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Abstract. The proportion of zeros in event-count processes may be inflated by an
additional mechanism by which zeros are created. This has given rise to statistical
models that accommodate zero inflation; these are available in Stata through the
zip and zinb commands. The Vuong (1989, Econometrica 57: 307–333) test is
regularly used to determine whether estimating a zero-inflation component is ap-
propriate or whether a single-equation count model should be used. The use of the
Vuong test in this case is complicated by the fact that zero-inflated models involve
the estimation of several more parameters than the single-equation models. Al-
though Vuong (1989, Econometrica 57: 307–333) suggested corrections to the test
statistic to address the comparison of models with different numbers of parameters,
Stata does not implement any such correction. The result is that the Vuong test
used by Stata is biased toward supporting the model with a zero-inflation com-
ponent, even when no zero inflation exists in the generative process. We provide
new Stata commands for computing the Vuong statistic with corrections based on
the Akaike and Bayesian (Schwarz) information criteria. In an extensive Monte
Carlo study, we illustrate the bias inherent in using the uncorrected Vuong test,
and we examine the relative merits of the Akaike and Schwarz corrections. Then,
in an empirical example from international relations research, we show that er-
rors in selecting an event-count model can have clear implications for substantive
conclusions.

Keywords: st0319, zipcv, zinbcv, count models, Poisson, zero-inflated Poisson,
negative binomial, zero-inflated negative binomial, Vuong test, AIC, BIC, zip, zinb

1 Introduction

In formulating statistical models, there is an inherent tension between reducing the data
to a parsimonious and comprehensible summary and specifying a model that adequately
captures the complexities in real data (Achen 2005). This balancing act is apparent in
the modeling of event-count data with a seemingly disproportionate number of zeros.
One way that this overabundance could arise is that the presence of zeros is inflated by
an additional process besides the one that influences the counts that are greater than
zero. Regression models for zero-inflated counts offer the benefit of accommodating
multiple theories regarding the presence of zeros (Lambert 1992).

Underlying the choice between conventional-count regression and zero-inflated mod-
eling is the common tension between overfitting and successfully explaining empirical

c© 2013 StataCorp LP st0319
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features of the data. A striking trait of many event-count datasets is the sheer pro-
portion of zeros in the dependent variables. The field of international relations, which
focuses to a great degree on events of an extreme and rare nature, is one in which this
trait is highly prevalent. Data from international conflict and terrorism provide illustra-
tive examples: 89% zeros in Clare (2007), 91% in Kisangani and Pickering (2007), and
97% in Neumayer and Plümper (2011). This characteristic raises an important theo-
retical and empirical question: Is there a process that inflates the probability of a zero
case?

Much is at stake in the answer to this question. A “yes” amounts to more than
just the addition of an explanatory variable—an entire process, in the form of another
equation and several more parameters to estimate, is added to the model. Such an
addition may be warranted if there is strong theoretical reason to expect two processes.
For instance, Clare (2007) presents a theoretical differentiation of international dispute
initiation and escalation. Data-driven, inductive assessments of the presence of multiple
processes can be performed by formally testing whether the added complexity of the
zero-inflated model improves significantly upon the fit of the standard count model. The
validity of this test is critical. A false negative—choosing the standard model when the
zero-inflated model should be used—directs attention away from a separate and striking
component of the data-generating process (DGP). A false positive—incorrectly choosing
the zero-inflated model—causes the erroneous complication of the model through the
addition of an entire equation to the specification.

With this tension in mind, researchers commonly use the Vuong test (Vuong 1989)
to determine whether the zero-inflated model fits the data statistically significantly
better than count regression with a single equation (see Vogus and Welbourne [2003];
Anthony [2005]; Mondak and Sanders [2005]; Clare [2007]; Lee et al. [2007]; Zandersen,
Termansen, and Jensen [2007]; Tiwari et al. [2009]; Nielsen et al. [2010]; Cavrini et
al. [2012]; and Zhang et al. [2012]). In this article, we show that there are problems
with the implementation of this test in Stata. In particular, Vuong (1989) demonstrates
that bias ensues from comparing models with different parameters and suggests using
an information criterion adjustment to correct this bias. The built-in Stata commands
for zero-inflated count models, zip (zero-inflated Poisson (ZIP) regression) and zinb

(zero-inflated negative binomial (ZINB) regression), do not implement a correction to
the Vuong test statistic to account for the added parameters in the zero-inflated model.
The result of having no such correction is that Stata’s computation of the Vuong test
statistic is strongly biased in favor of the more complex model with a zero-inflation
component, even when there is no zero inflation in the true DGP.

We address this problem here by providing new Stata commands, zipcv and zinbcv,
which operate exactly like zip and zinb but add computations of the Vuong test with
two different corrections suggested by Vuong (1989)—one based on the Akaike informa-
tion criterion (AIC) (Akaike 1974) and one based on the Bayesian (Schwarz) information
criterion (BIC) (Schwarz 1978). We show that these commands allow applied researchers
to properly use the Vuong (1989) test to decide between standard and zero-inflated count
models.
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After reviewing zero-inflated models and the details of the commands, we illustrate
the use of zinbcv with an example from research on international disputes. Clare (2007)
shows evidence from a ZINB model that redemocratizing countries with long legacies of
past democratic regimes is more likely to initiate international disputes, while those
with long legacies of past authoritarian regimes follow more cautious foreign policy. We
show that support for these assertions is conditional on the use of the ZINB model; under
a standard negative binomial (NB) model, the length of the previous democratic regime
exerts a small and statistically nonsignificant effect on the expected number of disputes
initiated. Moreover, while the uncorrected Vuong test statistic from zinb selects the
ZINB model (p < 0.05), the test statistic with the BIC correction in zinbcv selects the
NB model (p < 0.05).

2 Zero-inflated count models

The class of zero-inflated count regression models first proposed by Lambert (1992) as
the ZIP model, is a mixture between a generalized linear model (GLM) for the dichoto-
mous outcome that a count Y is equal to zero (such as logit, with covariates z and
coefficients γ) and a conventional event-count GLM (such as a Poisson or NB regression
with covariates x and coefficients β). The likelihood of a single observation is given by
the following equation (Long 1997, 244),

l(y|x, z,β,γ) = P (z′γ)I(y = 0) + {1− P (z′γ)} f(y|x′β)

where P is the cumulative distribution function used to specify the dichotomous outcome
that y > 0, and f is the probability mass function corresponding to the chosen count
model (for example, the Poisson distribution). Using the log link to parameterize f , we
obtain the mean of yi:

µi = {1− P (z′iγ)} exp(x′
iβ)

There are several important properties of this model to note. First, the probabil-
ity of a zero is governed by both the dichotomous and count equations in the model.
Specifically,

Pr(yi = 0) = P (z′iγ) + {1− P (z′iγ)}f(0|x′
iβ)

This is different from the popular hurdle models, first proposed by Mullahy (1986), in
which the probability of a 0 is completely determined by a dichotomous GLM and the
distribution of counts above 0 is governed by a count distribution truncated from below
at 1. Second, the count regression f is not “nested” in the zero-inflated model, because
the model does not reduce to f when γ = 0, in which case the probability of a 0 is
inflated by 0.50. The main implication stemming from these properties is that it is
necessary to compare the zero-inflated model with a simple count model using a test
for nonnested models. The conventional likelihood-ratio test, Wald test, or Lagrange
multiplier test cannot be used (Long 1997).
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2.1 The Vuong test

The Vuong test is designed to compare two models (g1 and g2) fit to the same data
by maximum likelihood. Specifically, it tests the null hypothesis that the two mod-
els fit the data equally well. The models need not be nested, nor does one of the
models need to represent the correct specification. The specific metric of model fit
is the Kullback–Leibler divergence (KLD) (Kullback and Leibler 1951) from the true
model that generated the data (gt). The KLD is a measure of the distance between two
probability distributions, which is the basis of many measures used for model compari-
son and selection, including the AIC (Akaike 1974), the Takeuchi information criterion
(Konishi and Kitagawa 1996), the generalized information criterion (Konishi and Kita-
gawa 1996), and the cross-validated log likelihood (Smyth 2000). The KLD between
models g and gt is denoted DKL(gt||g). The null hypothesis of the Vuong test is

H0 : DKL(gt||g1) = DKL(gt||g2)

The formula for DKL(gt||g), where gt and g are both models for nonnegative integers
(for example, counts), is defined as

DKL(gt||g) =

∞∑

y=0

ln

{
gt(y)

g(y)

}
gt(y)

=

∞∑

y=0

ln {gt(y)} gt(y)−
∞∑

y=0

ln {g(y)} gt(y)

= Egt [ln{gt(y)}]− Egt [ln{g(y)}]

From this, the null hypothesis, H0, can be written as

H0 : DKL(gt||g1)−DKL(gt||g2) = 0

(Egt [ln{gt(y)}]− Egt [ln{g1(y)}])− (Egt [ln{gt(y)}]− Egt [ln{g2(y)}]) = 0

Egt [ln{g1(y)}]− Egt [ln{g2(y)}] = 0 (1)

(1) is the difference in the expected values of the log likelihoods of g1 and g2 when their
parameters are estimated on data generated from gt. Importantly, Egt [ln{g1(y)}] and
Egt [ln{g2(y)}] are not formulated under the assumption that the same sample is used to
estimate the parameters and evaluate the likelihoods. For a sample size N , the Vuong
test is a difference of means test (that is, a paired z test) applied to the N individual
log-likelihood contributions (of the N observations) to g1 and g2. In the context of
testing for zero inflation, the Vuong test is a test for whether the mean observation-wise
difference between the log-likelihood contribution to the zero-inflation model and the
contribution to the standard count model is, on average, greater than zero. Let β̃ be
the estimate of β when the zero-inflation component is not included in the model, β̂ the
estimate of β in the zero-inflation model, and γ̂ the estimate of γ. Let dl be a vector
of length N , such that the ith element is the ith individual log-likelihood difference

dli = ln
{
l
(
yi|xi, zi, β̂, γ̂

)}
− ln

{
f
(
yi|xi

′β̃
)}
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The Vuong test statistic is

Vuong =
(
sdl

√
n
)−1

n∑

i=1

dli

where sdl is the standard deviation of dl. Because 1/N
∑n

i=1 dli is a consistent estimator
of the quantity in (1), under H0, the Vuong test statistic is asymptotically normally
distributed by the central limit theorem (Vuong 1989).

The estimated log likelihood is a consistent estimator of the KLD, which establishes
the consistency and asymptotic normality of the Vuong test statistic. However, the
estimated log likelihood is a biased estimator of the KLD, a result that motivated the
derivation of the AIC (Akaike 1974) and numerous other model fit statistics. This means
that the Vuong test statistic is a biased estimator of the differences in the average fit of
the count model and zero-inflated count model. The bias in the estimated log likelihood
as an estimator of the KLD arises from the fact that the same data are used to estimate
both the parameters of the model (that is, coefficients and standard errors) and the
average value of the log likelihood. This “double dipping” produces a positive bias in
the in-sample log likelihood as an estimator of the KLD (Konishi and Kitagawa 1996).
Intuitively, this bias arises because some of the random noise from the sample gets
treated as nonrandom signal when estimating the KLD with the log likelihood.

It is generally intractable to derive the value of this bias in a finite sample, so model
selection criteria use asymptotic corrections. For example, the AIC uses the correction p
(the number of estimated parameters), which is equal to the asymptotic bias, given that
gt is nested in the fit model. The bias is accentuated when g1 and g2 have a different
number of parameters (p1 and p2, respectively), as is the case when comparing single-
equation and zero-inflated count models. Vuong (1989) suggests adding an average
difference in a selection-criterion-based correction factor to each dli to correct the bias.

For instance, if the correction factor is based on the AIC, the corrected difference in
log likelihoods is given by

dlci = dli +
p2 − p1
N

(2)

Vuong (1989) also provides the BIC correction as

dlci = dli + (p2 − p1)
ln(N)

2N
(3)

Another possibility would be to use an out-of-sample approach to computing the
individual log-likelihood contributions, such as through leave-one-out cross-validation
(for example, Smyth [2000]). Rendering the training and testing data independent of
one another removes the optimistic bias of in-sample measures. We tested such an
approach in the analysis described below and found minimal differences between it and
the asymptotic corrections in (2) (AIC) and especially (3) (BIC). Not surprisingly, these
differences were particularly small as N increased. Because the iterative nature of leave-
one-out cross-validation produces considerable computational costs, we elected not to
include it in the corrections to the Vuong test we examine here.
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3 Monte Carlo simulations

Having outlined the basic premise of zero-inflated models and the Vuong (1989) test, we
next examine via simulation the consequences of failing to correct the Vuong statistic
when comparing standard and zero-inflation count models. The Stata commands zip
and zinb offer the option of reporting a Vuong test statistic, which many researchers
use (for example, Vogus and Welbourne [2003]; Anthony [2005]; Mondak and Sanders
[2005]; Clare [2007]; Zandersen, Termansen, and Jensen [2007]). However, Stata’s doc-
umentation for the Vuong statistic does not mention which adjustment (AIC or BIC) is
used. Stata’s technical support informed us that current versions of Stata do not include
any adjustment. We then verified this by inspection of zip.ado and zinb.ado.1

We study the performance of the Vuong test in selecting between ZIP and Poisson
models and ZINB and NB models. In the simulation study, we examine the consequences
of two important dimensions for the performance of the uncorrected and corrected tests:
first, the sample size, and second, the number of covariates in the inflation component of
the model, both in generating the dependent variable and fitting the zero-inflated mod-
els. We use Stata’s example dataset fish.dta to parameterize the simulation study.
Approximately 57% of the 250 observations in this dataset have a value of 0 on the
dependent variable. To define parameters for the data simulated in the Monte Carlo
study, we first fit zero-inflated models with count as the dependent variable and stan-
dardized versions of nofish, livebait, camper, persons, and child as independent
variables in both the count and inflation components. The linear predictors in the count
components of the models in the Poisson- and NB-based simulations, respectively, are

x′β = 0.734− 0.384nofish+ 0.376livebait+ 0.264camper

+ 0.940persons− 1.004child

and

x′β = 0.515− 0.127nofish+ 0.504livebait+ 0.106camper

+ 1.131persons− 1.013child

In the following equations, the inflation components contain a number of terms
equal to the number of covariates included in the respective condition in the simulation
study. The formulas are given below for the Poisson and negative binomial simulations,
respectively.2

z′γ = −0.157 + 1.73child− 0.669persons− 0.443camper− 0.176livebait

− 0.638nofish

1. Specifically, we verified this with zip.ado version 1.6.11 (6/6/2011) and zinb.ado version 1.7.12
(4/19/2012). Both of these were the current files as of 29 April 2013.

2. In the appendix, we present a replication of this Monte Carlo study using slightly different param-
eterizations and medpar.dta.
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and

z′γ = −1.92 + 2.63child− 1.065persons− 1.23camper+ 0.161livebait

− 0.619nofish

The bias in the observed log likelihood as an estimator of the expected log likelihood,
the resulting bias in the Vuong test statistic, and the bias corrections associated with AIC

and BIC depend upon the sample size and the difference in the number of parameters
in the two models under comparison (Konishi and Kitagawa 1996). Accordingly, the
two conditions on which we focus are the sample size and the number of variables in
the inflation component of the model. We examine sample sizes of 200, 500, and 3,000.
In terms of the number of parameters, we vary the inflation component in two ways.
First, we run simulations in which there is no zero inflation, drawing the outcomes from
the Poisson and NB models, and study the performance of the three test variants when
one, three, and five covariates are incorrectly included in the inflation component. We
then run a second variant in which there is zero inflation and examine the performance
of the tests when one, three, and five covariates are correctly included in the inflation
component. Each of the 36 conditions (3 sample sizes × 3 covariate specifications × 2
inflation/no inflation × 2 distributions) is run for 1,000 iterations.3

Figures 1–2 present the results of the simulations under the condition of no zero in-
flation. The plots illustrate the results of hypothesis tests derived from the uncorrected,
AIC-corrected, and BIC-corrected Vuong statistics. The graphs depict the distribution
of significance test results based on the Vuong test comparing standard to zero-inflated
count models with the respective correction. To demonstrate interpretation of the plots,
we walk through the results conveyed in panel (a) of figure 1. Panel (a) gives the results
for the simulations with a sample size of 200 and a single covariate incorrectly included
in the inflation component of the ZIP model. The AIC-corrected test statistically signif-
icantly (at the 0.05 one-tailed level) selects the single-equation Poisson model around
67% of the time, supports the Poisson model (though not significantly) approximately
30% of the time, and supports the two-equation ZIP model (though not significantly)
approximately 3% of the time. The BIC-corrected test statistically significantly selects
the Poisson model about 97% of the time and supports the Poisson model (though not
significantly) approximately 3% of the time. The Vuong test without a correction sup-
ports the Poisson model (though not significantly) approximately 45% of the time and
supports the ZIP (though not significantly) approximately 55% of the time.

3. We performed all the computations presented in this section in Stata/SE 11.1 and Stata/IC 12.1.
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Figure 1. Monte Carlo results with Poisson simulations. The plots depict the distri-
bution of significance test results based on the Vuong test comparing Poisson to ZIP

models with the respective correction across varying sample sizes and numbers of co-
variates incorrectly included in the inflation component.
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Figure 2. Monte Carlo results with NB simulations. The plots depict the distribution of
significance test results based on the Vuong test comparing NB to ZINB models with the
respective correction across varying sample sizes and numbers of covariates incorrectly
included in the inflation component.

When there is no zero inflation in the DGP, the BIC-corrected statistic performs the
best, and the uncorrected statistic performs the worst. The BIC-corrected statistic is
statistically significantly negative (p < 0.05, one tailed)—in favor of the single-equation
model—in 95–100% of the iterations. In contrast, the uncorrected Vuong statistic is
positive in more than 80% of the iterations and statistically significantly in favor of the
zero-inflated NB model in 5–60% of the iterations. The poor performance of the uncor-
rected test depends heavily on sample size and the number of covariates included in the
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inflation component.4 However, it is particularly critical to note that not once in the
simulation runs without zero inflation did the uncorrected test result in a statistically
significant rejection of the zero-inflated model. The AIC-corrected test performs mod-
erately better in the no-inflation condition. In 20–60% of iterations, the zero-inflated
model is statistically significantly rejected, and the single-equation model is virtually
never rejected. However, the degree to which the AIC favors the single-equation count
model decreases with the number of covariates incorrectly included in the inflation com-
ponent.

Figures 3 and 4 present results in which zero inflation is a component of the genera-
tive process. In the Poisson-based simulations, all the tests perform equally well, nearly
always rejecting the single-equation model. However, when it comes to the NB-based
simulations, the uncorrected Vuong statistic performs the best in selecting the correctly
specified model—nearly always statistically significantly rejecting the single equation
model. The AIC-corrected test performs moderately well in the small sample (N = 200)
conditions, significantly favoring the zero-inflated model in 40–50% of the iterations and
virtually always statistically significantly selecting the zero-inflation model in the larger
sample-size conditions. The performance of the BIC-corrected statistic—performing the
worst among the three when ZINB is the correct model—varies substantially across the
sample size and covariate conditions. The tendency for the BIC-corrected statistic to sta-
tistically significantly reject NB is inversely related to the number of covariates correctly
included in the zero-inflation component and directly related to the sample size.

4. Specifically, the smaller the sample and the larger the number of covariates incorrectly included in
the inflation component, the more likely the uncorrected test is to statistically significantly reject
the zero-inflated model.



820 Testing for zero inflation in count models

0 20 40 60 80 100
Cumulative Percent

None

BIC

AIC

0 20 40 60 80 100
Cumulative Percent

None

BIC

AIC

0 20 40 60 80 100
Cumulative Percent

None

BIC

AIC

(a) Sample size = 200 (b) Sample size = 500 (c) Sample size = 3,000
Inflation covariates = 1 Inflation covariates = 1 Inflation covariates = 1

0 20 40 60 80 100
Cumulative Percent

None

BIC

AIC

0 20 40 60 80 100
Cumulative Percent

None

BIC

AIC

0 20 40 60 80 100
Cumulative Percent

None

BIC

AIC

(d) Sample size = 200 (e) Sample size = 500 (f) Sample size = 3,000
Inflation covariates = 3 Inflation covariates = 3 Inflation covariates = 3

0 20 40 60 80 100
Cumulative Percent

None

BIC

AIC

0 20 40 60 80 100
Cumulative Percent

None

BIC

AIC

0 20 40 60 80 100
Cumulative Percent

None

BIC

AIC

(g) Sample size = 200 (h) Sample size = 500 (i) Sample size = 3,000
Inflation covariates = 5 Inflation covariates = 5 Inflation covariates = 5

z ≤ −1.65 −1.65 < z ≤ 0 0 < z ≤ 1.65 1.65 < z

Figure 3. Monte Carlo results with ZIP simulations. The plots depict the distribution
of significance test results based on the Vuong test comparing Poisson to ZIP models
with the respective correction across varying sample sizes and numbers of covariates
correctly included in the inflation component.
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Figure 4. Monte Carlo results with ZINB simulations. The plots depict the distribution
of significance test results based on the Vuong test comparing NB to ZINB models with
the respective correction across varying sample sizes and numbers of covariates correctly
included in the inflation component.

Our simulation study illustrates two important points regarding the use of the Vuong
test for choosing between zero-inflated and single-equation count models. First, failure
to correct for the additional parameters estimated in the zero-inflation model by using
the uncorrected Vuong statistic results in a substantial tendency toward erroneously
rejecting the single-equation model when there is no zero inflation in the generative
process. In small to moderate sample sizes with five or more covariates included in the
inflation component, this tendency can exceed 40%. Second, the AIC and BIC correc-
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tions exhibit their usual relative strengths. The BIC correction is better at conclusively
supporting the more parsimonious single-equation model when it is appropriate, and
the AIC is better at conclusively supporting the more extensively specified zero-inflated
model when it is appropriate. Moreover, neither the AIC- nor the BIC-corrected tests
exhibit the extreme tendency toward statistical significance in the wrong direction that
is exhibited by the uncorrected statistic when there is no zero inflation in the generative
process. In larger samples, the BIC-corrected test appears to exhibit an advantage in
that it both performs very well at rejecting the zero-inflated model when there is no
zero inflation and rejecting the single-equation model when zero inflation is present.
In contrast, the AIC-corrected test does not perform well at rejecting the zero-inflation
model when there is no zero inflation, even in our large-sample conditions.

4 Model selection in international relations

Having shown the problem with the uncorrected Vuong statistic with simulation and the
corresponding improvements offered by the AIC or BIC correction, we now turn to their
application to data from recent work using event-count models in international relations
(Clare 2007).5 Our objectives here are to demonstrate that the different implementa-
tions of the Vuong test for zero inflation can produce considerably different results in
an applied setting and to provide an illustration of our zinbcv command.6 In addition
to illustrating the use of the new command, we show that the selection made by the
test is critical to our understanding of important processes, such as conflict behavior.

4.1 The data

Clare (2007) examines the conflict behavior of democratizing regimes. He posits that
redemocratizing states are more likely to initiate conflict, especially when there is a
longer democratic history in the state. In contrast, he expects a stronger authoritarian
legacy to correspond with less initiation of conflict. Clare’s (2007) primary theoretical
claim is that leaders of democratizing states face varying degrees of threat of losing power
to the old authoritarian regime because of failed foreign policy. Thus democratizing
states have more freedom to maneuver in foreign policy decision making when the
authoritarian legacy is weak and less freedom when it is strong.

Using nation-year as the unit of analysis for the period 1950–1990, Clare (2007)
models the count of disputes initiated by a state in a given year as a function of several
independent variables, including indicators for the regime type (see Clare [2007, 267]),
and measures of the duration of the most recent authoritarian and democratic regimes.
The core test of the theory comes through the interaction of redemocratization—an
indicator for a state that is in the process of democratizing—and each of these two

5. The data for this example in Stata format are publicly available at the Journal of Peace Research
replication data archive:
http://www.prio.no/Journals/Journal/?x=2&content=replicationData#2007.

6. The zipcv command works in exactly the same way as zinbcv, so we only show the latter to
conserve space.
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regime duration measures. Clare (2007) expects the interaction between redemocra-
tization and duration of the most recent authoritarian regime to produce a negative
coefficient, which indicates a drop in the expected number of disputes initiated when
the past authoritarian legacy is longer. In contrast, he expects redemocratization ×
duration of the most recent democratic regime to produce a positive coefficient, which
indicates an increase in the expected number of disputes initiated when the past demo-
cratic regime is longer.

4.2 Computing the Vuong test

Clare (2007) uses the ZINB model in estimation because 89% of the 3,955 cases in the
data contain a 0 on the dependent variable.7 He also reports the uncorrected Vuong
test statistic of 3.22, which corresponds to a statistically significant selection of the ZINB

over the NB (p ≈ 0.001). However, this test statistic is problematic because it does not
correct for additional parameters from the inflation equation. To obtain the corrected
test statistics, as well as the results of the zinb routine, we use zinbcv in the exact
same way as zinb:

7. He includes the same set of covariates in the count and inflation equations.
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. use clare-monadic-replication.dta

. zinbcv init_count stable_dem1 stable_aut1 redem1 redem1_pautdur1
> redem1_pdemdur1 growth prop_demsregion1 riots1,
> inflate(stable_dem1 stable_aut1 redem1 redem1_pautdur1 redem1_pdemdur1
> growth prop_demsregion1 riots1) vuong nolog

Zero-inflated negative binomial regression Number of obs = 3955
Nonzero obs = 442
Zero obs = 3513

Inflation model = logit LR chi2(8) = 98.05
Log likelihood = -1541.107 Prob > chi2 = 0.0000

init_count Coef. Std. Err. z P>|z| [95% Conf. Interval]

init_count
stable_dem1 .0792226 .2257374 0.35 0.726 -.3632145 .5216598
stable_aut1 .3562161 .2275137 1.57 0.117 -.0897026 .8021349

redem1 .9875878 .7367568 1.34 0.180 -.4564291 2.431605
redem1_pautdur1 -.1189129 .0615584 -1.93 0.053 -.2395651 .0017393
redem1_pdemdur1 .0721211 .0428799 1.68 0.093 -.011922 .1561642

growth .0000189 2.05e-06 9.22 0.000 .0000149 .000023
prop_demsregion1 -1.434321 .2373772 -6.04 0.000 -1.899572 -.9690703

riots1 .0270679 .0126341 2.14 0.032 .0023056 .0518302
_cons -1.671941 .2222414 -7.52 0.000 -2.107526 -1.236356

inflate
stable_dem1 -12.35688 595.2899 -0.02 0.983 -1179.104 1154.39
stable_aut1 1.260302 1.375148 0.92 0.359 -1.434939 3.955542

redem1 4.442412 5.332937 0.83 0.405 -6.009953 14.89478
redem1_pautdur1 -.5272241 .5540954 -0.95 0.341 -1.613231 .5587829
redem1_pdemdur1 .6353599 .4939444 1.29 0.198 -.3327533 1.603473

growth -.0000544 .0000169 -3.22 0.001 -.0000876 -.0000213
prop_demsregion1 -16.1701 10.59818 -1.53 0.127 -36.94215 4.601959

riots1 -.2118948 .1103174 -1.92 0.055 -.428113 .0043234
_cons -.4104956 1.399768 -0.29 0.769 -3.15399 2.332999

/lnalpha -.4193847 .3544373 -1.18 0.237 -1.114069 .2752996

alpha .6574512 .2330252 .3282207 1.316925

Vuong test of zinb vs. standard negative binomial: z = 3.22 Pr>z = 0.0006
Pr<z = 0.9994

with AIC (Akaike) correction: z = 1.77 Pr>z = 0.0386
Pr<z = 0.9614

with BIC (Schwarz) correction: z = -2.80 Pr>z = 0.9974
Pr<z = 0.0026

. display e(vuong)
3.219827

. display e(vuongAIC)
1.7674489

. display e(vuongBIC)
-2.7950052

This prints all the information users are accustomed to seeing with zinb, but also
includes the corrected versions of the Vuong statistic under the uncorrected version.
Additionally, the exact values are stored in e(vuongAIC) and e(vuongBIC). In this
case, the Vuong test statistic with the AIC correction is 1.77, which still corresponds
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to a statistically significant selection of the zero-inflated model (p ≈ 0.04). However,
the Vuong test statistic with the BIC correction is −2.80, which represents a significant
selection of the standard NB model (p ≈ 0.003). In short, there is considerable variation
in the results from the Vuong test. However, given the results from our above simulation
and the relatively large sample size, we place more weight on the BIC-corrected Vuong
test and conclude that the more parsimonious NB is the appropriate model.

4.3 Implications of the results

Table 1 summarizes results from both the ZINB and NB models. Notice first that the
original ZINB shows support for Clare’s (2007) hypotheses. In particular, the coefficient
on redemocratization×duration of the most recent authoritarian regime is negative, the
coefficient on redemocratization×duration of the most recent democratic regime is pos-
itive, and both are statistically significant. This indicates that in states that are tran-
sitioning to democracy, a longer legacy of authoritarian rule contributes to a decline in
the number of disputes initiated, while a longer legacy of democratic rule corresponds
with an increase in disputes. Additionally, these effects are substantively meaningful.
As Clare (2007, 270–271) notes, an increase of 1 year in the duration of the previous
authoritarian regime corresponds to an 11% drop in the expected number of disputes,
while the same increase for democratic regimes produces an 8% increase in the expected
number of disputes.
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Table 1. ZINB and NB results from Clare (2007)

Variable ZINB NB

Stable democracy 0.08 −0.09
(0.23) (0.22)

Stable autocracy 0.36∗ 0.14
(0.23) (0.20)

Redemocratization 0.99 0.95∗

(0.74) (0.43)
Redemocratization × −0.12∗ −0.10∗

Duration of most recent authoritarian regime (0.06) (0.04)

Redemocratization × 0.07∗ 0.03
Duration of most recent democratic regime (0.04) (0.03)

Economic growth 1.9e−5∗ 2.1e−5∗

(2.1e−6) (2.3e−6)
Riots 0.03∗ 0.04∗

(0.01) (0.01)
Other democratic countries in the region −1.43∗ −0.76∗

(0.24) (0.21)
Intercept −1.67∗ −2.02∗

(0.22) (0.21)

N (zeros) 3,955 (3,514) 3,955 (3,514)

Vuong (uncorrected) 3.22∗

Vuong (AIC) 1.77∗

Vuong (BIC) −2.80∗

Note: Cell entries report coefficient estimates with standard errors in parentheses for Clare (2007)

original ZINB model estimates and a replication using NB. Positive Vuong test statistic values

indicate a selection of the ZINB model, and negative values indicate a selection of the NB model.
∗ p < 0.05 (one-tailed).

However, note that the coefficients on each of these interaction terms decline in
magnitude in the NB model with redemocratization×duration of the most recent demo-
cratic regime dropping by more than half the value of the ZINB estimate. Furthermore,
this latter coefficient is no longer statistically significant at the 0.05 level in the NB

model. We assess the substantive implications of this in figure 5. Both graphs plot the
expected number of disputes initiated by redemocratizing regimes on the y axis at the
minimum and maximum values of duration of the most recent democratic regime (0 and
41 years, respectively). The third bar plots the difference between these two estimates.
Panel (a) gives results from the ZINB model, and panel (b) shows NB results. Note that
the difference is large (≈ 6 disputes) if ZINB is used but small (< 1 dispute) with the
better-fitting NB. Thus at least half of the support for the original theory depends on



B. A. Desmarais and J. J. Harden 827

using the ZINB model instead of the standard NB. This is problematic in light of the
fact that the BIC-corrected Vuong test clearly supports the rejection of the ZINB model.

(a) ZINB

(b) NB

Figure 5. Change in the expected number of disputes initiated by redemocratizing states
from the minimum (0 years) to maximum (41 years) observed value of duration of the
most recent democratic regime. The difference is large (≈ 6 disputes) if the ZINB model
is used but small (< 1 dispute) with the better-fitting standard NB.
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5 Conclusions

In formulating and evaluating statistical models of event-count processes, we encounter
an inherent tension between developing a parsimonious summary of the data and ac-
counting for meaningful empirical peculiarities. Because these processes are often de-
fined on events that are relatively rare, such as dispute initiation, scholars regularly
confront datasets with many zeros on the dependent variable. An important question
stemming from this characteristic centers on whether some of these zeros arise because
of an additional generative mechanism. If so, the proper inferential method is to fit
a count model with a zero-inflation equation to account for the second process. This
added complexity comes with a risk; statistically, specifying an inflation equation when
one is not needed reduces the efficiency of the estimator and convolutes interpretation.
Perhaps worse, theoretically, the inclusion of an additional equation in the model focuses
researchers’ efforts on a potentially erroneous account of the process under study.

A common response to this tension is the use of Vuong (1989) nonnested model-
selection procedure, which provides a test statistic that can be used to compare standard
and zero-inflated count models fit to the same data. We show there are problems with
the current implementation of this test in applied research. In particular, the Vuong
test executed in Stata’s zip and zinb commands does not implement any correction for
the added parameters estimated for the inflation equation, which leads to a test that
favors the zero-inflated models, even when there is no zero inflation in the generative
process. We solve this problem with the zipcv and zinbcv commands. These commands
include all the functionality of the zip and zinb commands that are currently in Stata
but report the uncorrected, AIC-corrected, and BIC-corrected Vuong test statistics.

Finally, in a replication analysis, we apply the findings from the simulation stud-
ies to real data. Results show that the process of selecting between competing, count
models can have implications for substantive conclusions from results on international
political processes. In the presence of nontrivial model dependence shown in the ex-
ample, researchers need statistically sound criteria on which to make decisions. The
suggestions given here provide such criteria for scholars in selecting between standard
and zero-inflated count models.
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A Appendix: Simulations using medpar.dta

Here we replicate our Monte Carlo simulation using Stata’s example dataset for the ztnb
(zero-truncated NB) command, medpar.dta, to parameterize the simulation study. The
settings in this replication of the simulation study differ in a few ways from the original
version. First, the sample sizes differ slightly. Second, we use fewer variables in the
count and inflation components such that the sets of variables in each equation are
disjoint. Third, the dataset used to select parameter values has relatively fewer zeros.

Approximately 8% of the 1,495 observations in medpar.dta have a value of 1 on the
dependent variable. We generate zeros by subtracting 1 from the dependent variable
before proceeding with the simulation study. To define parameters in the simulation
study, we first fit ZINB and ZIP models with los − 1 as the dependent variable and
standardized versions of hmo, age, and type1 as independent variables in the count
component and died, white, and age80 as independent variables in the inflation com-
ponent. The linear predictors in the count components of the models from which the
outcome is simulated in the Poisson- and NB-based simulations, respectively, are

x′β = 0.249− 0.039hmo− 0.016age− 0.168type1

and
x′β = 2.22− 0.035hmo− .0013 age− 0.164type1

The inflation components contain a number of terms in the following equations equal to
the number of covariates included in the respective condition in the simulation study.
The formulas are again given for the Poisson and NB simulations, respectively.
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z′γ = −2.94 + 1.12died+ 0.190white− 0.096age80

and
z′γ = −15.5 + 10.0died+ 0.315white− 0.101age80

In this version of the simulation study, we examine sample sizes of 300, 700, and
2,000. In terms of the number of parameters, we vary the inflation component in two
ways. First, we run the simulation without zero inflation in the DGP and study the
performance of the three test variants when one, two, and three covariates are incorrectly
included in the inflation component. We then run a second variant in which there is zero
inflation and examine the performance of the tests when one, two, and three covariates
are correctly included in the inflation component. Each of the 36 conditions (3 sample
sizes × 3 covariate specifications × 2 inflation/no inflation × 2 distributions) is run for
1,000 iterations.8

Figures 6–7 present the results of the simulations with medpar.dta. As in the
simulations from section 3, when there is no zero inflation in the DGP, the BIC-corrected
statistic performs the best, and the uncorrected statistic performs the worst. The
BIC-corrected statistic is statistically significantly negative (p < 0.05, one tailed)—
in favor of the single-equation model—in 95–100% of the iterations. In contrast, the
uncorrected Vuong statistic is positive in approximately 80% or more of the iterations.
Unlike the simulations in section 3, under this design, the uncorrected test is rarely
statistically significant in favor of the zero-inflated model. However, just as in the
previous simulations, not once did the uncorrected test result in a statistically significant
rejection of the zero-inflated model. The AIC-corrected test performs moderately better
in the no-inflation condition. In approximately 45–65% of the iterations, the zero-
inflated model is statistically significantly rejected, and the single-equation model is
virtually never rejected. However, as we found before, the degree to which the AIC favors
the single-equation count model decreases with the number of covariates incorrectly
included in the inflation component.

8. We performed all the computations presented in this section in Stata/SE 11.1 and Stata/IC 12.1.
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(a) Sample size = 300 (b) Sample size = 700 (c) Sample size = 2,000
Inflation covariates = 1 Inflation covariates = 1 Inflation covariates = 1

(d) Sample size = 300 (e) Sample size = 700 (f) Sample size = 2,000
Inflation covariates = 2 Inflation covariates = 2 Inflation covariates = 2

(g) Sample size = 300 (h) Sample size = 700 (i) Sample size = 2,000
Inflation covariates = 3 Inflation covariates = 3 Inflation covariates = 3

z ≤ −1.65 −1.65 < z ≤ 0 0 < z ≤ 1.65 1.65 < z

Figure 6. Monte Carlo results with Poisson simulations (medpar.dta). The plots depict
the distribution of significance test results based on the Vuong test comparing Poisson
to ZIP models with the respective correction across varying sample sizes and numbers
of covariates incorrectly included in the inflation component.
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(a) Sample size = 300 (b) Sample size = 700 (c) Sample size = 2,000
Inflation covariates = 1 Inflation covariates = 1 Inflation covariates = 1

(d) Sample size = 300 (e) Sample size = 700 (f) Sample size = 2,000
Inflation covariates = 2 Inflation covariates = 2 Inflation covariates = 2

(g) Sample size = 300 (h) Sample size = 700 (i) Sample size = 2,000
Inflation covariates = 3 Inflation covariates = 3 Inflation covariates = 3

z ≤ −1.65 −1.65 < z ≤ 0 0 < z ≤ 1.65 1.65 < z

Figure 7. Monte Carlo results with NB simulations (medpar.dta). The plots depict
the distribution of significance test results based on the Vuong test comparing NB to
ZINB models with the respective correction across varying sample sizes and numbers of
covariates incorrectly included in the inflation component.

Figures 8 and 9 present results in which zero inflation is a component of the gener-
ative process. In this condition, the uncorrected Vuong statistic performs the best in
selecting the correctly specified model—nearly always statistically significantly reject-
ing the single-equation model. The AIC-corrected test performs fairly well in the small-
sample (N = 300) conditions, significantly favoring the zero-inflated model in 60–80%
of the iterations, but virtually always statistically significantly selects the zero-inflation
model in the larger sample-size conditions. The performance of the BIC-corrected statis-
tic, which performs the worst among the three statistics when zero inflation is the correct
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model, varies substantially across the sample-size and covariate conditions. As we found
above, the tendency for the BIC-corrected statistic to statistically significantly reject the
single-equation model is inversely related to the number of covariates correctly included
in the zero-inflation component and directly related to the sample size.

(a) Sample size = 300 (b) Sample size = 700 (c) Sample size = 2,000
Inflation covariates = 1 Inflation covariates = 1 Inflation covariates = 1

(d) Sample size = 300 (e) Sample size = 700 (f) Sample size = 2,000
Inflation covariates = 2 Inflation covariates = 2 Inflation covariates = 2

(g) Sample size = 300 (h) Sample size = 700 (i) Sample size = 2,000
Inflation covariates = 3 Inflation covariates = 3 Inflation covariates = 3

z ≤ −1.65 −1.65 < z ≤ 0 0 < z ≤ 1.65 1.65 < z

Figure 8. Monte Carlo results with ZIP simulations (medpar.dta). The plots depict the
distribution of significance test results based on the Vuong test comparing Poisson to
ZIP models with the respective correction across varying sample sizes and numbers of
covariates correctly included in the inflation component.
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(a) Sample size = 300 (b) Sample size = 700 (c) Sample size = 2,000
Inflation covariates = 1 Inflation covariates = 1 Inflation covariates = 1

(d) Sample size = 300 (e) Sample size = 700 (f) Sample size = 2,000
Inflation covariates = 2 Inflation covariates = 2 Inflation covariates = 2

(g) Sample size = 300 (h) Sample size = 700 (i) Sample size = 2,000
Inflation covariates = 3 Inflation covariates = 3 Inflation covariates = 3

z ≤ −1.65 −1.65 < z ≤ 0 0 < z ≤ 1.65 1.65 < z

Figure 9. Monte Carlo results with ZINB simulations (medpar.dta). The plots depict
the distribution of significance test results based on the Vuong test comparing NB to
ZINB models with the respective correction across varying sample sizes and numbers of
covariates correctly included in the inflation component.




