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Abstract. I provide a new programming tool, cmpute, to manage conveniently the
creation of a new variable or the replacement of an existing variable interactively
or within a Stata program.
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1 Introduction

In Stata programs that I write, I am often faced with safely managing the creation of
new variables to be stored in the workspace alongside user data. For example, I do not
wish to overwrite existing user variables without warning. An obvious precaution is to
include a replace option in the program so that the user can sanction overwriting a
variable when appropriate. However, accurately handling the presence or absence of
replace and the creation of a new variable is programmatically cumbersome.

In this short article, I describe a new tool, cmpute, to streamline the “regeneration”
(creation or replacement) of a variable subject to certain sensible constraints. cmpute

has some features in common with an earlier program, defv (Gleason 1997, 1999). How-
ever, the aims of defv are different. A key goal of defv is to enable the documentation
of changes to an important variable by accumulating characteristics (as notes), possibly
over many sessions with a particular dataset. My main goal with cmpute is to stream-
line the creation or replacement of variables within a Stata program. While it is fine
that cmpute may be found useful interactively, that’s not my goal.

From its original release, Stata has separated the creation of new variables (done with
generate) from the revision of the contents of existing variables (done with replace).
Furthermore, while you can abbreviate generate all the way down to g if you wish (in
practice, most people use gen), you cannot abbreviate replace. These decisions all flow
from Stata’s underlying philosophy of protecting your data and of making it as difficult
as possible for you to change your data unless you spell out explicitly that this is your
intention.

c© 2013 StataCorp LP dm0072
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In proposing to do what Stata’s designers in their wisdom cast asunder, I am con-
sciously favoring programmer convenience while also reducing any element of risk by
protecting users against inadvertent changes to their data. (Note: If you specify the
force option of cmpute, be aware that it means what it says. The effects of a force
may be drastic.)

cmpute has a loose connection with the official command clonevar, which precisely
reproduces the data and all other features of an existing variable in a new variable.

2 Example

Consider the following simple program:

program define mylog
// Program to safely create a log transformation of a single variable
version 12.1
syntax varlist(min=1 max=1 numeric), generate(string) [replace]
capture confirm var `generate´
// `generate´ does not exist; it´s safe to create it and finish
if c(rc) != 0 {

generate `generate´ = ln(`varlist´)
exit

}
// `generate´ does exist; it must be handled correctly
if "`replace´" == "replace" {

replace `generate´ = ln(`varlist´)
}
else {

display as error "`generate´ already defined"
error 110

}
end

The program accepts a variable supplied in varlist and creates a new variable
called string, stored in a local macro called generate, containing the logarithmically
transformed values of `varlist´. mylog replaces the contents of the variable string if
it already exists—provided that the replace option is specified. If the replace option
is not specified, an error message must be issued because we do not wish to wipe out
the existing string without permission. The above program is not completely foolproof,
but on the whole, it does a reasonable job of handling various possible inputs and the
existence or otherwise of the variable string. There must be thousands of programs out
there containing lines of code that do something similar. If more than one variable is
to be handled, the code can get quite bulky (and ugly).

We could replace chunks of code like that in mylog with a single call to the new
program, cmpute. For example,

. cmpute logx = ln(x), replace

does essentially the same thing as

. mylog x, generate(logx) replace
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Of course, cmpute is much more general; within Stata’s limits, it can handle an arbi-
trarily complex expression after the = sign.

3 Syntax

The syntax of cmpute is as follows:

cmpute
[
type

]
{existing var |newvar} = exp

[
if
] [

in
] [

, force label(string)

replace
]

3.1 Description

cmpute replaces an existing variable, existing var, or creates a new variable, newvar,
from an expression in exp. An error message occurs if an attempt is made to change
existing var without specifying replace. If type is specified, cmpute sets the storage
type of existing var or newvar to type (see also the force option). type must be one of
byte, int, long, float, double, str#, or in Stata 13 or higher, strL.

Note that cmpute leaves formats, value labels, and characteristics as they were, so
a programmer wanting to alter any of those needs to make the changes separately.

Although cmpute is envisaged primarily as a programmer’s tool, users may also find
it convenient in interactive use as a shortcut to creating and labeling a new (or existing)
variable in one step.

3.2 Options

force applies recast to force a change in the storage type of an existing var to type.
This option should be used with caution because it could result in loss of data. See
help on recast for further information. force has no effect on a newvar.

label(string) labels the new or regenerated variable “string”.

replace replaces existing var. Using cmpute with an existing variable but omitting
replace raises an error message. replace has no effect on a newvar.

3.3 Examples: Interactive use

The examples given below are of interactive use. See section 4 to get an idea of cmpute’s
utility in programming.

. cmpute str6 make = substr(make, 1, 6), replace label("Make (trunc)")

. cmpute int gear_ratio = int(100 * gear_ratio), replace force

. cmpute logx = ln(x), label("log(x)")
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4 Example: Programming use

Here is a simple program, an extension of mylog, that uses cmpute to manage the
creation of new variables:

program define mylog2
version 12.1
syntax varlist(min=1 numeric) [if] [in], generate(string) [replace]
marksample touse
local nvar : word count `varlist´
tokenize `varlist´
forvalues i = 1 / `nvar´ {

cmpute double `generate´`i´ = ln(``i´´) if `touse´, `replace´ ///
label("ln(``i´´)")

}
end

mylog2 log-transforms a list of variables in `varlist´. As you can see, the aim
here is to implement an option whose syntax is generate(name). The option saves
permanently a bunch of new or replaced variables whose names begin with name. If the
replace option is omitted, the cmpute . . . line will raise an error if a variable called
`generate´`i´ already exists for some i. If replace is used, all such variables are
silently overwritten.

I have requested that the log-transformed variables `generate´1, `generate´2, . . . ,
`generate´`nvar´ be stored in double precision, and I have simultaneously labeled
them meaningfully. The local macro ``i´´ evaluates to the ith token (element) in
`varlist´, that is, to the ith variable name.

Note: I have written mylog2 such that if any member of varlist has a missing value
in a given observation not due to the if and in qualifiers, that observation becomes
missing in all the generated variables. The reason is that marksample has automatically
incorporated missingness of members of varlist in the indicator temporary variable
touse. I could easily change such behavior if that is not what is wanted. For example,
the cmpute . . . line could instead be coded

cmpute double `generate´`i´ = ln(``i´´) `if´ `in´, `replace´ label("ln(``i´´)")

which would preserve all original values of variables in `varlist´ except where filtered
by either the if or the in qualifier or of course by an attempt to log transform a
nonpositive value.

5 Summary

cmpute is meant as an interactive command or a programming tool. In a program,
you often wish to create a new variable or replace an existing one, and you also have
implemented a replace option to allow an existing variable to be overwritten. cmpute
handles the necessary coding and (critically) the error checking in a single call. Doing
this properly line by line within your program is cumbersome. cmpute also supports
expressions via =exp and supports labeling and recasting a regenerated variable.
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