variable. Groups in the first context generate the coarsest partition that
is finer than the finest partition generated by the variables in wvarlist; groups in the
second context generate the finest partition that is coarser than the coarsest partition
generated by the variables in wvarlist.

In this article, I will introduce a simple command called group2, which generates a
variable that takes numerical values that indicate the groups as understood in the latter
case. I will do so by relating both the group() function and the group2 command to
mathematical set theory and by motivating the use of the new command with two
real-life examples.

© 2013 StataCorp LP dm0073

868 group?2

2 A set-theory interpretation of the function group()

A brief overview of partitions in the context of set theory will come in handy. Let X
be a set of elements. The set P of nonempty subsets A, B, ... is a partition of X if and
only if the following two conditions hold for any A, B € P, where A # B:

Ur=x

ANB=10

Subsets A, B, ... of partition P are usually called cells of P. Simply, a partition of
a set X is a fragmentation or grouping of the elements of X; different partitions will
generate different fragmentation patterns. Let P; and P> be two different partitions of
X. Partition Pj is said to be finer than partition P, (and P, coarser than P) if every
cell of P; is a subset of some cell of P,. In other words, P; is a further fragmentation
of P,. For example,

X ={a,b,c,d,e, f}
P = {{a7 b}7 {C}’ {dv €, f}}
P, = {{a,b, C}, {daevf}}

Sometimes, such relation cannot be established between two partitions. For example,
partitions P3 and P, group the elements of X in a manner such that two cells of one
partition overlap with more than one cell of the other partition. Two useful operations
in this case are to find the coarsest partition that is finer than the finest of the two
original partitions (call this Ps) and to find the finest partition that is coarser than the
coarsest of the two original partitions (call this Ps). Intuitively, Ps cuts through the
cell overlaps, generating a partition whose cells are contained in no more than one cell
of the original partitions, and Ps combines the cell overlaps so that all the cells of the
original partitions are contained in no more than one cell of Ps. For example,

Py = {{a,0},{c, d}, {e, [}}
Py = {{a}, {b,¢}, {d}, {e, f}}
Ps = {{a}, {b}, {c}, {d}, {e, f}}
Py = {{a,b,¢,d}, {e, [}}

How does this framework relate to the Stata function group()? Consider the total
number of observations in a database to be the set X. Each variable of the database
can be interpreted to be a partition P of the set X, where the cells of the partition are
defined by the different values of each variable. For example, if one of the variables in
the database takes the values 0 and 1, this variable generates a partition of X consisting
of two cells, one that contains all observations for which this variable is equal to 0 and
one that contains all observations for which it is equal to 1.

When the function group() takes two or more variables as arguments, it generates
the coarsest partition that is finer than the finest partition generated by these arguments.

C. H. Salas Pauliac 869

The following example serves as illustration. Say that we are working with a database
containing survey information on households and that we are interested in two variables:
location, indicating whether it is an urban or a rural household, and gender, indicating
whether the head of the household is male or female. Each of these variables generates
a different partition of the total number of observations, each according to a different
criterion. When using these two variables as arguments, the group() function will
generate a numerical variable identifying four groups containing all the possible types
of households using these two variables: urban—male, urban—female, rural-male, and
rural-female[] This new variable effectively generates the coarsest partition that is
finer than the finest partition generated by the location and gender variables.

3 The group2 command
3.1 Syntax

The syntax for the group2 command is as follows:

group2 wvarlist

Exactly two variables must be specified in varlist. No options are allowed.

3.2 Description

If we consider the sample of observations in a dataset to be a particular set, the group2
command creates a variable that generates the finest partition (of this set) that is coarser
than the coarsest partition generated by the two variables in varlist.

Exactly two variables must be specified in varlist. Both numerical and string vari-
ables are allowed. Missing values in varlist (either . or "") are treated as if each one
were a unique value, thereby indicating separate partitions. If n variables are needed
in wvarlist, where n > 2, the command needs to be applied n — 1 times, where the third
variable will be run with the outcome variable from applying the command to the first
two variables, and so forth.

3.3 Remarks

The group2 command generates a variable that takes numerical values, each one indicat-
ing a different group of observations, just as the egen function group() does. However,
while group () understands a group to be all observations that share the same value for

1. Actually, the group() function may generate two, three, or four groups depending on the nature
of the original partitions. For example, if all urban households have a male head of the family and
all rural households have a female head of the family, then the two partitions generated by these
variables are equivalent, and the group() function will only replicate such partitions. On the other
hand, if all urban households have a male head of the family but rural households have both male
and female heads of household, then the group() function will generate three groups.

870 group?2

every one of the variables in varlist, group2 understands a group to be all observations
that share the same value for any one of the variables in varlist. In other words, group ()
creates a variable that generates the coarsest partition (of the set of observations) that
is finer than the finest partition generated by the variables in varlist; group2 creates a
variable that generates the finest partition (of the set of observations) that is coarser
than the coarsest partition generated by the variables in varlist.

Table [l compares the use of the group() function with the group2 command as
applied to two variables (varl and var2) of a fictitious sample.

Table 1. group() versus group2

varlvar2group () group?2

W W N DN = =
goQww»
L O i W N =
DO DD = = =

4 Example

Several contexts in database management will require the finest partition that is coarser
than the coarsest partition generated by two or more variables. The new command
group2 will perform such an operation. Let us illustrate two practical applications of
this command with two examples that in fact motivated the creation of the program.

4.1 Example 1: Generating identification from several sources

Let us imagine a database containing information on employed individuals (henceforth
called workers), where each observation is a worker and each variable is a different char-
acteristic of the worker. We know that several workers are duplicated in the database;
that is, several observations may be referring to the same worker. This might happen
in several contexts. One example is when appending several databases containing dif-
ferent subsets of a population and where the intersection of these subsets might not
always be empty. Another example happens in network databases in a panel form,
where each principal declares several network members and where one network member
might be declared by more than one principal. In a long panel form where the principal
is duplicated as many times as the number of network members it has, several network
members might be repeated.

C. H. Salas Pauliac 871

We wish to create a unique ID for each worker; note that this ID variable will generate
a partition of the database where each cell will contain observations corresponding to
the same individual. A simple way of doing this is to identify duplicates in terms of all
variables. Unfortunately, if some of the variables that would be useful to identify the
worker (for example, home address) have missing values or are likely to be misspelled
for some of the observations, none (or very few) of the observations will be an exact
duplicate of any other in terms of all the variables.

An alternative way of generating this ID is to take a subset of the variables, one
that is certain to uniquely identify a worker, and spot all duplicated observations in
terms of this subset. The ID created in this exercise will generate a partition where
each cell will contain observations corresponding to the same worker in terms of this
subset of variables. The problem with this strategy is that there might be different
subsets of variables uniquely identifying a worker that might generate ID assignments
not equivalent to one another. If all ID assignments are right, we need an operation
that uses the information contained in every assignment to produce an overall unique
identification.

Such an operation is performed by the group2 command. Each ID assignment gen-
erates a partition over the set of workers in the sample; we know that each cell in every
partition contains observations corresponding to a unique individual. If partitions are
not equivalent, then at least one cell of one partition will contain, be contained by, or
cross one or more cells of another partition. For cells in this situation, one partition,
P,, will inform us that individuals contained in two different cells belonging to another
partition, Py, are the same worker. This will happen to several cells in every partition
available. Therefore, the overall unique identification will emerge when all crossing cells
are combined, which is precisely the finest partition that is coarser than the coarsest
partition generated by the separate ID assignment.

Say we have four variables that provide information on workers: the name of the
institution where the worker is employed (workplace), the worker’s full name (name),
the city where the worker lives (city), and the worker’s home address (homeaddress).
We know for certain that two subsets of these variables will uniquely identify every
worker in the database: workplace—name and city-homeaddress. Using these two
subsets, we generate the variables idl and id2, which uniquely identify workers in
terms of each subset of variables] Table B shows an extract of this database.

2. Variable id1, for example, may be generated by typing egen idl = group(workplace name).

group?2

872

1 9 c ¢ - UuIqn([1essor) Aeag Wer[Ip\ AI9M81q SsUUINY)),
1 c T € 19911G Y 00T UI[qT(]19SSOr) A[eag WIRI[[IA\ AI9MdIq SsoUUINY)Q
z ¥ ¥ g 1218 g 00 - Uure)sury] 1oy A3edor [enjos[[eju] I0j 30 [eIOPIIG
z e € ¢ 19918 g 007 uleg ure)sury] e[y A3edor [enjos[[9ju] 10§ O [BISPIIY
z e ¢ ¢ Wong g 00z ureg ure)suly] o[y Aedor [enjos[[eju] 10} 90 [RIOPIIE
T 4 ¢ 1 3990V o0oruqng JossOf) WelIM Uog 2y sseuulny) INyyg
1 1 T T 90211 V¥ 00TuIqn(19SSOY) WIRT[[IAN U0 29 SSOUUINL) INYIIY |
zdnoi3()dnox8zptipissexppesumoy £310 sureu soeTdyxonu

S9OINOS [LIDASS WOIJ UOTPRIYIIUSPI SulyeIausr) g d[qe],

C. H. Salas Pauliac 873

From table 2, it is clear that observations 1, 2, 6, and 7 are the same person, and
observations 3, 4, and 5 are another person. The variable id1 successfully identifies the
second individual, yet it fails to fully identify the first one, instead indicating that ob-
servations 1 and 2 are one person and 6 and 7 are another because both the workplace’s
name and the worker’s name are spelled differently among those two subsets of obser-
vations. On the other hand, because city and homeaddress contain both misspellings
and missing values, variable 1d2 is only able to identify that observations 1 and 6 are
the same worker and that observations 3 and 4 are the same worker.

The group2 command combines the information provided from both id1 and id2 to
generate a complete identification. First, because id1 shows that observations 1 and 2
are the same worker and id2 shows that observations 1 and 6 are the same worker, then
group2 knows that observations 1, 2, and 6 are the same worker. Yet id1 also shows
that observations 6 and 7 are the same worker; therefore, observations 1, 2, 6, and 7
must be the same worker. Second, id1 shows that 3, 4, and 5 are the same worker,
and even though id2 shows that observation 5 is a different worker, group2 ignores this
because any of the matches are sufficient for identification.

The group() function, when using id1 and id2 as arguments, is also shown for
comparison.

4.2 Example 2: Network identification

Let us illustrate the use of the group2 command by looking at a different kind of prob-
lem: identification of network overlaps. Social networks are a major influence in today’s
economic activity, and promising research is taking place on this topic. A common chal-
lenge when managing these datasets is the identification of complete networks, where
declarations of individual networks must be combined to calculate the size of the overall
network.

Imagine a database that contains information on individuals, the places that they
have visited in the last two days, and a variable indicating whether, before these two
days, they were infected with a highly contagious virus. We are interested in knowing
which places might have been left infected by the individuals carrying the virus and,
therefore, which individuals were at risk of having been infected by visiting these places.

In this example, we understand a network to be different individuals connected
through commonly visited places. Columns 1 to 3 of table [B] contain an extract of this
database. These columns tell us that there are six individuals to be considered, that
each individual visited three places in the last two days, and that only individual 1 was
originally infected. From this small extract, we can identify the network manually: one
of the places individual 1 visited, place C, was also visited by individual 2, so he or
she is possibly infected; furthermore, individual 4 visited a place that individual 2 also
visited, place D, so individual 4 may also be infected. In addition, we can see that
individuals 3 and 6 both visited place H and that individual 5 visited three places no
other individual visited.

874 group?2

In the presence of a larger dataset, the group2 command will carry out the identifica-
tion automatically: the command will group all observations that either share the same
individual_id or share the same place_id. The outcome variable of this identification
has been placed in the fourth column of table Bl

Table 3. Network identification

individual_idplace_idvirusgroup2

YOO UL UL UL xR W W WD NN ===
QZDZECR——~UO@DQHOEHOQQm >
O OO OO O OO OO oo oo
LW WWNNDN = WWWE ==

5 Discussion

In this article, I presented an alternative interpretation of the group() function based
on set theory, an interpretation that in turn engenders a related command, here called
group2. While the group () function creates a variable that generates the coarsest parti-
tion that is finer than the finest partition generated by the variables used as arguments,
the group2 command will create a variable that generates the finest partition that is
coarser than the coarsest partition generated by the variables used as arguments. The
operation performed by this new command has been very useful in a number of database
management problems, and sharing it became a natural step.

A future contribution will be to allow for this command to use more than two
variables in wvarlist; in the meantime, the command has to be applied n — 1 times for
n variables. An additional contribution will be to add an option that allows the user
to choose whether missing values are to be treated as different, unique values (the
only current alternative) or as one particular value common to all missing values when

C. H. Salas Pauliac 875

partitioning the set of observations. To the extent that they are needed, other more
sophisticated set operations might be translated to functions for database management.

About the author

Christian Salas Pauliac is studying for a PhD in Public Policy at the University of Chicago,
Chicago, IL.

