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Little’s test of missing completely at random

Cheng Li
Northwestern University
Evanston, IL
chengli2014@u.northwestern.edu

Abstract. In missing-data analysis, Little’s test (1988, Journal of the American
Statistical Association 83: 1198-1202) is useful for testing the assumption of miss-
ing completely at random for multivariate, partially observed quantitative data. I
introduce the mcartest command, which implements Little’s missing completely
at random test and its extension for testing the covariate-dependent missingness.
The command also includes an option to perform the likelihood-ratio test with
adjustment for unequal variances. I illustrate the use of mcartest through an
example and evaluate the finite-sample performance of these tests in simulation
studies.

Keywords: st0318, mcartest, CDM, MAR, MCAR, MNAR, chi-squared, missing
data, missing-value patterns, multivariate, power

1 Introduction

Statistical inference based on incomplete data typically involves certain assumptions for
the missing-data mechanism. The validity of these assumptions requires formal evalu-
ation before any further analysis. For example, likelihood-based inference is valid only
if the missing-data mechanism is ignorable (Rubin [1976), which usually relies on the
missing at random (MAR) assumption. MAR assumes that the missingness of the data
may depend on the observed data but is independent of the unobserved data. There-
fore, testing MAR is in general impossible because it requires unavailable information
about the missing data. Instead, the missing completely at random (MCAR) assumption
assumes that the missingness of the data is independent of both the observed and the
unobserved data, which is stronger than MAR and possible to test using only the ob-
served data. When the missing-data mechanism depends on the unobserved data, data
are missing not at random (MNAR). Although the likelihood inference only requires the
MAR assumption, testing of MCAR is still of interest in real applications because many
simple missing-data methods such as complete-case analysis are valid only under MCAR
(see [Little and Rubin 2002, chap. 3]; also see the blood-test example in section 4).
Also the maximum likelihood estimation for the multivariate normal model may be
more sensitive to the distributional assumption when the data are not MCAR (Little
1988).

In this article, I present a new command, mcartest. It implements the x? test of
MCAR for multivariate quantitative data proposed by [Little (1988), which tests whether
significant difference exists between the means of different missing-value patterns. The
test statistic takes a form similar to the likelihood-ratio statistic for multivariate normal

© 2013 StataCorp LP st0318



796 Little’s MCAR Test

data and is asymptotically x2? distributed under the null hypothesis that there are no
differences between the means of different missing-value patterns. Rejection of the null
provides sufficient evidence to indicate that the data are not MCAR. The command also
accommodates the testing of the covariate-dependent missingness (CDM) assumption,
a straightforward extension of Little’s MCAR test when covariates are present. It also
allows unequal variances between different missing-value patterns.

2 Methods and formulas
2.1 MCAR, MAR, MNAR, and CDM

First, I introduce the formal definitions of the four missing-data mechanisms. Suppose
we have an independent and identically distributed sequence of p-dimensional vectors
Yi = (Wi, ¥ip) i =1,2,...,n, where n is the sample size, and Y = (y,,...,y,) " is
the n xp data matrix. Hereafter, we are mainly interested in testing whether Y is MCAR.
Denote the observed entries and missing entries of Y as Y, and Y ,,, respectively. In
some situations, we may also have completely observed g-dimensional covariates .
Let X be the n x ¢ data matrix of covariate values. Let the p-dimensional vector
r, = (i, .. ,m-p)—r denote the indicator of whether each component in vector y; is
observed; that is, r;z = 1 if y;1 is observed, and 7;; = 0 if y;% is missing fori =1,2,...,n
and k = 1,2,...,p. The stacked matrix of r is R = (ry,...,7,) . Then the MAR
assumption is defined as

Pr(R|Y m,Yo,X) =Pr(R|Y,, X) (1)

In other words, the distribution of the missing indicators depends only on the observed
data.

The stronger assumption of MCAR is defined as
Pr(R|Y m,Yo,X)=Pr(R) (2)

which implies that the missing indicators are completely independent of both the miss-
ing data and the observed data. Note that here R is also independent of covariates
X, as suggested by [Littld (1995). This means that under the MCAR assumption, the
missingness should be totally independent of any observed variables. Instead, if R only
depends on covariates X,

Pr(R|Y 1, Yo, X) = Pr(R|X) (3)

then [Littld (1995) suggests that (B be referred to as CDM (Fitzmaurice et al! 2009,
chap. 17), while the term “MCAR” is reserved for ([2)). It is worth noting that according
to the definition, CDM is a special case of MAR because covariates x are always fully
observed. Finally, any missing-data mechanism that does not satisfy (IJ) is MNAR.
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2.2 Test of MCAR

In Little’s test of MCAR (Littld 11988), the data y;, ( = 1,2,...,n) are modeled as
p-dimensional multivariate normal with mean vector p and covariance matrix 3, with
part of the components in y,’s missing. When the normality is not satisfied, Little’s
test still works in the asymptotic sense for quantitative random vectors y,’s but is not
suitable for categorical variables (Little [1988). We suppose that there are a total of
J missing-value patterns among all y,’s. For each pattern j, let o; and m; be the
index sets of the observed components and the missing components, respectively, and
p;j = |oj| be the number of observed components in pattern j. Furthermore, let Ko,
and ¥, be the p; x 1-dimensional mean vector and the p; X p; covariance matrix of
only the observed components for the jth missing pattern, and let Yo, (p; x 1) be the
observed sample average for the jth missing pattern. Finally, let I; C {1,2,...,n} be

the index set of pattern j in the sample, and let n; = |I,|; then Z'jjzl n; =n.

Little’s X2 test statistic for MCAR takes the following form:
J
d% = Z nj (goj - l’l’Oj)ngjl (yoj - l'l'oj) (4)
j=1

The idea is that if the data are MCAR, then conditional on the missing indicator r;, the
following null hypothesis holds,

Ho:  yo lri~N(po,, o) it iel;;1<j<J (5)
where Mo, 1s a subvector of the mean vector .

Instead, if () is not true, then conditional on the missing indicator r;, the means
of the observed y’s are expected to vary across different patterns, which implies

Hy: yo7i|’l'iNN(l/oj,on) if ’LEI],IS,]SJ (6)

where v,,,j7 = 1,2,...,J are mean vectors of each pattern j and can be distinct.
Rejecting () is sufficient for rejecting the MCAR assumption (Z)), but not necessary.

Littld (1988) proves that the statistic (] is the likelihood-ratio statistic for testing
@) against (@]). If the normality assumption holds, then d3 follows x? distribution with
degrees of freedom (d.f.) = Z}]=1 pj—p. If y;’s are not multivariate normal but have the
same mean p and covariance matrix 3, then by the multivariate central limit theorem
(see, for example, part (c) of the lemma in [Little [1988]), under the null assumption of

MCAR, d3 follows the same x? distribution asymptotically.
In practice, because p and ¥ are usually unknown, [Littld (1988) proposes to replace

them with the unbiased estimators i and ¥ = n3%/(n — 1), where fi and & are the
maximum likelihood estimators based on the null hypothesis (I). Thus X,, in @) is

replaced by the submatrix f]oj of f], which gives

J
_ ~ el ~
d2 = an (yoj - u’t)j)Tzoj (ij - I‘I’Oj) (7)
j=1
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Asymptotically, d? follows x? distribution with d.f. = Z}I=1 pj —p, and ([d)) is rejected if

d*> > x%; (1 — ), where « is the significance level. 11 and 3 can be obtained from the
expectation-maximization (EM) algorithm using the observed data Y, (Little and Rubin
2002; [Schafer 11997).

2.3 Test of CDM

A natural extension of Little’s test of MCAR is to test the CDM assumption (B of y;
conditional on x; when covariates x;’s are present. For simplicity, we assume that x;
contains the constant term 1 as one of its components. If y depends linearly on a, then
the model becomes

y=Bx+e¢

where B is a p X ¢ matrix of coefficients, and € ~ N(0,X). Under the homoskedasticity
assumption, 3 does not depend on ®. When we compare this with the model without
covariates, we see we need to replace every unconditional mean of y with the conditional
mean of y given x and test whether the coefficient matrix B varies among different
missing patterns. The 2 test statistic (@) now becomes

2 = Z Z (B 2 — Bo,; ) =, (B,,jsci - Bojmi)

ZZ ( _BOJ)ngjl (EOJ_BOj)wi (8)

where B,, is a p; X ¢ submatrix of B, whose rows correspond to the jth missing pattern,

and Boj is the ordinary least-squares estimator of B, using the observed data from
pattern j. It is straightforward to see that d2 in (@) is a special case of d3 in (§) when
x only contains the constant component 1.

Accordingly, we are now testing the null hypothesis
Hy: y07i|ri,azi~N(Bojmi,on) if ZEIJ,IS_]SJ (9)
Versus
Hi : yo’i|’)“i,il:iNN(D0j.’Bi,on> if zte,lgng (10)

where under Hy, the CDM assumption does not hold, and Yo, = D,z + ¢ for pattern j,
with D, potentially different among all patterns but with the error terms still sharing
the same multivariate distribution N (0, X).

In practice, we replace B and X in (8)) with unbiased estimators Band ¥ =n3/(n—
q), where B and % are the maximum likelihood estimators using all data under Hy,
and calculate

= i: >zl (E’Oj - Bo])T 2, (f?o]» - on) ; (11)

j=liel;
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which asymptotically follows y? distribution with d.f. = q(Z;.Izlpj —p), and (@) is
rejected if d? > Xif.(l — «), where « is the significance level. Again, when there
are no covariates and @ only contains the constant component 1 with ¢ = 1, then
d.f. = Z;-Izl pj — p, which coincides with the d.f. in the test of MCAR.

2.4 Adjustment for unequal variances

As [Little (1988) points out, one important limitation of d? in (@) and (1)) is that the
covariance matrix of observed y (or observed y conditional on ) is still the same for all
missing-value patterns even in the alternative hypotheses (@) and (I0). This assumption
may not be satisfied in general, especially when the number of missing patterns is large.
Therefore, we can relax this limitation on covariance matrices and replace the alternative
hypothesis with

Hy: yo’i\ri,mi ~ N(Doj:ci,l"oj) if 7€ Ij,]. <7< J (12)

where T, contains distinct parameters for each missing pattern j. To test (@) against
([I2), we can derive the following likelihood-ratio statistic as in [Littld (1988),

J
~—1 ~
B = A+ 0y {0 (80,8, ) = p; — log|So,| +10g [0, |} (13)
j=1

where d? is the same as in () without covariates or (II)) with covariates, S, is the
estimated covariance matrix of residuals from the regression of observed y, on z in

~

pattern j, 3o, is the same as in (7)), and “aug” stands for “augmented” because more
parameters need to be estimated for covariance matrices in the new test. Asymptoti-
cally, d2,,, follows x? distribution with d.f. = q(ZjZl pj —p)+ Zj:l{pj (p; +1)}/2—
{p(p+1)}/2, and (@) or @) is rejected if d3,, > x3¢ (1 —a), where a is the significance
level. This augmented test using dgug tends to have higher power than the test using
d? for large sample sizes, especially when the covariance structures of different missing-
value patterns vary a lot, as shown later in our simulation results in section 5. On the
other hand, diug may not be applicable if some patterns have too small sample sizes
such that n; < p; +¢: S, will then be singular, and hence, log|S,,| in the expression

of diug cannot be computed.

3 The mcartest command

3.1 Description

mcartest performs Little’s x? test for the MCAR assumption and accommodates arbi-
trary missing-value patterns. depvars contains a list of variables with missing values to
be tested. depvars requires at least two variables. indepvars contains a list of covari-
ates. When indepvars are specified, mcartest tests the CDM assumption for depvars
conditional on indepvars (see |Little [1995]). The test statistic uses multivariate normal
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estimates from the EM algorithm (see [MI] mi impute mvn). The unequal option per-
forms Little’s augmented 2 test, which allows unequal variances between missing-value
patterns. See [Littld (1988) for details.

3.2 Syntax

Test for MCAR

mcartest depvars [zf] [m} [, noconstant unequal emoutput em,optz'ons]
Test for cDM

mcartest depvars = indepvars [zf} [m] [, noconstant unequal emoutput

em_options ]

3.3 Options

noconstant suppresses constant term.

unequal specifies that unequal variances between missing-value patterns be allowed. By
default, the test assumes equal variances between different missing-value patterns.

emoutput specifies that intermediate output from EM estimation be displayed.

em_options specifies the options in EM algorithm. See [MI] mi impute mvn (StataCorp
2013) for details.

3.4 Stored results

mcartest saves the following in r():

Scalars
r(N) number of observations r(chi2) Little’s x? statistic
r(N_S_em) number of unique r(df) x2 d.f.
missing-value patterns r(p) x2 p-value
4 Example

I illustrate the use of the mcartest command through an example. The fictional dataset
used here is the blood-test results in a study of obesity that contains 371 observations
and 11 variables: cholesterol level, triglyceride level, diastolic blood pressure, systolic
blood pressure, age, gender, height, weight, exercise time in a week, alcohol, and smok-
ing. Suppose the variables of interest are the first four, coded as chol, trig, diasbp,
and sysbp, and the other seven are used as auxiliary variables, coded as age, female,
height, weight, exercise, alcohol, and smoking. Descriptions of these variables are
shown in table [
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Table 1. Descriptions of the variables

Name Type Description

chol  Continuous Cholesterol level
trig Continuous Triglyceride level
diasbp Continuous Diastolic blood pressure
sysbp Continuous Systolic blood pressure
age  Categorical 1 if 21-30, 2 if 31-40, 3 if 41-50, 4 if above 50
female Categorical 1 if female, 0 if male
height Continuous Height in inches
weight Continuous Weight in pounds
exercise Discrete  Exercise in hours per week
alcohol Categorical 1 if drinking alcohol, 0 if not
smoking Categorical 1 if smoking, 0 if not

After loading the data, we can check the missing-value patterns by using misstable.

. use bloodtest
(fictional blood test data)

. misstable summarize

Obs<.
Unique
Variable Obs=. Obs>. Obs<. values Min Max
chol 90 281 265 187.73 224.57
trig 70 301 280 103.22 136.21
diasbp 34 337 24 66 90
sysbp 73 298 32 106 138

. misstable pattern, freq

Missing-value patterns
(1 means complete)

Pattern
Frequency 1 2 3 4

122 11 1 1

72 11 1 0
70 1 0 1 1
55 11 0 1
34 o1 1 1
18 11 0 0
371

Variables are (1) diasbp (2) trig (3) sysbp (4) chol
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The results suggest that the dataset contains missing values in the first four variables,
but all the other variables are completely observed. Of the 371 observations, 122 are
complete, while over 2/3 of the observations contain missing values, with 6 missing-value

patterns in total that are not monotone.

Now we can determine whether the data are MCAR using the mcartest command.
Suppose in the beginning, we do not include any of the auxiliary variables in the analysis
and only apply Little’s MCAR test to chol, trig, diasbp, and sysbp. We try both the
regular MCAR test and the test with unequal variances.

. mcartest chol trig diasbp sysbp, emoutput nolog

Expectation-maximization estimation

Prior: uniform

Number obs
Number missing
Number patterns

Obs per pattern: min

Observed log likelihood = -2623.2645 at iteration 17

chol trig diasbp sysbp
Coef
_cons 206.2264  120.5829 78.8161 121.196
Sigma
chol 41.91012  22.33289  3.762825 3.48862
trig 22.33289 42.08035 6.622086  10.69249
diasbp 3.762825 6.622086  18.45518  14.37273
sysbp 3.48862  10.69249  14.37273  35.92427
Little"s MCAR test
Number of obs = 371
Chi-square distance = 25.7412
Degrees of freedom = 14
Prob > chi-square = 0.0279

371

267

6

18
61.83333
122

We specified the emoutput option to display the EM estimates and also suppressed
the log using the nolog option of em_options. If the EM algorithm does not converge,
mcartest will generate a warning message in blue, similar to what mi impute mvn does.
EM has converged in this test. The regular Little’s MCAR test gives a 2 distance of
25.74 with d.f. 14 and p-value 0.0279. The test provides evidence that the missing data
in the four variables of interest are not MCAR under significance level 0.05.

We can also specify the unequal option to run the test with unequal variances.

. mcartest chol trig diasbp sysbp, unequal

Little”s MCAR test with unequal variances

Number of obs

= 371

Chi-square distance = 56.7101

Degrees of freedom

41

Prob > chi-square = 0.0522
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This test gives a x? distance of 56.71 with d.f. 41 and p-value 0.0522. The p-value
is only slightly larger than 0.05, indicating that although the evidence against MCAR is
not strong, the power of the test could possibly be low. Both tests cast doubts on the
MCAR assumption.

Next we add auxiliary variables as covariates into the test and test the CDM assump-
tion. Note that age is grouped into four brackets and female has two groups, so we
use the factor variables i.age and i.female in the test. We also specify the emoutput
option to display the EM estimates of the linear regression coefficients.

. mcartest chol trig diasbp sysbp = weight i.age i.female, emoutput nolog

Expectation-maximization estimation Number obs = 371
Number missing = 267

Number patterns = 6

Prior: uniform Obs per pattern: min = 18
avg = 61.83333

max = 122

Observed log likelihood = -2477.8319 at iteration 24

chol trig diasbp sysbp
Coef
weight .0898433 .1155952 .0035606 .0315919
1b.age 0 0 0 0
2.age | -.0790635 -.598354 .0120911 -.6006885
3.age | -.3147961 -.6971391 -.4392923 -1.07614
4.age | -2.220313 -2.172395 .4254206  -.582046
Ob.female 0 0 0 0
1.female 2.10565 -4.386112 -4.315367 -2.971464
_cons 191.5976  103.5614  79.32499  117.3274
Sigma
chol 38.04902  15.04927  2.537881 1.435059
trig 15.04927  21.60197 -.5490975  1.695223
diasbp 2.537881 -.5490975  14.83308  10.89443
sysbp 1.435059  1.695223 10.89443 32.07185
Little"s CDM test
Number of obs = 371
Chi-square distance = 89.4992
Degrees of freedom = 84
Prob > chi-square = 0.3204

This CDM test gives a x? distance of 89.50 with d.f. 84 and p-value 0.3204. We
find that for this dataset, adding age, female, and weight as covariates can pass the
CDM test. The EM outputs in the table give the EM estimates of the multivariate linear
regression of chol, trig, diasbp, and sysbp on weight, age, and female, including
the regression coefficients (Coef) and the covariance matrix of the errors (Sigma). For
comparison, we also run the test with all the seven auxiliary variables as covariates.
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. mcartest chol trig diasbp sysbp = weight height exercise i.age i.female
> i.alcohol i.smoking

Little’s CDM test

Number of obs = 371
Chi-square distance = 141.1465
Degrees of freedom = 140
Prob > chi-square = 0.4569

This CDM test gives a x? distance of 141.15 with d.f. 140 and p-value 0.4569. Both
CDM tests are highly nonsignificant, which implies that although chol, trig, diasbp,
and sysbp are not MCAR, the missing-data mechanism can be reasonably viewed as
CDM given the auxiliary variables age, female, and weight. Therefore, for this dataset,
any analysis of chol, trig, diasbp, and sysbp using only the 122 completely observed
samples without adjusting the effect of the auxiliary variables is not valid because the
MCAR assumption is violated. The means of these four variables are significantly dif-
ferent in the 122 completely observed samples and in the other samples that contain
missing values. On the other hand, the plausible CDM assumption implies that the
means of these four variables change linearly with the auxiliary variables. For example,
the mean level of the cholesterol level changes from case to case with linear dependence
on the subject’s weight, age, and gender, and the linear regression coefficients are dis-
played in the foregoing output of EM estimates. Because CDM is a special case of MAR
(as mentioned in section 2.1), this example also implies that simple methods such as
complete-case analysis do not necessarily work under the more general MAR assumption.

As suggested by [Littld (1995), because in real applications, no information about the
covariates is known beforehand, it seems preferable to include all possible covariates in
the model. However, including more covariates will increase the x? d.f. considerably, as
can be seen in this example, which could make the estimation less efficient and the test
less powerful. Therefore, we need to balance between the limited sample size and the
number of covariates and choose the appropriate MCAR or CDM assumption for testing.

5 Simulation study

In this section, I evaluate the performance of Little’s x? test of MCAR and CDM through
simulation studies. In general, when the true missing-data mechanism is MCAR, the
empirical rejection probability of Little’s test of MCAR fits well with the nominal signif-
icance level, with a stable performance even for small samples, different proportions of
missing values, and different numbers of variables with missing values. This was found
in Littld (1988) and [Kim and Bentled (2002) and confirmed by my own simulations,
which are not included here. However, for Little’s test of CDM, the natural extension
of the MCAR test, it remains unclear whether increasing the number of covariates has
an impact on its finite sample performance. I explored this by simulating the following
model,
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T
-
Y2 : €2
Tq
where B is a p x (¢ — 1) matrix of all 1s, x1,22,...,24—1 are independent N(0,1)

variables, and the error terms follow

() 6)-6s 7))

y1 is MCAR with probability 0.5, and ¥y is always completely observed, yielding
two missing-value patterns. y = (y1,%2) ' is tested for CDM with auxiliary variables
(covariates) @ = (1,...,274-1) . The number of covariates ¢ — 1 (constant term not
included) varies among 0, 1, 2, 5, 10, and 20, and the sample size increases from 100,
250, and 500 to 1,000. For each scenario, 10,000 Monte Carlo replications are used.
Under the null hypothesis (@), d? in () asymptotically follows x? distribution with
d.f. = q. At significance level a = 0.05, I report the empirical rejection probability of the
CDM test in table 2l The Monte Carlo standard errors are displayed in the parentheses
right after each rejection rate.

Table 2. Empirical rejection rates of the CDM test with o = 0.05

Covariates x? d.f. Sample size
100 250 500 1000
0 1 0.051 (0.002) 0.043 (0.002) 0.050 (0.002) 0.048 (0.002)
1 2 0.051 (0.002) 0.052 (0.002) 0.050 (0.002) 0.052 (0.002)
2 3 0.044 (0.002) 0.049 (0.002) 0.049 (0.002) 0.048 (0.002)
5 6 0.045 (0.002) 0.049 (0.002) 0.050 (0.002) 0.051 (0.002)
10 11 0.036 (0.002) 0.045 (0.002) 0.046 (0.002) 0.047 (0.002)
20 21 0.023 (0.001) 0.039 (0.002) 0.045 (0.002) 0.046 (0.002)

Table 2l shows that in this model, when the number of covariates is small, the em-
pirical rejection rate of Little’s CDM test is sufficiently close to the nominal level 0.05
with a sample size of 100 or 250. However, as the number of covariates increases to 10
and 20, the empirical rejection rate is much lower than the nominal level 0.05 when the
sample size is 100 or 250. Therefore, in small samples, the CDM test tends to be more
conservative when the number of covariates is large.
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It is also of interest to compare the performance of Little’s MCAR test statistic
d? with that of the augmented test statistic, daug, when the covariance matrices vary
among different missing-value patterns. I simulated the following simple model without

covariates,
Y1 0 1 05
(yz)NN{ (0)’(0.5 1)}

where yo always remains complete through all observations, and y; is missing with
probability 0.5 based on the missing mechanisms below. In principle, we can compare
both the rejection probabilities when the null hypothesis () or (@) is satisfied by the
true model and the power of these tests when the null is violated. The alternative
hypothesis could be either ([I0) or (IZ) and will be covered by the five cases below. In
the following, ®(-) is the cumulative distribution function of the standard normal, and
®~1() is its inverse.

1. (MCAR) y; is MCAR with probability 0.5.

2. (MAR) y; is missing if and only if ®71(0.1) < y2 < 0 or y2 > ®71(0.9).
3. (MAR) y; is missing if and only if |ya| > ®71(0.75).

4. (MNAR) y; is missing if and only if ®71(0.2) <y; <0 or y; > ®71(0.8).
5. (MNAR) y; is missing if and only if |y;| > ®71(0.75).

Note that y; is missing with probability 0.5 in all five cases, yielding two missing-value
patterns, and we always test the full vector of y = (y1,52)". Therefore, the true
missing-data mechanism of case 1 corresponds to MCAR. Case 2 and case 3 are MAR.
Case 4 and case 5 are MNAR. The covariance structures of two missing-value patterns
are the same in cases 1, 2, and 4 by symmetry and different in cases 3 and 5. Under the
null hypothesis (@), d? in (@) asymptotically follows x? distribution with d.f. = 1, and
diug in (I3) asymptotically follows x? distribution with d.f. = 2. T report the empirical
rejection rates of both tests at significance level a = 0.05 using sample sizes 100, 250,
500, and 1,000 based on 10,000 Monte Carlo replications for each of the five missing-
data mechanisms. The results are summarized in table Bl The Monte Carlo standard
errors are displayed in the parentheses right after each rejection rate.
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Table 3. Empirical rejection rates when o = 0.05 for d? and d?

aug
Missingness Test Sample size
of y1 statistic 100 250 500 1000
Case 1 (MCAR) d?>  0.051 (0.002) 0.043 (0.002) 0.050 (0.002) 0.048 (0.002)
diug 0.053 (0.002) 0.048 (0.002) 0.050 (0.002) 0.050 (0.002)
Case 2 (MAR) d>  0.182 (0.004) 0.346 (0.005) 0.566 (0.005) 0.851 (0.004)
dgug 0.184 (0.004) 0.303 (0.005) 0.490 (0.005) 0.780 (0.004)
Case 3 (MAR) d>  0.052 (0.002) 0.051 (0.002) 0.051 (0.002) 0.050 (0.002)
dzug 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
Case 4 (MNAR) d?>  0.363 (0.005) 0.728 (0.004) 0.953 (0.002) 0.999 (0.000)
diug 0.292 (0.005) 0.626 (0.005) 0.916 (0.003) 0.998 (0.000)
Case 5 (MNAR) d?  0.050 (0.002) 0.053 (0.002) 0.048 (0.002) 0.052 (0.002)
dgug 0.261 (0.004) 0.572 (0.005) 0.882 (0.003) 0.996 (0.001)

We can compare the results from d? and dfmg in table[3 In case 1, where y; is MCAR,
the empirical rejection rates for both d? and d2, ug are close to the nomlnal level. Case 2
(MAR) and case 4 (MNAR) also behave similarly, though the power of d? seems to be
slightly higher than daug This is not surprising because in the true model, covariance
matrices of the two missing patterns are exactly the same, and daug is less efficient
because it estimates two covariance matrices separately. However, in either case 3
(MAR), where y; is missing if |yz| > ®71(0.75), or case 5 (MNAR), where y; is missing
if |y1| > ®71(0.75), the missing data and the observed data have the same mean zero
but different variances. As a result, the empirical rejection rates from d? are very low,
indicating weak power of Little’s test in these two situations. The power of d? does
not improve significantly even if we increase the sample size to 1,000. Instead, after
adjustment for unequal variances, daug has much higher power, and the power increases
to 1 as the sample size increases from 100 to 1,000. This implies that d? may not be
reliable when the difference between missing-value patterns does not lie in their means,
while dgug can overcome this weakness when the covariance structure varies significantly
across different missing-value patterns.

Although the augmented test for unequal variances has better power in some situ-
ations, such as case 3 and case 5 of the model above, it may be too conservative with
small sample sizes and complicated missing-value patterns. In the extreme case, accord-
ing to (I3)), daug cannot be computed when some missing-value patterns contain too few
observations. In the following, I simulate the same example from [Littld (1988) and
compare the finite sample performance of d? and diug with more complicated missing-

value patterns. Little (1988) considers a multivariate normal model with four variables,
Yy = (y1,Y2, 93, y4)T, generated by

B o= 2

y2 = 21vV0.9+4 25v0.1
Yys = 21V0.2+2’2\/0.1+23V0.7
Ya = —21V0.6 4+ 22v0.25 + 23v0.1 + 24v0.05
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where z1, 22, z3, and 24 are independent standard normal random variables. We only
observe y1, Y2, y3, and y4 but not z1, 22, 23, and z4, and the missing-data mechanism
of Y1, y2, ¥3, and y4 is MCAR. For y = (y1,y2,¥3,%4) ', Little (1988) considers seven
missing-value patterns in total, which can be represented by the missing indicator vector
r = 1111, 1110, 1100, 1101, 1001, 1011, and 1010. For example, » = 1110 means that
Y1, Y2, and y3 are observed and y, is missing. The proportions of the seven missing-value
patterns in the sample are 0.4, 0.1, 0.1, 0.1, 0.1, 0.1, and 0.1, respectively. We examine
the empirical rejection rates of d2 and diug using sample sizes 100, 250, 500, 1,000, and
2,000 based on 10,000 Monte Carlo replications. The results are summarized in table (]
and the Monte Carlo standard errors are displayed in the parentheses.

Table 4. Empirical rejection rates when a = 0.05 for d? and diug

Test Sample size
statistic 100 250 500 1000 2000

d>  0.043 (0.002) 0.047 (0.002) 0.054 (0.002) 0.051 (0.002) 0.049 (0.002)
d2,;  0.213 (0.004) 0.096 (0.003) 0.070 (0.003) 0.060 (0.002) 0.053 (0.002)

Given these seven missing-value patterns, the x? d.f. for d? and diug are 15 and 42,
respectively. The results in table[d suggest that with too many parameters in the covari-
ance matrices to estimate, the empirical rejection rates for diug are too conservative and
get close to the nominal level 0.05 only when the sample size is 2,000. In comparison,
d? has already achieved acceptable accuracy when the sample size is 250. This im-
plies that dgug may not perform as well as d? in small samples when the missing-value
patterns become more complicated. Moreover, as pointed out in [Little (1988), dﬁug
may be sensitive to departure from the normality assumption because dgug involves the
comparison of variances, while simulation results in [Littld (1988) suggest that d? is rel-
atively robust to nonnormality of the data. Therefore, the augmented test works best
for nearly multivariate normal data when the covariance structure differs significantly
among missing-value patterns and a sufficient number of observations are available in

each pattern.
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6 Conclusion

In this article, I presented the mcartest command, which implements Little’s x? test
of the MCAR assumption or the CDM assumption. The methodology is mainly based
on [Little (1988) and can be extended to testing the CDM assumption when covariates
are included in the test. The command also allows adjustment for unequal variances
through the unequal option. I demonstrated how to use this command and the caveats
of choosing covariates through an example. Finally, I examined the performance of the
MCAR and CDM tests, compared the strengths and weaknesses of the regular test and
the test with unequal variances by simulation, and provided some suggestions for how
to use them in practice.
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