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Abstract. It is usual in time-to-event data to have more than one event of
interest, for example, time to death from different causes. Competing risks models
can be applied in these situations where events are considered mutually exclusive
absorbing states. That is, we have some initial state—for example, alive with
a diagnosis of cancer—and we are interested in several different endpoints, all
of which are final. However, the progression of disease will usually consist of
one or more intermediary events that may alter the progression to an endpoint.
These events are neither initial states nor absorbing states. Here we consider
one of the simplest multistate models, the illness-death model. stpm2illd is a
postestimation command used after fitting a flexible parametric survival model
with stpm2 to estimate the probability of being in each of four states as a function
of time. There is also the option to generate confidence intervals and transition
hazard functions. The new command is illustrated through a simple example.

Keywords: st0316, illdprep, stpm2illd, survival analysis, multistate models, flexible
parametric models

1 Introduction

It is usual in time-to-event data to have more than one event of interest, for example,
time to death from different causes. If we treat these events as mutually exclusive
endpoints where the occurrence of an event is final, then we can apply a competing
risks model (Prentice et al. 1978; Colzani et al. 2011; Hinchliffe and Lambert 2013a,b).
These endpoints are known as absorbing states, and we model the time to each of these
from some initial state, for example, alive with a diagnosis of cancer. However, the
progression of disease will usually consist of one or more intermediary events that may

c© 2013 StataCorp LP st0316



760 Flexible parametric illness-death models

alter the progression to an endpoint (Putter, Fiocco, and Geskus 2007). These events
cannot be classified as initial states or absorbing states and so are known as transient
states or intermediate states.

Illness-death models are a special case of multistate models, where individuals start
out healthy and then may become ill and go on to die. In theory, some patients may
recover from an illness and become healthy again (Andersen, Abildstrom, and Rosthøj
2002). This is known as a bidirectional illness-death model. We will consider only the
unidirectional model as illustrated in figure 1.

The two main measures of interest for analyses of this type are the transition hazards
and the probability of being in each state as a function of time. The transition hazards
can inform us about the impact of risk factors on rates of illness and disease or mortality.
Additionally, the probabilities of being in each state provide an absolute measure on
which to base prognosis and clinical decisions (Koller et al. 2012). The purpose of this
article is to explain how to set up the data using illdprep in a format that allows
flexible parametric survival models (stpm2) to estimate transition hazards. Using the
postestimation command stpm2illd, we can then obtain both the probability of being
in each state as a function of time and the confidence intervals for each.

Figure 1. Unidirectional illness-death model
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2 Methods

Figure 1 shows a graphical representation of a unidirectional illness-death model. The
states are represented with a box and given a number from one to four. The transitions
are represented by arrows going from one state to another. In total, there are three
transitions labeled from one to three. We represent a transition from state i to j by
i → j; therefore, the transition hazards are denoted on the diagram as α13, α12, and
α24 (Putter, Fiocco, and Geskus 2007). If T denotes the time of reaching state j from
state i, we denote the hazard rate (transition intensity) of the i→ j transition by

αij = lim
∆t→0

Pr(t ≤ T < t+∆t | T ≥ t)

∆t
(1)

Currently, most applications of illness-death models involve the Cox model. How-
ever, we are interested in parametric estimates and so advocate the use of the flexible
parametric survival model, first proposed by Royston and Parmar (2002). The approach
uses restricted cubic spline functions to model the baseline log cumulative hazard. It
has the advantage over other well-known models such as the Cox model because it pro-
duces smooth predictions and can be extended to incorporate complex time-dependent
effects, again through the use of restricted cubic splines. The Stata implementation of
the model using stpm2 is described in detail elsewhere (Lambert and Royston 2009).

The transition hazard rates in (1) can be obtained from the flexible parametric
survival model. This could be done by fitting separate models for each of the three
transitions, but this would not allow for shared parameters. It is possible to fit one model
for all three transitions simultaneously by stacking the data so that each individual
patient has up to three rows of data, dependent on how many transitions each patient
is at risk of.

Table 1 shows four cancer patients of varying ages who are all at risk of both relapse
of their cancer and death. Relapse can be considered an intermediary event, whereas
death is final and thus an absorbing state. Patient 1, aged 44, is at risk of both relapse
and death for 2.4 years until the patient relapses and goes on to die after 7.6 years.
Patient 2, aged 68, is at risk of both relapse and death for 9 years until the patient dies
and is no longer at risk of relapse. Patient 3, aged 52, is at risk of both relapse and
death until the patient is censored at 6.1 years. Finally, patient 4, aged 38, is at risk
of both relapse and death for 4.6 years until the patient relapses and is at risk of death
until being censored at 13.8 years.

To model all three transitions simultaneously, we need to set up the data as shown
in table 2. The data have been expanded so that each patient now has up to three rows
of data. As shown in figure 1, transition 1 goes from alive and well to dead, transition 2
goes from alive and well to ill, and transition 3 goes from ill to dead. Patient 1 is at
risk of both relapse (state 2) and death (state 3) for 2.4 years when the patient relapses.
The patient is then at risk of death with relapse (state 4) from 2.4 years to 7.6 years,
when he or she dies. Patient 2 is at risk of both relapse (state 2) and death (state 3) for
9 years until the patient dies and is no longer at risk of relapse. Because patient 2 never
experienced a relapse, the patient is never at risk of experiencing state 4. Therefore, in
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the expanded data, he or she has only two rows of data. Patient 3 is at risk of both
relapse (state 2) and death (state 3) for 6.1 years when the patient is censored from the
study. Again, because patient 3 never experienced a relapse, the patient is never at risk
of experiencing transition 3 and thus has only two rows of data. Finally, patient 4 is at
risk of both relapse (state 2) and death (state 3) for 4.6 years when he or she relapses.
The patient is then at risk of death with relapse (state 4) from 4.6 years to 13.8 years
when the patient is censored.

Table 1. Standard dataset with relapse and survival times (years) for four patients

ID Age Relapse time Relapse indicator Survival time Death indicator

1 44 2.4 1 7.6 1
2 68 9.0 0 9.0 1
3 52 6.1 0 6.1 0
4 38 4.6 1 13.8 0

Table 2. Expanded dataset with transition indicators and start and stop times (years)
for four patients

ID Age Trans 1 Trans 2 Trans 3 Status Start Stop

1 44 1 0 0 0 0 2.4
1 44 0 1 0 1 0 2.4
1 44 0 0 1 1 2.4 7.6

2 68 1 0 0 1 0 9.0
2 68 0 1 0 0 0 9.0

3 52 1 0 0 0 0 6.1
3 52 0 1 0 0 0 6.1

4 38 1 0 0 0 0 4.6
4 38 0 1 0 1 0 4.6
4 38 0 0 1 0 4.6 13.8

The transition hazard rates can be transformed into the probability of being in each
of the four states (state occupation probabilities) through the following relationships.
Notice that as in the competing risks setting, there is not a one-to-one correspondence
between the transition hazards and the transition probabilities: the latter is a function
of multiple transition hazards.
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The probability of being alive and well will depend on both the transition rate from
alive to dead [α13(t)] and the transition rate from alive to relapse [α12(t)]. An individual
needs to have survived both death (state 3) and illness (state 2) to remain in the state
representing alive and well. This is essentially the survival probability where both death
and illness are considered events.

P (alive and well at time t) = exp



−

t∫

0

α13(s) + α12(s)ds



 (2)

When estimating the probability of being alive with illness, we have to consider not
only the probability of getting ill but also the probability of remaining alive with the
illness (that is, of not moving to state 4). The probability of being ill is a function of the
transition hazard from alive (state 1) to ill (state 2) and the probability of being alive
and well from (2). The probability of remaining alive with the illness (that is, staying
in state 2) is the survival function for the transition from ill to death (transition 3 in
figure 1).

P (alive with illness at time t) =

t∫

0

(ill at time s)

× P (survive with illness from s to t)ds

=

t∫

0

α12(s) exp



−

s∫

0

α13(u) + α12(u)du





× exp



−

t∫

s

α24(u)du



 ds (3)

The probability of dying without illness is a function of the transition hazard from
alive (state 1) to dead (state 3) and the probability of being alive and well from (2).

P (dead without illness at time t) =

t∫

0

α13(s) exp



−

s∫

0

α13(u) + α12(u)du



 ds (4)

Finally, the probability of dying with illness can be estimated by subtracting the
probability of being in each of the other three states from 1.

P (dead with illness at time t) = 1− P (alive and well at time t)− P (ill at time t)

− P (dead without illness at time t) (5)

To get the overall probability of death at time t, we add P (dead without illness
at time t) and P (dead with illness at time t). Confidence intervals can be calculated
for each of these probabilities using the delta method (Carstensen 2006; Lambert et al.
2010).
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3 The illdprep command

The illdprep command is used before stset and stpm2 to set the data up in the
format needed for illness-death models as shown in table 2 in section 2.

3.1 Syntax

illdprep, id(varlist) statevar(varlist) statetime(varlist)
[
status(varname)

transname(varlist) addtime(real)
]

3.2 Options

id(varlist) specifies the name of the ID variable in the dataset. Before the command is
used, each ID number should have just one row of data. The command will expand
the data so that each ID number will have up to three rows of data. id() is required.

statevar(varlist) specifies the names of the two event-indicator variables needed to
split the data. As demonstrated in figure 1 and table 2, an indicator variable will
be needed to specify whether a patient has become ill and whether a patient has
died. Because death is a final absorbing state, this must come last in the varlist.
So, for example, if we were interested in relapse and death and our event-indicator
variables were relapse and dead, then we would specify statevar(relapse dead)

in that order. statevar() is required.

statetime(varlist) specifies the names of the two event-time variables. The vari-
ables should be input in the order that corresponds to statevar(varlist). So if
our event-time variables were relapsetime and survtime, then we would specify
statetime(relapsetime survtime) in that order to correspond with the example
given for statevar(varlist). statetime() is required.

status(varname) allows the user to specify the name of the newly generated status
variable as shown in table 2.

transname(varlist) allows the user to specify the names of the newly generated tran-
sition indicators. The default for these is trans1, trans2, and trans3. The user
must specify these in the order that corresponds with figure 1. varlist must contain
three variable names.

addtime(real) specifies an amount to add to the death time when event times are tied.
For example, if a patient both relapses and dies at the same time in the data, then
the user could add 0.1 to the death time so that the stset command does not drop
the third transition. The specified value will obviously depend on the time units in
the data.
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4 The stpm2illd command

The stpm2illd command is a postestimation command used after stpm2 to obtain the
predictions given in (2), (3), (4), and (5) in section 2. The names specified in newvarlist

coincide with the order of the transitions entered in the options.

4.1 Syntax

stpm2illd newvarlist, trans1(varname #
[
varname # ...

]
) trans2(varname #

[
varname # ...

]
) trans3(varname #

[
varname # ...

]
)
[
obs(integer) ci

mint(real) maxt(real) timename(varname) hazard hazname(varlist) combine
]

4.2 Options

trans1(varname #
[
varname # ...

]
) . . . trans3(varname #

[
varname # ...

]
)

requests that the covariates specified by the listed varname be set to # when pre-
dicting the hazards for each transition. The transition numbers correspond to those
in the diagram above. Therefore, trans1() relates to the transition from alive to
dead, trans2() relates to the transition from alive to ill, and trans3() relates to
the transition from ill to dead. trans1(), trans2(), and trans3() are required.

obs(integer) specifies the number of observations (of time) to predict for. The default
is obs(1000). Observations are evenly spread between the minimum and maximum
value of follow-up time. Note: Because the command uses numerical integration,
if the number of specified observations is too small, then it may result in biased
estimates.

ci calculates a 95% confidence interval for the probabilities of being in each state and
stores the confidence limits in prob newvar lci and prob newvar uci.

mint(real) specifies the minimum value of follow-up time. The default is set as the
minimum event time from stset.

maxt(real) specifies the maximum value of follow-up time. The default is set as the
maximum event time from stset.

timename(varname) is the name given to the time variable used for predictions. The
default is timename( newt). Note that this is the variable for time that needs to be
used when plotting curves for the transition hazards and probabilities.

hazard predicts the hazard function for each transition.

hazname(varlist) allows the user to specify the names for the transition hazards if
the hazard option is chosen. These will then be stored in variables called h var.
The default is hazname(trans1 trans2 trans3), which cause variables h trans1,
h trans2, h trans3 to be created. varlist must contain three variable names.
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combine allows the user to combine the probabilities of being in states 3 and 4 to give
the overall probability of death. If this option is specified, then the user only needs to
specify three names in newvarlist. The last name given in the list should correspond
to the combined probability of states 3 and 4. So, for example, if we write alive

ill dead in the newvarlist, then the probability of being in each state as a function
of time will be stored as prob alive, prob ill, and prob dead.

5 Example

The Rotterdam breast cancer data used in this example are taken from Royston and
Lambert (2011). Download the data at http://www.stata-press.com/data/fpsaus.html.
The data contain information on 2,982 patients with primary breast cancer. Both the
time to relapse and the time to death are recorded.

We must first set up the data so that they are in the format required to use the
stpm2 and stpm2illd commands.

. use rott2
(Rotterdam breast cancer data, truncated at 10 years)

. illdprep, id(pid) statevar(rfi osi) statetime(rf os) addtime(0.1)

Note that .1 has been added to os for one or more individuals as the addtime
option has been specified by the user. These individuals are indicated with
a value of 1 in the newly generated _check variable.

Note that one or more individuals have the rfi event at the same time as they
are censored for the rfi event. The program assumes that the individual
was not at risk of osi after the rfi time and therefore will not have a third
row in the data. These individuals are indicated with a value of 1 in the newly
generated _check2 variable. The user may wish to change this in the original
data and rerun the command.

The data have been expanded so that each patient has up to three rows of data
as demonstrated in tables 1 and 2. Three indicator variables have been created for
each of the three transitions (trans1, trans2, and trans3). A variable, trans, is also
stored in the data and will be needed to obtain initial values in the stpm2 command.
A further indicator variable called status has been created to summarize which of
the three transitions each patient has experienced: 1 indicates that the patient has
experienced the transition, and 0 indicates otherwise. The addtime() option has been
specified to add 0.1 to the death time for any patients who relapse and die at the
exact same time. The relapse and death times are in months from diagnosis; thus 0.1
is equivalent to approximately 3 days in this example. A check variable has been
generated in correspondence with 0.1 to indicate which patients had this amount added
to their death time. A warning has also been given for one or more patients who have
a relapse and are censored for the death event at the same time. This means that for
such a patient, the command has dropped the third row of data representing transition
3 because the patient was never actually at risk of death after relapse. Finally, the
command has generated start and stop times to show when a patient enters and exits
each state. These newly generated variables can be used to stset the data. We can
then run the stpm2 command for all three transitions simultaneously.
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. stset stop, enter(start) failure(status==1) scale(12)

failure event: status == 1
obs. time interval: (0, stop]
enter on or after: time start
exit on or before: failure

t for analysis: time/12

7471 total obs.
0 exclusions

7471 obs. remaining, representing
2790 failures in single record/single failure data

38398.57 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 19.28268

. stpm2 trans1 trans2 trans3 age, scale(hazard) rcsbaseoff nocons dftvc(3)
> tvc(trans1 trans2 trans3) initstrata(trans) eform
note: delayed entry models are being fitted

Iteration 0: log likelihood = -5497.7319
Iteration 1: log likelihood = -5495.6716
Iteration 2: log likelihood = -5495.6418
Iteration 3: log likelihood = -5495.6418

Log likelihood = -5495.6418 Number of obs = 7471

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
trans1 .02331 .0028974 -30.24 0.000 .01827 .0297403
trans2 .2455235 .0216091 -15.96 0.000 .206622 .291749
trans3 .9442842 .1211267 -0.45 0.655 .7343719 1.214198

age 1.008449 .0015035 5.64 0.000 1.005507 1.0114
_rcs_trans11 3.537942 .3075088 14.54 0.000 2.983778 4.195029
_rcs_trans12 .9383132 .0507433 -1.18 0.239 .8439475 1.04323
_rcs_trans13 .9906213 .0352729 -0.26 0.791 .9238449 1.062224
_rcs_trans21 2.539793 .0574909 41.18 0.000 2.429576 2.65501
_rcs_trans22 1.29505 .024191 13.84 0.000 1.248494 1.343342
_rcs_trans23 .9669232 .0094508 -3.44 0.001 .9485762 .985625
_rcs_trans31 2.171531 .209309 8.04 0.000 1.797714 2.62308
_rcs_trans32 1.162727 .0698784 2.51 0.012 1.033527 1.308079
_rcs_trans33 .9826401 .0147 -1.17 0.242 .9542469 1.011878
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Patients can be at risk of death with relapse only after they have experienced the
relapse event; therefore, the time for this state is later than the time of origin. This
means that a delayed entry model is fit as indicated in the stpm2 command. By default,
the stpm2 command obtains initial values from a Cox model. The initstrata() option
in the command line allows for this Cox model to be stratified by the three transitions.
By including the three transition indicators (trans1(), trans2(), and trans3()) as
both main effects and time-dependent effects (using the tvc() option), we have fit a
stratified model with three separate baselines, one for each transition. For this reason,
we have used the rcsbaseoff option together with the nocons option, which excludes
the baseline hazard from the model. The hazard ratio (95% confidence intervals) for
age is 1.008449 (1.005507 to 1.0114). This means that all three transition rates increase
by 0.8% with each yearly increase in age. By including age in the model in this way, we
have assumed that the effect of age remains constant across all three transitions. This
is unlikely to be the case.

By including interaction terms between age and the three transition indicators, we
can estimate a different age effect for each transition.

. forvalues i=1/3 {
2. generate trans`i´age=trans`i´*age
3. }

. stpm2 trans1 trans2 trans3 trans1age trans2age trans3age,
> scale(hazard) rcsbaseoff nocons dftvc(2)
> tvc(trans1 trans2 trans3) initstrata(trans) eform
note: delayed entry models are being fitted

Iteration 0: log likelihood = -5369.4658
Iteration 1: log likelihood = -5332.4523
Iteration 2: log likelihood = -5330.8393
Iteration 3: log likelihood = -5330.8192
Iteration 4: log likelihood = -5330.8191

Log likelihood = -5330.8191 Number of obs = 7471

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
trans1 8.91e-06 5.07e-06 -20.41 0.000 2.92e-06 .0000272
trans2 .4515908 .0521128 -6.89 0.000 .3601785 .5662032
trans3 1.181057 .1969131 1.00 0.318 .8518305 1.637527

trans1age 1.139042 .0089574 16.55 0.000 1.121621 1.156735
trans2age .9974217 .0020578 -1.25 0.211 .9933966 1.001463
trans3age 1.006303 .0023563 2.68 0.007 1.001696 1.010932

_rcs_trans11 3.951158 .3388209 16.02 0.000 3.339888 4.674303
_rcs_trans12 .8822663 .0454067 -2.43 0.015 .7976121 .9759051
_rcs_trans21 2.493473 .0543812 41.89 0.000 2.389134 2.602369
_rcs_trans22 1.240989 .0179256 14.95 0.000 1.206348 1.276624
_rcs_trans31 1.939886 .1551909 8.28 0.000 1.658365 2.269198
_rcs_trans32 1.078697 .035531 2.30 0.021 1.011258 1.150633

The hazard ratio (95% confidence interval) for the age transition 1 interaction is
1.139042 (1.121621 to 1.156735), which suggests that the transition rate from alive to
dead increases by approximately 14% with every yearly increase in age. The hazard ratio
(95% confidence interval) for the age transition 2 interaction is 0.9974217 (0.9933966 to
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1.001463), which suggests that the transition rate from alive to relapse decreases with
age; however, this is not significant. Finally, the hazard ratio (95% confidence interval)
for the age transition 3 interaction is 1.006303 (1.001696 to 1.010932), which suggests
that for those who relapse, the transition rate from relapse to dead also increases with
age.

Now that we have run stpm2, we can run the postestimation command stpm2illd

to obtain the probability of being in each of the four states as demonstrated in figure 1.
Because we have included age as a continuous variable, we need to choose a particu-
lar covariate pattern for which to make the predictions. We will run the stpm2illd

command twice, once for age 65 and once for age 85.

. * Age 65 *

. stpm2illd alive65 relapse65 death65 relapsedeath65,
> trans1(trans1 1 trans1age 65) trans2(trans2 1 trans2age 65)
> trans3(trans3 1 trans3age 65) ci

. * Age 85 *

. stpm2illd alive85 relapse85 death85 relapsedeath85,
> trans1(trans1 1 trans1age 85) trans2(trans2 1 trans2age 85)
> trans3(trans3 1 trans3age 85) ci

The trans1() to trans3() options give the linear predictor for each of the three
transitions for which we want the prediction. The commands have generated eight new
variables containing the probabilities of being in each state. The predictions for age
65 are denoted with a 65 at the end of the variable name, and the predictions for age
85 are denoted with an 85. The eight probabilities are prob alive65, prob ill65,
prob death65, prob illdeath65, prob alive85, prob ill85, prob death85, and
prob illdeath85. Each of these variables has a corresponding high and low confidence
bound, for example, prob alive65 lci and prob alive65 uci. These were created
when the ci option was specified.
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If we plot the probability of each state along with its confidence intervals against
time for both age 65 and age 85, we can achieve plots as shown in figure 2.
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Figure 2. Probability of being alive and well, having a relapse, dying before relapse, or
dying after relapse as a function of time since diagnosis (years) for those aged 65 and
85

Figure 2 shows that the probability of remaining alive and well is significantly lower
for those aged 85 compared with those aged 65. By 15 years, the probability of being
alive and well is almost 0 for those aged 85. As expected, the probability of dying before
relapse is higher for those aged 85, with values reaching approximately 0.63 by 15 years
compared with 0.15 for those aged 65.
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The plot for the probability of relapse is different in shape from the other three
plots. This is because relapse is a transient state; patients may enter the relapse state,
but after some time, they may leave that state and go on to die. This gives the curve
that peaks after about 3 or 4 years for both those aged 65 (probability approximately
0.2) and those aged 85 (probability approximately 0.18). The curve then begins to
decrease as more patients with relapse go on to die. Finally, the probability of death
for those that suffer a relapse is higher at age 65 (approximately 0.48) than at age 85
(approximately 0.34). This is due to the high number of deaths before relapse in those
aged 85.

The model shown above assumes proportional hazards for the age transition interac-
tions. In many epidemiological studies, the effect of age will be time dependent. We will
now fit the flexible parametric survival model again and include time-dependent effects
for the age transition interactions. This time, we want to obtain only one estimate for
the overall probability of death, that is, to combine the probabilities of being in stages
3 and 4 in figure 1. To do this, we need to use the combine option. When we use this
option, we only need to specify three new variable names in the stpm2illd command
line.
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. stpm2 trans1 trans2 trans3 trans1age trans2age trans3age,
> scale(hazard) rcsbaseoff nocons
> dftvc(trans1age:2 trans2age:2 trans3age:2 3)
> tvc(trans1 trans2 trans3 trans1age trans2age trans3age)
> initstrata(trans) eform
note: delayed entry models are being fitted

Iteration 0: log likelihood = -5324.6353
Iteration 1: log likelihood = -5311.9706
Iteration 2: log likelihood = -5310.9136
Iteration 3: log likelihood = -5310.8708
Iteration 4: log likelihood = -5310.8707

Log likelihood = -5310.8707 Number of obs = 7471

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
trans1 .00001 6.98e-06 -16.52 0.000 2.56e-06 .0000392
trans2 .4132457 .0503478 -7.25 0.000 .3254634 .5247042
trans3 .7806882 .2184512 -0.88 0.376 .4511235 1.351014

trans1age 1.137403 .0109405 13.38 0.000 1.11616 1.159049
trans2age .9989598 .002172 -0.48 0.632 .9947119 1.003226
trans3age 1.011249 .0048782 2.32 0.020 1.001733 1.020855

_rcs_trans11 4.143021 2.836773 2.08 0.038 1.082654 15.85421
_rcs_trans12 1.55668 .7534786 0.91 0.361 .6028274 4.019812
_rcs_trans13 .9768487 .0402173 -0.57 0.569 .9011207 1.058941
_rcs_trans21 3.084326 .2939969 11.82 0.000 2.558728 3.71789
_rcs_trans22 1.552191 .1114611 6.12 0.000 1.348408 1.786772
_rcs_trans23 .9740596 .0096225 -2.66 0.008 .9553812 .9931032
_rcs_trans31 3.232405 .8243798 4.60 0.000 1.960824 5.328597
_rcs_trans32 1.59504 .2284165 3.26 0.001 1.204692 2.11187
_rcs_trans33 .987701 .0144313 -0.85 0.397 .9598174 1.016395

_rcs_trans1age1 .9992748 .0093111 -0.08 0.938 .981191 1.017692
_rcs_trans1age2 .9922872 .0064791 -1.19 0.236 .9796694 1.005068
_rcs_trans2age1 .9965224 .0016427 -2.11 0.035 .993308 .9997471
_rcs_trans2age2 .99681 .001214 -2.62 0.009 .9944334 .9991922
_rcs_trans3age1 .9937488 .0039773 -1.57 0.117 .9859838 1.001575
_rcs_trans3age2 .9949577 .0020061 -2.51 0.012 .9910336 .9988974

. drop prob_alive65 prob_relapse65 prob_death65 prob_relapsedeath65
> prob_alive85 prob_relapse85 prob_death85 prob_relapsedeath85

. * Age 65 *

. stpm2illd alive65 relapse65 death65, trans1(trans1 1 trans1age 65)
> trans2(trans2 1 trans2age 65) trans3(trans3 1 trans3age 65) ci combine

. * Age 85 *

. stpm2illd alive85 relapse85 death85, trans1(trans1 1 trans1age 85)
> trans2(trans2 1 trans2age 85) trans3(trans3 1 trans3age 85) ci combine

Notice that we have allowed different degrees of freedom for the age transition in-
teractions (2df) and the three separate transition baselines (3df) by specifying this in
the dftvc() option. We have also dropped the variables generated in the previous
stpm2illd command. If users did not wish to do this, then they would have to specify
different names for the probability variables when running the command again. Rather
than graphing the probabilities of being in each state as separate line plots (as we did
previously), we can display them by stacking the probabilities on top of one another.
This produces a graph as shown in figure 3. To do this, we need to generate new vari-
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ables that sum up the probabilities. This is done for each of the two age predictions,
65 and 85. The code shown below is for those aged 85 only.

. generate tot1=prob_alive85
(6471 missing values generated)

. generate tot2=prob_alive85+prob_relapse85
(6471 missing values generated)

. generate tot3=prob_alive85+prob_relapse85+prob_death85
(6471 missing values generated)

. twoway (area tot3 _newt if _newt<=15, sort)
> (area tot2 _newt if _newt<=15, sort) (area tot1 _newt if _newt<=15, sort),
> legend(order(3 "Alive and well" 2 "Relapse" 1 "Dead") rows(1))
> ylabel(0(0.2)1, angle(0) format(%3.1f))
> xtitle("Time since diagnosis (years)") title("Age 85")
> plotregion(margin(zero)) scheme(sj)
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Figure 3. Stacked probability of being alive, having a relapse, and dying as a function
of time since diagnosis (years) for those aged 65 and 85
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As we showed previously in figure 2, the probability of remaining alive and well for
those aged 85 decreases to almost 0 over the period of 15 years. The probability of
being alive after relapse is highest between approximately 1 and 5 years since breast
cancer diagnosis for those aged 85. It then starts to decrease as more patients die with
relapse. For those aged 65, the probability of being alive after relapse remains fairly
stable beyond 5 years. By 15 years, approximately 65% of those aged 65 and 98% of
those aged 85 have died.

6 Conclusion

The new commands illdprep and stpm2illd, in conjunction with the existing com-
mand stpm2, provide a suite of programs that will enable users to estimate transition
hazards and probabilities within an illness-death model framework using flexible para-
metric survival models. We hope that it will be a useful tool in medical research. The
illness-death model is a very simple multistate model. Therefore, further developments
are needed to fit more complex multistate models.
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