

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, WZB, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch,

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $ 98 1-year subscription $138

2-year subscription $165 2-year subscription $245

3-year subscription $225 3-year subscription $345

1-year student subscription $ 75 1-year student subscription $ 99

1-year institutional subscription $245 1-year institutional subscription $285

2-year institutional subscription $445 2-year institutional subscription $525

3-year institutional subscription $645 3-year institutional subscription $765

Electronic only Electronic only

1-year subscription $ 75 1-year subscription $ 75

2-year subscription $125 2-year subscription $125

3-year subscription $165 3-year subscription $165

1-year student subscription $ 45 1-year student subscription $ 45

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2013 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html

The Stata Journal (2013)
13, Number 4, pp. 862–866

cmpute: A tool to generate or replace a

variable

Patrick Royston
Hub for Trials Methodology Research

MRC Clinical Trials Unit at UCL

London, UK

pr@ctu.mrc.ac.uk

Abstract. I provide a new programming tool, cmpute, to manage conveniently the
creation of a new variable or the replacement of an existing variable interactively
or within a Stata program.

Keywords: dm0072, cmpute, data management, create variable, replace variable,
ado-file programming

1 Introduction

In Stata programs that I write, I am often faced with safely managing the creation of
new variables to be stored in the workspace alongside user data. For example, I do not
wish to overwrite existing user variables without warning. An obvious precaution is to
include a replace option in the program so that the user can sanction overwriting a
variable when appropriate. However, accurately handling the presence or absence of
replace and the creation of a new variable is programmatically cumbersome.

In this short article, I describe a new tool, cmpute, to streamline the “regeneration”
(creation or replacement) of a variable subject to certain sensible constraints. cmpute

has some features in common with an earlier program, defv (Gleason 1997, 1999). How-
ever, the aims of defv are different. A key goal of defv is to enable the documentation
of changes to an important variable by accumulating characteristics (as notes), possibly
over many sessions with a particular dataset. My main goal with cmpute is to stream-
line the creation or replacement of variables within a Stata program. While it is fine
that cmpute may be found useful interactively, that’s not my goal.

From its original release, Stata has separated the creation of new variables (done with
generate) from the revision of the contents of existing variables (done with replace).
Furthermore, while you can abbreviate generate all the way down to g if you wish (in
practice, most people use gen), you cannot abbreviate replace. These decisions all flow
from Stata’s underlying philosophy of protecting your data and of making it as difficult
as possible for you to change your data unless you spell out explicitly that this is your
intention.

c© 2013 StataCorp LP dm0072

P. Royston 863

In proposing to do what Stata’s designers in their wisdom cast asunder, I am con-
sciously favoring programmer convenience while also reducing any element of risk by
protecting users against inadvertent changes to their data. (Note: If you specify the
force option of cmpute, be aware that it means what it says. The effects of a force
may be drastic.)

cmpute has a loose connection with the official command clonevar, which precisely
reproduces the data and all other features of an existing variable in a new variable.

2 Example

Consider the following simple program:

program define mylog
// Program to safely create a log transformation of a single variable
version 12.1
syntax varlist(min=1 max=1 numeric), generate(string) [replace]
capture confirm var `generate´
// `generate´ does not exist; it´s safe to create it and finish
if c(rc) != 0 {

generate `generate´ = ln(`varlist´)
exit

}
// `generate´ does exist; it must be handled correctly
if "`replace´" == "replace" {

replace `generate´ = ln(`varlist´)
}
else {

display as error "`generate´ already defined"
error 110

}
end

The program accepts a variable supplied in varlist and creates a new variable
called string, stored in a local macro called generate, containing the logarithmically
transformed values of `varlist´. mylog replaces the contents of the variable string if
it already exists—provided that the replace option is specified. If the replace option
is not specified, an error message must be issued because we do not wish to wipe out
the existing string without permission. The above program is not completely foolproof,
but on the whole, it does a reasonable job of handling various possible inputs and the
existence or otherwise of the variable string. There must be thousands of programs out
there containing lines of code that do something similar. If more than one variable is
to be handled, the code can get quite bulky (and ugly).

We could replace chunks of code like that in mylog with a single call to the new
program, cmpute. For example,

. cmpute logx = ln(x), replace

does essentially the same thing as

. mylog x, generate(logx) replace

864 cmpute: A tool to generate or replace a variable

Of course, cmpute is much more general; within Stata’s limits, it can handle an arbi-
trarily complex expression after the = sign.

3 Syntax

The syntax of cmpute is as follows:

cmpute
[
type

]
{existing var |newvar} = exp

[
if
] [

in
] [

, force label(string)

replace
]

3.1 Description

cmpute replaces an existing variable, existing var, or creates a new variable, newvar,
from an expression in exp. An error message occurs if an attempt is made to change
existing var without specifying replace. If type is specified, cmpute sets the storage
type of existing var or newvar to type (see also the force option). type must be one of
byte, int, long, float, double, str#, or in Stata 13 or higher, strL.

Note that cmpute leaves formats, value labels, and characteristics as they were, so
a programmer wanting to alter any of those needs to make the changes separately.

Although cmpute is envisaged primarily as a programmer’s tool, users may also find
it convenient in interactive use as a shortcut to creating and labeling a new (or existing)
variable in one step.

3.2 Options

force applies recast to force a change in the storage type of an existing var to type.
This option should be used with caution because it could result in loss of data. See
help on recast for further information. force has no effect on a newvar.

label(string) labels the new or regenerated variable “string”.

replace replaces existing var. Using cmpute with an existing variable but omitting
replace raises an error message. replace has no effect on a newvar.

3.3 Examples: Interactive use

The examples given below are of interactive use. See section 4 to get an idea of cmpute’s
utility in programming.

. cmpute str6 make = substr(make, 1, 6), replace label("Make (trunc)")

. cmpute int gear_ratio = int(100 * gear_ratio), replace force

. cmpute logx = ln(x), label("log(x)")

P. Royston 865

4 Example: Programming use

Here is a simple program, an extension of mylog, that uses cmpute to manage the
creation of new variables:

program define mylog2
version 12.1
syntax varlist(min=1 numeric) [if] [in], generate(string) [replace]
marksample touse
local nvar : word count `varlist´
tokenize `varlist´
forvalues i = 1 / `nvar´ {

cmpute double `generate´`i´ = ln(``i´´) if `touse´, `replace´ ///
label("ln(``i´´)")

}
end

mylog2 log-transforms a list of variables in `varlist´. As you can see, the aim
here is to implement an option whose syntax is generate(name). The option saves
permanently a bunch of new or replaced variables whose names begin with name. If the
replace option is omitted, the cmpute . . . line will raise an error if a variable called
`generate´`i´ already exists for some i. If replace is used, all such variables are
silently overwritten.

I have requested that the log-transformed variables `generate´1, `generate´2, . . . ,
`generate´`nvar´ be stored in double precision, and I have simultaneously labeled
them meaningfully. The local macro ``i´´ evaluates to the ith token (element) in
`varlist´, that is, to the ith variable name.

Note: I have written mylog2 such that if any member of varlist has a missing value
in a given observation not due to the if and in qualifiers, that observation becomes
missing in all the generated variables. The reason is that marksample has automatically
incorporated missingness of members of varlist in the indicator temporary variable
touse. I could easily change such behavior if that is not what is wanted. For example,
the cmpute . . . line could instead be coded

cmpute double `generate´`i´ = ln(``i´´) `if´ `in´, `replace´ label("ln(``i´´)")

which would preserve all original values of variables in `varlist´ except where filtered
by either the if or the in qualifier or of course by an attempt to log transform a
nonpositive value.

5 Summary

cmpute is meant as an interactive command or a programming tool. In a program,
you often wish to create a new variable or replace an existing one, and you also have
implemented a replace option to allow an existing variable to be overwritten. cmpute
handles the necessary coding and (critically) the error checking in a single call. Doing
this properly line by line within your program is cumbersome. cmpute also supports
expressions via =exp and supports labeling and recasting a regenerated variable.

866 cmpute: A tool to generate or replace a variable

6 Acknowledgment

I am most grateful to Nick Cox for clarifying the original presentation of cmpute and
for providing helpful comments on the manuscript, which have led me to significant
improvements.

7 References
Gleason, J. R. 1997. dm50: Defining variables and recording their definitions. Stata
Technical Bulletin 40: 9–10. Reprinted in Stata Technical Bulletin Reprints, vol. 7,
pp. 48–49. College Station, TX: Stata Press.

———. 1999. dm50.1: Update to defv. Stata Technical Bulletin 51: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, pp. 14–15. College Station, TX: Stata Press.

About the author

Patrick Royston is a medical statistician with more than 30 years of experience, with a strong
interest in biostatistical methods and in statistical computing and algorithms. He works largely
in methodological issues in the design and analysis of clinical trials and observational studies.
He is currently focusing on alternative outcome measures in trials with a time-to-event outcome;
on problems of model building and validation with survival data, including prognostic factor
studies and treatment-covariate interactions; on parametric modeling of survival data; and on
novel clinical trial designs.

