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Abstract. We present methods for testing hypotheses and estimating confidence
sets for structural parameters of economic models in the presence of instabilities
and breaks of unknown form. These methods constructively explore information
generated by changes in the data-generating process to improve the inference of
parameters that remain stable over time. The proposed methods are suitable for
models cast in the generalized method of moments framework, which makes their
application wide. Moreover, they are robust to the presence of weak instruments.
The genstest command in Stata implements these methods to conduct hypothesis
tests and to estimate confidence sets.

Keywords: st0320, genstest, condivreg, ivregress, ivreg2, gmm, qll, generalized
method of moments, structural change, weak instruments, hypothesis testing, con-
fidence sets

1 Introduction

We present methods for the inference of parameters in economic models in the presence
of instabilities and breaks of unknown form. The main idea behind these methods is
to constructively explore exogenous changes in the data-generating process to improve
the inference about parameters that are assumed to be stable over time. For example,
exogenous changes in the monetary policy induced by the Central Bank affect interest
rates. However, if we are interested in parameters that characterize a production func-
tion technology, these parameters are not affected by monetary policy. These exogenous
variations in the interest rate can be used to improve the inference of such technologi-
cal parameters. The proposed methods are suitable for models cast in the generalized
method of moments (GMM) framework, which makes their application wide. Moreover,
they are robust to the presence of weak instruments; that is, we do not assume that the
structural parameters are consistently estimated.

Estimation of economic models using GMM departs from a set of moment restric-
tions, usually derived from the economic theory. Two underlying assumptions of a
GMM estimator are that the parameters are stable over time and that they can be con-
sistently estimated using the empirical moment restrictions. These assumptions can
be very strong in some economic models. Stock and Watson (1996) and Piehl et al.
(2003) report evidence of parameter instability in, respectively, macroeconomic and mi-
croeconomic models (for models with identification failure, see Stock, Wright, and Yogo

c© 2013 StataCorp LP st0320
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[2002], Kleibergen and Mavroeidis [2009], and references therein). Therefore, we cannot
rule out a priori the presence of instabilities and weak instruments.

Structural break tests are considered as a diagnostic test, conducted after estimation.
These tests compare the null hypothesis of a stable model (constant parameter) against
the alternative of an unstable model (time-varying parameter). Examples include the
ones proposed by Andrews (1993) and Elliott and Müller (2006). Moreover, they assume
that the parameters are consistently estimated under the null hypothesis. Instead, we
perform hypothesis testing of the parameter of interest and later estimate confidence
intervals for this parameter by inverting these tests without estimating the parameter
in the first place.

The proposed tests are a combination of two (asymptotically) independent statistics.
One of them, the S test (see Stock and Wright [2000]), tests the validity of the moment
condition. The second statistic tests the stability of such moments. We call these tests
the “generalized S” (gen-S) tests because they are an extension of the S test for stable
models. An important feature of the tests is that they are identification robust tests;
that is, they have the correct size even in the presence of weak instruments.

The genstest command performs these new methods. For a given structural param-
eter of interest θ, the tests test the simple hypothesis H0 : θ = θ0 against the alternative
H1 : θ 6= θ0, where θ0 is a hypothesized value of θ. The genstest command also gen-
erates 1 − α confidence intervals and sets by inverting the new statistical tests. There
are no restrictions on how many parameters may be tested by genstest. However,
genstest calculates confidence sets only up to two parameters because these are the
most straightforward to graph (a simple while loop can generate a confidence set for
any number of parameters).

In section 2, we show how changes in the first stage improve the inference of struc-
tural parameters in a linear instrumental variable (IV) model and describe the proposed
methods. In section 3, we present the general algorithm for implementing the tests. In
section 4, we discuss the syntax and options of the postestimation command genstest.
Finally, in section 5, we provide examples of its use for performing hypothesis tests and
constructing confidence intervals and sets.

2 Structural inference under instability

2.1 A stylized IV model

Consider the following simple limited-information IV model

{
y = Yθ + u
Y = ZΠ+ v

(1)
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where y is a T × 1 vector, Y is a T × kY matrix of explanatory variables, Z is a T × kZ
matrix of instruments, and u and v are residuals. We are interested in testing the
following assumption about the value of the structural parameter θ:

Hθ
0 : θ = θ0 against Hθ

1 : θ 6= θ0

Postmultiplying the second equation in (1) by θ0 and subtracting from the first equation,
we derive

y −Yθ0 = Zδ + e (2)

where δ = Π(θ − θ0) and e = u+v (θ − θ0). Therefore, we can test the null hypothesis
Hθ

0 : θ = θ0 indirectly by testing the assumption

Hδ
0 : δ = 0 against Hδ

1 : δ 6= 0

on the auxiliary (2). The principle of testing this null hypothesis by testing violations of

the moment restrictions E{(1/T )∑T
t=1 Zt (yt − Ytθ)} = 0 is from Anderson and Rubin

(1949); the auxiliary regression representation in (2) is attributed to Chernozhukov
and Hansen (2008). From now on, we will refer to this test simply as the S test, the
extended version of the Anderson and Rubin (1949) test for GMM models proposed by
Stock and Wright (2000).

The S test has the correct size even when the structural parameter θ is not identified;
see Stock and Wright (2000). However, when Π ≈ 0, the S test will not reject Hδ

0 when
Hδ

1 is true.1 If this is the case, confidence sets derived by inverting the S test are
unbounded, giving no information about the location of θ.

In the representation (1), Π captures the strength of the instruments Zt and is
assumed to be the unique solution of

E {Z ′
t (Yt − ZtΠ)} = 0 for all 0 < t ≤ T

Now, similar to Angrist and Krueger (1995), we will assume that the strength of the
instruments might differ in two subsamples. For simplicity, order the observations such
that

E {Z ′
t (Yt − ZtΠ1)} = 0 for all 0 < t ≤ tb

E {Z ′
t (Yt − ZtΠ2)} = 0 for all tb < t ≤ T

Partition Z =(Z′
1 : Z′

2)
′
, where Z1 and Z2 are tb × kZ and (T − tb) × kZ submatrices

of Z containing observations of the first and second subsamples, respectively. Define
Z1 = (Z′

1 : 0′)
′
and Z2 = (0′ : Z′

2)
′
so that Z = Z1 + Z2. The first-stage equation is

rewritten as
Y = Z1Π1 + Z2Π2 + v

and the auxiliary regression becomes

y −Yθ0 = Z1δ1 + Z2δ2 + e (3)

1. When Π = 0, the estimated value of δ will be close to 0, independent of whether ‖θ − θ0‖ > 0.
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We restate the null hypothesis as

Hδb
0 : δ1 = δ2 = 0 against Hδb

1 : δ1 6= 0 or δ2 6= 0

Therefore, a single change in Π doubles the number of instruments for testing θ. More-
over, the S test applied to the auxiliary regression (3) would have more power to reject
Hδb

0 than the S test applied to (2) to reject Hδ
0 .

The above linear IV model shows that changes in the first-stage reduced-form param-
eter can improve the inference about the second-stage structural parameter θ, which re-
mains constant over time or cross-section units. However, in practice, we may not know
when the change occurs, the magnitude of the change, or the nature of the instability.
In the following subsection, we present tests that do not require such knowledge.

2.2 The generalized S tests

Assume that from an economic model, we derived a moment condition of the form

E {Z ′
tu (Yt; θ, γ)} = 0 for all 0 < t ≤ T (4)

where u (·; ·) is a one-dimensional real function indexed by the p-dimensional structural
parameter vector θ and by the q-dimensional nuisance parameter vector γ, which is
always treated as stable under the null hypothesis. Yt is a vector of random variables,
and Zt is the 1 × kZ dimensional row vector of instruments. For simplicity, we denote
u (Yt; θ, γ) as ut (θ, γ). We can consider ut (θ, γ) as the unobserved error term of a
regression such that E {u (Yt; θ, γ) |Zt} = 0. For instance, in the previous section,
ut (θ, γ) = yt − Ytθ. Further examples for cross-section models and time-series models
are shown in section 5.

The moment restriction in (4) can be restated in terms of full-sample and stability
restrictions as, respectively,

E

{
1

T

T∑

t=1

Z ′
tut (θ, γ)

}
= 0 and E {Z ′

tut (θ, γ)} is stable over t (5)

Usual GMM methods for estimation and inference use only the first kZ full-sample re-
strictions E{(1/T )∑T

t=1 Z
′
tut (θ, γ)} = 0. Magnusson and Mavroeidis (2010a) propose

tests for the vector of structural parameters θ that explore both restrictions. Testing
the assumption Hθ

0 : θ = θ0 against Hθ
1 : θ 6= θ0 can be indirectly conducted by testing

both restrictions in (5), evaluated at θ0, against the alternative that at least one of these
conditions is violated. The tests have the following general form:

gen-S (θ0) = gen-S̃ (θ0; c̃) +
c

1 + c
S (θ0) (6)

The first component of gen-S, the gen-S̃, tests the stability restrictions, while its second
component, the S test, detects violations of the full-sample moment restrictions. The
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nonnegative scalars c̃ and c determine the weights that the investigator attaches to
violations of the stability and full-sample restrictions under H1, respectively. In this
framework, the S test is considered a test that sets no weight on the stability restrictions;
that is, c̃ = 0. Several possibilities exist for choosing gen-S̃. Here we present four such
statistics, which are described in the next section. The proposed stability tests are
closely related to the quasi-local-level (qLL) test derived in Elliott and Müller (2006)
and to the average (ave-), exponential (exp-), and supremum (sup-) Wald tests derived
in Andrews (1993) and Sowell (1996). Additionally, all the proposed stability tests are
asymptotically independent from the S test.

The four gen-S tests implemented by the genstest command are denoted qLL-S,
ave-S, exp-S, and sup-S. In deriving the four tests, we set c̃ = c; that is, violations of
the full-sample and stability moment restrictions are weighted equally. In particular,
in the case of qLL-S, c̃ = c = 10. All the suggested tests have nontrivial power when
instabilities are present under the alternative hypothesis. However, according to the
weighted average power criteria, the qLL-S dominates the other tests if the instability of
the moments follows a difference martingale sequence under H1, and the ave-S and exp-
S dominate the other tests if a single break is assumed at an unknown date.2 Further
details about the optimality properties of these tests are in Magnusson and Mavroeidis
(2010a).

We can use the gen-S tests for estimating confidence intervals and sets. The 1 − α
confidence interval (set) consists of the points θ in the parameter space Θ that do not
reject the test under H0 : θ = θ at α significance level. Once a grid of points in the
parameter space is defined, we proceed by computing the tests at these points and
selecting them accordingly.

The gen-S tests are asymptotically pivotal under H0. Although their limit distri-
butions are not standard, critical values can be simulated. Included with the genstest
command are critical value tables up to the case where kZ = 20 for all suggested tests.

3 The algorithm for implementing the generalized S tests

Next we show the algorithms for computing the two components of the gen-S test in
(6), starting with the S test.

2. Set c̃ = c = c. The ave-S asymptotically power dominates the remaining tests when c −→ 0; the
exp-S dominates when c −→ +∞.
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3.1 S test algorithm

The S test is obtained from the following steps:

1. Estimate the nuisance parameter vector γ under the null hypothesis Hθ
0 : θ = θ0

using the following objective function,

γ̂ (θ0) ≡ argmin
γ

u (θ0, γ)
′
Z
{
Φ̂ (θ0)

}−1

Z′u (θ0, γ) (7)

where u (θ0, γ) is a T × 1 vector whose typical tth element is ut (θ0, γ), Z is a

T ×kZ matrix of instruments, and Φ̂ (θ0) is an estimator of Φ (θ0, γ), the variance
of Z′u (θ0, γ).

2. Substitute u (θ0, γ) by u {θ0, γ̂ (θ0)} into the objective function in (7).

3. The S test for testing Hθ
0 : θ = θ0 is

S (θ0) = u {θ0, γ̂ (θ0)}′ Z
{
Φ̂ (θ0)

}−1

Z′u {θ0, γ̂ (θ0)} (8)

Under the null hypothesis, S (θ0)
d−→ χ2

(kZ−q), where χ2
(kZ−q) is a chi-squared

distribution with (kZ − q) degrees of freedom.

The S test in (8) has two differences from the one proposed by Chernozhukov and
Hansen (2008). First, the proposed S test encompasses models in which the residual
term is a nonlinear function of the parameters (see examples 2 and 3 in section 5).
Second, if the residual vector u (θ0, γ) is a linear function of parameters, then we con-
centrate the nuisance γ using an oblique projection matrix instead of a linear projection
matrix.3

Next we turn to gen-S̃, the stability part of the gen-S test.

3.2 The stability tests

There are two classes of tests that detect instabilities of the moments under the alter-
native assumption. The first class corresponds to the qLL-S̃, a test calibrated to detect
small but persistent changes in the moments. In the second class, the tests are derived
assuming that there is only a single break in the moment at an unknown date. They
are the ave-S̃, the exp-S̃, and the sup-S̃.

3. When u (θ0, γ) = y − Yθ0 − Xγ, substituting γ by its ordinary least-squares estimate

(X′X)−1
X′ (y − Y θ0) is the same as premultiplying u (θ0, γ) by MX = I − X (X′X)−1

X′, the
matrix that projects onto the orthogonal space spanned by the columns of X. Our method is equiv-
alent to premultiplying u (θ0, γ) by the oblique projection matrix MΨ

X
= I − X (X′ΨX)−1

X′Ψ,

where Ψ = Z
{
Φ̂ (θ0)

}
−1

Z′.
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Persistent time-variation case

In the algorithm for computing the qLL-S̃ test, we define the following T × T matrices
and T × 1 vector,

D =




1 0 · · · · · · 0

−1 1 0 · · ·
...

0
. . .

. . .
. . .

...
...

. . . −1 1 0
0 · · · 0 −1 1



, R =




1 0 · · · · · · 0

r 1 0 · · ·
...

r2
. . .

. . .
. . .

...
...

. . . r 1 0
rT−1 · · · r2 r 1



, and r =




r
r2

...

...
rT




where r = 1 − (10/T ). The D matrix is a first-difference operator, while R is the

cumulative product operator matrix. Let Û (θ0) be the following T × k matrix,

Û (θ0) = {û (θ0) , . . . , û (θ0)}
where û (θ0) = u {θ0, γ̂ (θ0)}. The qLL-S̃ statistic, which is the stability part of the
qLL-S test, is obtained after taking the following steps:

1. First, compute the T ×k matrix V̂(θ0) = {Û(θ0)⊙Z}Φ̂(θ0)−1/2, where ⊙ denotes

the direct product, and Φ̂(θ0)
−1/2 is the symmetric square root matrix of Φ̂(θ0)

−1.

Second, compute Ĥ(θ0)=R{DV̂(θ0)}, a T × k matrix.

2. Estimate the T × k matrix ŵ, the ordinary least-square residuals of the following
regression,

Ĥ (θ0) = rB +w

where B is a 1×k row vector of parameters, and compute TSSRŵ =
k∑

i=1

T∑
t=1

(ŵi,t)
2
,

the total sum of squared residuals of the above regression.

3. Compute the T × k matrix ǫ̂, the ordinary least-square residuals of the following
regression,

V̂ (θ0) = ιTC + ǫ

where ιT is a T × 1 vector of 1s, and C is a 1 × k row vector of parameters.

Calculate TSSRǫ̂ =
k∑

i=1

T∑
t=1

(ǫ̂i,t)
2
, the total sum of squared residuals of the above

regression.

4. The qLL-S̃ statistic under H0 is

qLL-S̃(θ0) = TSSRǫ̂ − r × TSSRŵ

The asymptotic distribution of this statistic is a functional of a k-dimensional
Ornstein–Uhlenbeck process.

5. The qLL-S test is defined as

qLL-S(θ0) = qLL-S̃(θ0) +
10

11
S (θ0)
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Single break, unknown break date

We take the following steps in computing the stability part of the ave-, exp-, and sup-S̃
tests:

1. Specify an interval where a break in the moments is located. This interval must
be defined as [tl, tu], where tl = [sT ], tu = [(1− s)T ], s ∈ (0, 0.5), and [m] denotes
the integer part of m.

2. For a possible break date j ∈ [tl, tu], let T1 = j, and T2 = T − j. Partition
Z as Z = (Z′

1 : Z′
2)

′
, where Z1 and Z2 are T1 × k and T2 × k submatrices of

Z containing, respectively, observations before and after j. Similarly, partition

u (θ0, γ) as u (θ0, γ) =
{
u1 (θ0, γ)

′
: u2 (θ0, γ)

′}′
.

3. Estimate the nuisance parameter γ under the null hypothesis H0 : θ = θ0. Similar
to the S test, this step consists of solving the following minimization problem,

γ̂j (θ0) ≡ argmin
γ

u1 (θ0, γ)
′
Z1

{
Φ̂1(θ0)

}−1

Z′
1u1 (θ0, γ)

+ u2 (θ0, γ)
′
Z2

{
Φ̂2(θ0)

}−1

Z′
2u2 (θ0, γ) (9)

where Φ̂1 (θ0) and Φ̂2 (θ0) are, respectively, estimators of Φ1 (θ0, γ) and Φ2 (θ0, γ),
the variances of Z′

1u1 (θ0, γ) and Z′
2u2 (θ0, γ) under H0.

4. Substitute u1 (θ0, γ) and u2 (θ0, γ) with u1 {θ0, γ̂j (θ0)} and u2 {θ0, γ̂j (θ0)}, re-
spectively, into the objective function in (9).

5. Compute the following modified S test assuming a break at date j:

S (θ0; j) = u1 {θ0, γ̂j (θ0)}′ Z1

{
Φ̂1(θ0)

}−1

Z′
1u1 {θ0, γ̂j (θ0)}

+ u2 {θ0, γ̂j (θ0)}′ Z2

{
Φ̂2(θ0)

}−1

Z′
2u2 {θ0, γ̂j (θ0)} (10)

Define the following statistic:

S̃ (θ0; j) = S (θ0; j)− S (θ0)

6. Repeat steps 1 through 5 for each possible break date in [tl, tu].

7. The ave-, exp-, and sup-S̃ tests are defined as

ave-S̃ (θ0) =
1

d (tl, tu)

tu∑

j=tl

S̃ (θ0; j)

exp-S̃ (θ0) = 2 log


 1

d (tl, tu)

tu∑

j=tl

exp

{
1

2
S̃ (θ0; j)

}


sup-S̃ (θ0) = sup
j∈[tl,tu]

S̃ (θ0; j)
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where d (tl, tu) = tu−tl+1. One can show that the asymptotic distributions of the
above tests are functionals of standard k-dimensional Brownian bridge processes
on (0, 1).

8. The ave-, exp-, and sup-S tests are defined, respectively, as

ave-S (θ0) = S (θ0) + ave-S̃ (θ0)

exp-S (θ0) = S (θ0) + exp-S̃ (θ0)

sup-S (θ0) = S (θ0) + sup-S̃ (θ0)

3.3 The estimation of nuisance parameters and variance–covariance
matrix

The estimators of γ̂ (θ0) and γ̂j (θ0) in equations (7) and (9) can be the two-step or
iterative GMM estimators. The first-step estimator for computing γ̂ (θ0), necessary for
estimating Φ, solves

min
γ

u (θ0, γ)
′
Z W Z′u (θ0, γ) (11)

where W is a square matrix (for example, the identity matrix or (Z′Z)
−1

). Similarly,
the first step for computing γ̂j (θ0) solves

min
γ

u1 (θ0, γ)
′
Z1W1Z

′
1u1 (θ0, γ) + u2 (θ0, γ)

′
Z2W2Z

′
2u2 (θ0, γ)

where W1 and W2 are conformable quadratic matrices. For theoretical reasons, γ̂ (θ0)
and γ̂j (θ0) cannot be the first-step estimators of γ; see Stock and Wright (2000) and
Caner (2007). Under the null assumption and under sequences of local alternatives,
γ̂ (θ0) and γ̂j (θ0) have the same probability limits.4 Hence, we can replace γ̂j (θ0) with
γ̂ (θ0) for computing the S (θ0; j) statistic in (10).

The estimation of the variance–covariance matrix Φ depends on the assumption
about the asymptotic variance of T−1/2

∑T
t=1 Z

′
tut (θ, γ) evaluated at {θ0, γ̂ (θ0)}. The

genstest command is very flexible about the structure of the variance matrix, allow-
ing for homoskedastic residuals; heteroskedastic residuals (including adjustment factors
hc1, hc2, hc3, and hc4; see Davidson and MacKinnon [2003]); cluster residuals; and
heteroskedastic autocorrelated residuals (including options for the kernel and number
of lags when computing the autocorrelation terms). More details are in the following
section.

The general form of the estimator Φ̂ (θ0) in (7) used for computing the S and qLL-S

tests is Z′Ω̂ (θ0)Z, where Ω̂ (θ0) is a T ×T matrix whose elements are a function of the
vector of the estimated residuals u{θ0, γ̂ (θ0)}.

In the case of ave-, exp-, and sup-S, the estimators Φ̂1 (θ0) and Φ̂2 (θ0) in (10) can be

represented by the Ti × Ti matrix ZiΩ̂i (θ0)Zi for i = 1, 2. The elements of Ω̂i (θ0) are

4. However, they have different limits under a fixed sequence of alternatives; see Andrews (1993).
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a function of ui{θ0, γ̂j (θ0)}. The asymptotic variances of T
−1/2
1 Z′

1u1{θ0, γ̂j (θ0)} and

T
−1/2
2 Z′

2u2{θ0, γ̂j (θ0)} are the same as the asymptotic variance of T−1/2Z′u{θ0, γ̂ (θ0)}
(see Hall [2005]), so we can substitute Φ̂1 (θ0) and Φ̂2 (θ0) with Φ̂ (θ0) in (10).

4 The genstest command

The genstest command implements the above four gen-S tests in Stata and Mata. It
may be invoked as a stand-alone command or as a postestimation command for gmm.

When genstest is used as a postestimation command, it will only use the gmm

options that genstest implements (they are listed and described in this section). Any
additional gmm options will be discarded. Furthermore, genstest performs the tests on
only one residual expression, so the gmm estimation command should conform to that
limitation.

Additionally, the command can estimate confidence intervals and sets (up to two
parameters) based on these tests.5 These intervals (sets) are generated using a grid
search method on the points of the parameter space that do not reject the null hypothesis
of the test.

The genstest command requires at least Stata 10 because of the use of Mata’s
optimization functions. No additional packages are required beyond a standard Stata
and Mata installation.

4.1 Syntax

The syntax for genstest was designed to be as similar to Stata 11’s gmm command as
possible. The syntax is defined as follows:

genstest
[
(residual)

] [
if
] [

weight
] [

, instruments(varlist
[
, noconstant

]
)

derivative(/name =
[
<
]
dexp

[
>
]
) twostep igmm init(numlist)

null(numlist | last) test(namelist) sb stab winitial(iwtype)

wmatrix(wmtype) center small trim(#) nuisS varS ci(ci options)
]

residual is an expression defining the ut (θ, γ), the error-term function used in the

empirical moment (1/T )
∑T

t=1 Z
′
tut (θ0, γ), where Zt is the vector of instruments.

In the residual expression, enclosing a name inside < > indicates a parameter to be
tested as the null hypothesis, while enclosing a name inside { } indicates a parameter
to estimate. For example, in the following linear regression model,

y1,t = y2,tθ + xtγ + ut

5. Because genstest can perform hypothesis tests on any number of parameters, to generate a confi-
dence set for a higher number of parameters, one only needs to use nested while loops.
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where θ is the parameter to be tested, and γ is estimated under the null hypothesis.
The regression residual expression is

(y1 - <theta>*y2 - {gamma}*x)

A constant is not added to the residual expression by default to keep the behavior
of genstest similar to that of the gmm command. However, a constant is automati-
cally included in the vector of instruments, Zt, unless noconstant is specified in the
instruments() option.

In the same example, if the residual expression is specified as

(y1 - {theta}*y2 - {gamma}*x)

then both parameters are estimated. In this case, the S test will be the same as
the overidentification restriction of Hansen (1982), also known as the J test, and the
ave-, exp-, and sup-S tests will be equivalent to the overidentification restriction tests
proposed by Hall and Sen (1999), also known as the O test.

When running genstest as a postestimation command, one does not need to specify
residual. In that case, genstest uses the residual given to gmm.

4.2 Testing options

instruments(varlist
[
, noconstant

]
) specifies the vector of instruments Zt. The op-

tional noconstant indicates removal of a constant from the matrix of instruments.

derivative(/name =
[
<
]
dexp

[
>
]
) specifies the derivative of a residual function with

respect to the parameter name. The functionality of this option requires entering
all untested parameter derivatives; otherwise, derivatives in the optimization algo-
rithm will be computed numerically. The use of this option is recommended when
estimating confidence intervals and sets because it improves the performance of the
optimization algorithm and the computational speed (see ci() option). This option
is specified as in gmm with the addition that the <>’s indicate the value of a param-
eter tested under the null hypothesis. If one is using genstest as a postestimation
command, the derivatives passed to gmm will be used by genstest.

twostep requires the two-step general method of moments estimator is used (this is the
default).

igmm requires the iterated general method of moments estimator be used.

init(numlist) sets the initial values in the optimization routine for estimating the
nuisance parameters. The default choice is a vector of zeros. One should include
this option if the algorithm for estimating untested parameters does not converge,
if it converges to a local minimum, or if the residual expression is undefined at the
zero vector.
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null(numlist | last) tells genstest to test Hθ
0 : θ = θ0, where θ0 is the hypothesized

value of the parameter of interest θ. By default, genstest tests the null hypothesis
that all parameters defined inside < > are equal to 0. If genstest is used as a
postestimation command, then null(last) will set θ0 as the last estimate obtained
after running gmm. The supplied numlistmust be in the same order as the parameters
appearing in the residual expression.

test(namelist) lists the names of the gmm parameters in the residual expression to be
tested. This option is only applicable if genstest is being used as a postestimation
command.

sb reports the ave-, exp-, and sup-S tests (the single-break tests). These tests are
computationally more intensive than the qLL-S test and therefore not computed by
default.

stab reports the stability tests (the S̃ tests).

winitial(iwtype) specifies the initial weighting matrix W in (11) for obtaining an
inefficient estimate of γ. There are two options for this matrix: identity, which
uses the identity matrix, and unadjusted, which sets (Z′Z) as the initial weight
matrix. The default is winitial(unadjusted).

wmatrix(wmtype) allows the choice of the covariance matrix in (7). wmtype represents

the user choice for the estimator type of the variance of T−1/2
∑T

t=1 Z
′
tut (θ0, γ).

The choices are the following:

unajusted for the homoskedastic case.

robust, hc1, hc2, hc3, and hc4 for the heteroskedastic case with hci, for i = 1, . . . , 4
denoting the residual adjustment options (see Davidson and MacKinnon [2003]).
The default is wmatrix(hc1), which denotes multiplying the square of the resid-
uals by {T/(T − kZ)}.

cluster clustvar for a cluster–robust covariance matrix having the cluster variable
defined in clustvar.

hac kernel
[
lags

]
for the heteroskedastic and autocorrelated (HAC) robust covariance

matrix. The kernel can be defined as

bartlett or nwest for the Bartlett (Newey–West) kernel;

parzen or gallant for the Parzen (Gallant) kernel; or

quadraticspectral or andrews for the quadratic spectral (Andrews) kernel.
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When selecting the kernel, the user can choose the number of lags to compute the
HAC estimate. lags may be one of the following:

optimal, if using the optimal selection algorithm of Newey and West (1994) (imple-
mented using the same algorithm as in gmm).

automatic for setting the number of lags to the starting value of the optimal-lag
selection algorithm (divided by 5):

Bartlett: 4×
(

T
100

) 2

9

Parzen: 4×
(

T
100

) 4

25

Quadratic Spectral: 4×
(

T
100

) 2

25

number for any number specified by the user.

Technical note

The genstest default number of lags is automatic, which differs from the default
number in the built-in Stata gmm function.

center indicates recentering the moment function when computing the HAC estimate
of the variance.

small indicates using a small-sample adjustment when computing the HAC weight ma-
trix.

Options: Single-break tests

The following options are for computation of the ave-, exp-, and sup-S tests.

trim(#) specifies the value of the trimming parameter s used to fix tl = [sT ] and
tu = [(1− s)T ] in step 1 of the algorithm for computing the single-break stability
tests. The options are s = 0.05, 0.10, 0.15, and 0.20. The default is trim(0.15).

nuisS indicates the use of γ̂ (θ0), the estimate of the nuisance parameter in (7), in place
of γ̂j (θ0), derived from (9), when computing the split-sample tests.

varS specifies the use of Φ̂ (θ0), the estimated variance of the moments using all ob-

servations, in place of both Φ̂1 (θ0) and Φ̂2 (θ0) when computing the split-sample
tests.

The weight matrices for computing Φ̂1 (θ0) and Φ̂2 (θ0) are the same as the one
for winitial() and wmatrix(). For example, choosing winitial(unadjusted) and
wmatrix(hac nwest automatic) implies that the initial weight matrices for estimating
γ̂(θ0; j) are (Z′

1Z1) and (Z′
2Z2) in (3.3) and that the HAC estimators use the Bartlett

kernel with lags 4×(T1/100)
2/9

and 4×(T2/100)
2/9

for Φ̂1 (θ0) and Φ̂2 (θ0), respectively.
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Options: Confidence interval and region

The genstest command has the option of estimating confidence intervals and sets,
the latter up to two parameters, using a grid search algorithm (to estimate higher-
dimensional sets, one can use a simple while loop because genstest can test any
number of parameters). If a two-parameter confidence set is chosen, the result can be
displayed in a twoway graph. The use of the option derivative() is recommended
when estimating confidence intervals and sets. The options are the following:

ci(numlist
[
, ci options

]
) indicates that a confidence interval or set be estimated.

numlist specifies the range of the grid search. For example,

ci(a b c d, ci options)

sets [a,b] and [c,d] as the grid search range of a confidence region for two parameters.

points(numlist) determines the number of equally spaced points for the grid search.
The default is points(20) for confidence intervals and points(20 20) for con-
fidence sets.

alpha(#) determines the 1 − α coverage probability of the interval or set. The
default is alpha(0.05).

allpv tells genstest to return p-values for all points tested in the selected range.
Therefore, if one wishes to examine the confidence interval (set) for a different
significance level, there is no need to execute the command a second time.

autograph tells genstest to automatically graph the confidence region if two pa-
rameters are being tested. Whether or not this option is specified, the points
necessary to plot the confidence region are stored in matrices.

Technical note

The estimation of confidence intervals and sets, which is based on a grid search
process, is not in the default of genstest, because it can be computationally intensive.
To estimate confidence intervals and regions, we recommend running without the sb

option (which would cause genstest to perform the split-sample tests) or using the sb
option with the nuisS and varS options.

Technical note

For confidence interval results, if allpv is not given, then genstest returns a ma-
trix of values that pass the test alongside the resulting statistic. If allpv is specified,
genstest saves a matrix containing the grid search values associated with their respec-
tive p-values (p-values and grid search points are reported in the first and the subsequent
columns, respectively).
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4.3 Stored results

genstest stores the following in r():

Scalars
r(S) S statistic
r(aveS) ave-S statistic
r(expS) exp-S statistic
r(supS) sup-S statistic
r(qllS) qLL-S statistic

r(avestabS) ave-S̃ statistic

r(expstabS) exp-S̃ statistic

r(supstabS) sup-S̃ statistic

r(qllstabS) qLL-S̃ statistic
r(pS) S statistic p-value
r(paveS) ave-S p-value
r(pexpS) exp-S p-value
r(psupS) sup-S statistic p-value
r(pqllS) qLL-S p-value

r(pavestabS) ave-S̃ p-value

r(pexpstabS) exp-S̃ p-value

r(psupstabS) sup-S̃ p-value

r(pqllstabS) qLL-S̃ p-value

Matrices
r(Sci) grid search points not rejected by the S test or search points and their

associated p-values (if allpv is specified)
r(aveSci) grid search points not rejected by the ave-S test or search points and their

associated p-values
r(expSci) grid search points not rejected by the exp-S test or search points and their

associated p-values
r(supSci) grid search points not rejected by the sup-S test or search points and their

associated p-values
r(qllSci) grid search points not rejected by the qLL-S test or search points and their

associated p-values

r(avestabSci) grid search points not rejected by the ave-S̃ test or search points and their
associated p-values

r(expstabSci) grid search points not rejected by the exp-S̃ test or search points and their
associated p-values

r(supstabSci) grid search points not rejected by the sup-S̃ test or search points and their
associated p-values

r(qllstabSci) grid search points not rejected by the qLL-S̃ test or search points and their
associated p-values

5 Examples

We present three examples to illustrate the use of genstest. The first example is the
regression model of married female labor supply presented in Mroz (1987). The second
example is based on the Poisson regression model contained in the example section
of the gmm command in Stata’s Base Reference Manual: Release 11 (see StataCorp
[2009]). In the first two examples, we assume that the observations are independent
but not identically distributed. The third example presents inference about parameters
of the new Keynesian Phillips curve (NKPC) model discussed in Sbordone (2005) and
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Magnusson and Mavroeidis (2010b). In this last example, residuals are assumed to be
heteroskedastic and exhibit autocorrelation of unknown form.

5.1 Example 1: Instrumental variable regression—independent ob-
servations and heteroskedastic residuals

In studying the married female labor supply, Mroz (1987) suggests a regression of hours
of work (hours) on the log of wages (lwage, the only endogenous variable), household
income excluding the woman’s wage (nwifeinc), years of education (educ), age (age),
and the number of children less than six and greater than six years old (kidslt6 and
kidsge6, respectively). The chosen excluded instruments are the actual labor market
experience and its square (exper and expersq) and the father’s and mother’s years of
education (fatheduc and motheduc). The data consist of 428 women in the labor force.
The IV regression model may be summarized as follows:

hours = θ lwage+ γ0 + γ1nwifeinc+ γ2educ+ γ3age+ γ4kidslt6+ γ5kidsge6+ u

lwage = ρ0 + ρ1exper+ ρ2expersq+ ρ3fatheduc+ ρ4motheduc

+ ρ5educ+ ρ6nwifeinc+ ρ7age+ ρ8kidslt6+ ρ9kidsge6+ v

We examine the effect of lwage on hours of work. We sort the data by lwage because
one might be concerned if this effect is constant across observations. Sorting the data
does not affect Wald and S tests. Independence among observations is assumed, but
the distribution of the error term is heteroskedastic. Because genstest uses a weight
matrix robust to heteroskedasticity by default (hc1), the option is omitted below.

. use http://www.stata.com/data/jwooldridge/eacsap/mroz.dta

. sort lwage

. gmm (hours - {theta}*lwage - {g0} - {g1}*educ - {g2}*nwifeinc - {g3}*age -
> {g4}*kidslt6 - {g5}*kidsge6) if inlf==1, level(90)
> inst(exper expersq fatheduc motheduc educ nwifeinc age kidslt6 kidsge6)

(output omitted )

GMM estimation

Number of parameters = 7
Number of moments = 10
Initial weight matrix: Unadjusted Number of obs = 428
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [90% Conf. Interval]

/theta 1223.656 456.8492 2.68 0.007 472.206 1975.106
/g0 2287.937 522.7613 4.38 0.000 1428.071 3147.803
/g1 -143.8503 52.84411 -2.72 0.006 -230.7712 -56.9295
/g2 -8.466459 4.488806 -1.89 0.059 -15.84989 -1.083031
/g3 -8.105428 8.896522 -0.91 0.362 -22.7389 6.528048
/g4 -261.7084 177.988 -1.47 0.141 -554.4726 31.05575
/g5 -56.63245 48.20149 -1.17 0.240 -135.9168 22.65194

Instruments for equation 1: exper expersq fatheduc motheduc educ nwifeinc
age kidslt6 kidsge6 _cons
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. genstest (hours - <theta>*lwage - {g0} - {g1}*educ - {g2}*nwifeinc - {g3}*age -
> {g4}*kidslt6 - {g5}*kidsge6) if inlf==1,
> inst(exper expersq fatheduc motheduc educ nwifeinc age kidslt6 kidsge6)
> stab wmatrix(hc1) ci(-200 7000, points(60) alpha(0.10))

Test Statistic P-value CI (alpha=.1)

S 26.316010 0.000 [880, 6280]
qLL-S 68.829101 0.006 Rejected Grid
qLL-stab-S 42.513092 0.632 [-80, 280]

Tested null hypothesis vector: <theta> = < 0.000>
Number of Instruments - Included Instruments: 10 - 6
Number of Observations: 428

The difference between the Wald and S confidence intervals for θ indicates the
presence of weak instruments. It is interesting to observe that the S test confidence
interval does not intersect the qLL-S̃ confidence interval. This results in an empty qLL-
S confidence interval and clearly suggests that the effect of lwage on hours of work is
not constant.

This example uses genstest as a stand-alone command. Because genstest uses
the null that all parameters of interest are equal to 0 by default, the option null() is
omitted. In such cases, there is no need to run gmm first (we do so to show the Wald
confidence interval for comparison).

5.2 Example 2: Exponential regression with endogenous regressors

This example corresponds to [R] gmm examples 6, 7, and 8 on pages 591–595 in Stata’s
Base Reference Manual (see StataCorp [2009]). Cameron and Trivedi (2010) model
doctor visits on the basis of the following factors: a patient’s income (income), whether
a patient has a chronic disease (chronic), whether a patient has private insurance
(private), and gender. They use an exponential regression model. The dataset has
demographic information on 4,412 patients. Taking income to be endogenous, one adds
these additional instruments: age and the dummy variables hispanic and black. We
subset the model to include only female patients (there are 2,082 observations). The
components of the empirical moment are

u = docvis− exp(θincome+ γ0 + γ1chronic+ γ2private)

Z = (1, chronic, private, age, black, hispanic)

This Poisson regression model assumes that the residuals are heteroskedastic. Be-
fore performing inference using the genstest command, we sort the data according
to income first and then age because of the possibility that lower- and higher-income
groups have different income effects. We first estimate the parameters using the gmm

command and then run the genstest as a postestimation command.
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. webuse docvisits

. sort income age

. local expr = "exp({theta}*income + {g0} + {g1}*chronic + {g2}*private)"

. gmm (docvis - `expr´) if female==1, inst(age private chronic black hispanic)
> deriv(/theta = -1*income*`expr´) deriv(/g0 = -1*`expr´)
> deriv(/g1 = -1*chronic*`expr´) deriv(/g2 = -1*private*`expr´) level(99)

(output omitted )

GMM estimation

Number of parameters = 4
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 2082
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [99% Conf. Interval]

/theta .0178061 .0038447 4.63 0.000 .0079029 .0277094
/g0 .0791596 .1278643 0.62 0.536 -.250197 .4085162
/g1 .9640517 .076972 12.52 0.000 .7657849 1.162319
/g2 .4172219 .1590262 2.62 0.009 .0075976 .8268461

Instruments for equation 1: age private chronic black hispanic _cons

. genstest, null(last) test(theta) stab sb varS nuisS ci(-0.05 0.05, points(20)
> alpha(0.01))
convergence not achieved

Test Statistic P-value CI (alpha=.01)

S 3.643981 0.303 [.01, .03]
qLL-S 2.02e+02 0.001 [.005, .005]
ave-S 22.440894 0.003 [.005, .015]
exp-S 29.458495 0.001 [.005, .01]
sup-S 35.183634 0.002 [0, .015]
qLL-stab-S 1.98e+02 0.001 [0, .005]
ave-stab-S 18.796914 0.001 [-.01, .01]
exp-stab-S 25.814514 0.001 [-.005, .01]
sup-stab-S 31.539654 0.001 [-.01, .015]

Tested null hypothesis vector: <theta> = < 0.018 >
Number of Instruments - Included Instruments: 6 - 3
Number of Observations: 2082

The null(last) option has genstest test the null hypothesis that θ is equal to its
gmm estimated value. Here it is not necessary to specify the derivative() option in
genstest again, because the command will use the derivative() expression of gmm

and automatically consider theta as the only parameter to be tested. This command
could also have been executed in the following way (assuming it is still being used as a
postestimation command):

. local expr = "exp(<theta>*income + {g0} + {g1}*chronic+ {g2}*private)"

. genstest, null(last) test(theta) deriv(/g0 =-1*`expr´)
> deriv(/g1 = -1*chronic*`expr´) deriv(/g2 = -1*private*`expr´)

We use the options varS and nuisS to reduce computation time of the ave-, exp-,
and sup-S tests. The p-values of the gen-S and gen-S̃ tests indicate that at the 1%
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significance level, we reject H0 : θ = θ̂, where θ̂ is the gmm estimate of θ. We also notice
that the gen-S tests for 99% confidence interval lengths for θ are smaller than the length
of the confidence interval reported by gmm. The reduction is due to imposing stability
restrictions as indicated by the upper bounds of gen-S̃ confidence intervals.

5.3 Example 3: NKPC

The hybrid NKPC is defined by the following equation,

πt = γ +
1

1 + ρ
Et(πt+1) +

ρ

1 + ρ
πt−1 +

(1− φ)2

φ(1 + ρ)
xt + ǫt

where πt is inflation, xt is labor share, and ǫt is a shock. The parameter ρ measures the
degree of indexation to past inflation. The parameter φ is the probability that a firm
will be unable to change its price in a given period (hence, 1/(1−φ) is the average time
over which a price is fixed).

The empirical moment condition derived from the above model is

Z
′

t

{
∆πt − γ − 1

1 + ρ
(πt+1 − πt−1)−

(1− φ)2

φ(1 + ρ)
xt

}

︸ ︷︷ ︸
ut(θ,γ)

where Zt = (1,∆πt−1,∆πt−2, xt−1, xt−2, xt−3), and θ = (ρ, φ).

We illustrate first the estimation of confidence intervals for φ and ρ on the basis of the
generalized S and S̃ tests. We use quarterly data on inflation and labor share. Inflation
is calculated from the gross domestic product deflator, while labor share is obtained
from the Bureau of Labor Statistics and transformed according to the procedure used
in Sbordone (2005). The data comprise information from 1959:2 to 2008:3.

The genstest command is used as a postestimation command. In estimating the
confidence intervals, we restrict the grid search to be between 0 and 1, which corresponds
to the range determined by the economic theory. All the options in genstest are set
according to the gmm command option: a HAC weight matrix with the Bartlett kernel
and the use of recentered moments for computing the HAC with the number of lags
selected according to the optimal method suggested by Newey and West (1994) (see
[R] gmm in Stata 11).6

6. We set 1 as the initial value for estimating φ. The default value for estimating φ using gmm is 0,
which will result in an error message.
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. use nkpc_gmm

. local expr = "{g} - (1/(1 + {rho}))*(F.inf - L.inf) -
> (((1 - {phi=1})^2)/({phi=1}*(1 + {rho})))*ls"

. generate time=q(1947q2)+_n-1 // generate a quarterly series

. format time %tq

. tsset time
time variable: time, 1947q2 to 2008q3

delta: 1 quarter

. generate dinf = inf - L.inf
(1 missing value generated)

. gmm (dinf - `expr´) if time>=tq(1959q2) & time<=tq(2008q3),
> inst(L.dinf L2.dinf L.ls L2.ls L3.ls) wmat(hac nwest optimal) center
warning: 1 missing value returned for equation 1 at initial values

(output omitted )

GMM estimation

Number of parameters = 3
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 197
GMM weight matrix: HAC Bartlett 23

(lags chosen by Newey-West)

HAC
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/g -.0045429 .0049064 -0.93 0.354 -.0141594 .0050735
/rho .3862696 .1429788 2.70 0.007 .1060362 .6665029
/phi .8208458 .0739276 11.10 0.000 .6759503 .9657412

HAC standard errors based on Bartlett kernel with 23 lags.
(Lags chosen by Newey-West method.)

Instruments for equation 1: L.dinf L2.dinf L.ls L2.ls L3.ls _cons

. genstest, init(0 0.76) test(rho) null(last) ci(0.01 0.99, points(20)) stab sb
Note: using the nuisS and/or varS options will decrease computation time for
> the single-break tests.

Test Statistic P-value CI (alpha=.05)

S 3.020303 0.554 [.059, .794]
qLL-S 35.709204 0.173 [.108, .696]
ave-S 12.124914 0.248 [.157, .549]
exp-S 16.133502 0.150 [.255, .5]
sup-S 20.743887 0.192 [.206, .5]
qLL-stab-S 32.688901 0.123 [.01, .941]
ave-stab-S 9.104611 0.101 [.157, .451]
exp-stab-S 13.113198 0.068 [.304, .451]
sup-stab-S 17.723584 0.113 [.255, .451]

Tested null hypothesis vector: <rho> = < 0.386 >
Number of Instruments - Included Instruments: 6 - 2
Number of Observations: 197
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. genstest, test(phi) init(0 0.38) null(last) ci(0.50 0.99, points(20)) stab sb
Note: using the nuisS and/or varS options will decrease computation time for
> the single-break tests.

Test Statistic P-value CI (alpha=.05)

S 2.712954 0.607 [.622, .99]
qLL-S 32.978783 0.310 [.647, .99]
ave-S 12.526473 0.218 [.72, .99]
exp-S 18.453388 0.077 [.818, .99]
sup-S 24.109671 0.082 [.818, .99]
qLL-stab-S 30.265829 0.234 [.573, .99]
ave-stab-S 9.813519 0.069 [.794, .99]
exp-stab-S 15.740433 0.025 [.867, .99]
sup-stab-S 21.396717 0.034 [.843, .99]

Tested null hypothesis vector: <phi> = < 0.821 >
Number of Instruments - Included Instruments: 6 - 2
Number of Observations: 197

The shrinkage in the gen-S confidence intervals relative to the S is due to the stability
restrictions. This reduction is particularly remarkable for the exp-S test.

The next call of the genstest command illustrates how to test multiple parameters.
In this call, we also set a grid search for estimating confidence regions for (ρ, φ) on the
basis of the gen-S tests. The confidence regions are the collection of points (ρ0, θ0) ∈
(0, 1) × (0, 1) in the grid search that do not reject the null hypothesis H0 : (ρ, φ) =
(ρ0, φ0).

. genstest, test(rho phi) null(last) init(0.0) derivative(/g=-1)
> ci(0.01 .99 0.01 0.99, points(10 10)) stab sb
Note: using the nuisS and/or varS options will decrease computation time for
> the single-break tests.

Test Statistic P-value

S 3.043952 0.693
qLL-S 37.768561 0.136
ave-S 12.948586 0.271
exp-S 18.421490 0.110
sup-S 23.887305 0.117
qLL-stab-S 34.724609 0.068
ave-stab-S 9.904634 0.066
exp-stab-S 15.377538 0.029
sup-stab-S 20.843353 0.042

Tested null hypothesis vector: <rho phi> = < 0.386 0.821 >
Number of Instruments - Included Instruments: 6 - 1
Number of Observations: 197
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Example 3 takes longer to run than examples 1 and 2 because the single-break tests
are estimating recursively γ̂ (θ, j), Φ1(θ), and Φ2(θ) 138 times for each point in the grid
search.7 Removing the sb option or adding nuisS and varS will reduce the computation
time significantly.

The confidence sets for the joint hypothesis are shown below for the Wald and S
tests. The graph for the Wald confidence set was created using built-in Stata commands
(test and gmm). The other graph was created using the stored results of the genstest
command. In the same graphs, we plot the confidence intervals of each parameter.
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Figure 1. Wald and S 95%-level confidence sets for φ and ρ in the NKPC. The forcing
variable is the log of the labor share. Instruments: constant, two lags of ∆π, and three
lags of xt. Period: 1960q1–2008q3.

7. It takes approximately three to four minutes to compute confidence intervals for ρ and φ, respec-
tively. In the case of the confidence regions, it takes 16 minutes to test all 100 points of the defined
grid search. The reported times are obtained after executing the code in a PC with Intel(R)
Core(TM) I7-2600 CPU 3.4 GHz processor with 4 GB RAM memory, Windows 7 system with
Stata/IC 12.1.
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Comparing the S confidence set with the results of the Wald test above, we might
suspect the presence of weak instruments: the confidence interval of ρ generated by the
S test covers almost the entire parameter space.

Next we obtain the confidence interval and regions using the ave-S, exp-S, sup-S,
and qLL-S tests. The proposed tests, which are robust to weak instruments, generate
smaller confidence intervals and regions than both the Wald and the S tests.
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Figure 2. gen-S 95%-level confidence sets for φ and ρ in the NKPC. The forcing variable
is the log of the labor share. Instruments: constant, two lags of ∆π, and three lags of
xt. Period: 1960q1–2008q3.

We illustrate the importance of imposing the stability restrictions when performing
inference in figure 3. The ave-S test is a combination of the S and ave-S̃ tests [see
(6)]. In the S-test confidence region graph, the confidence interval for ρ covers almost
the entire parameter space. The range of points in the parameter space that satisfies
the stability restrictions is a small fraction of the range of points that satisfies the S
test, as illustrated by the ave-S̃ confidence region graph. The same explanation can be
extended to explaining the reduction in the range of φ.
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Figure 3. S, ave-S, and ave-S̃ 95%-level confidence sets for φ and ρ in the NKPC. The
forcing variable is the log of the labor share. Instruments: constant, two lags of ∆π,
and three lags of xt. Period: 1960q1–2008q3.

This last example illustrates that in time-series applications, the generalized S tests
improve inference of structural parameters by incorporating information about insta-
bilities in the moment condition without imposing identification restrictions implicitly
assumed by computing the Wald test.
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