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Abstract. This article describes sfcross and sfpanel, two new Stata commands
for the estimation of cross-sectional and panel-data stochastic frontier models.
sfcross extends the capabilities of the frontier command by including addi-
tional models (Greene, 2003, Journal of Productivity Analysis 19: 179–190; Wang,
2002, Journal of Productivity Analysis 18: 241–253) and command functional-
ities, such as the possibility of managing complex survey data characteristics.
Similarly, sfpanel allows one to fit a much wider range of time-varying ineffi-
ciency models compared with the xtfrontier command, including the model of
Cornwell, Schmidt, and Sickles (1990, Journal of Econometrics 46: 185–200); the
model of Lee and Schmidt (1993, in The Measurement of Productive Efficiency:

Techniques and Applications), a production frontier model with flexible temporal
variation in technical efficiency; the flexible model of Kumbhakar (1990, Journal
of Econometrics 46: 201–211); the inefficiency effects model of Battese and Coelli
(1995 Empirical Economics 20: 325–332); and the “true” fixed- and random-effects
models of Greene (2005a, Journal of Econometrics 126: 269–303). A brief overview
of the stochastic frontier literature, a description of the two commands and their
options, and examples using simulated and real data are provided.

Keywords: st0315, sfcross, sfpanel, stochastic frontier analysis, production frontier,
cost frontier, cross-sectional, panel data

1 Introduction

This article describes sfcross and sfpanel, two new Stata commands for the estima-
tion of parametric stochastic frontier (SF) models using cross-sectional and panel data.

c© 2013 StataCorp LP st0315



720 Stochastic frontier using Stata

Since the publication of the seminal articles by Meeusen and van den Broeck (1977) and
Aigner, Lovell, and Schmidt (1977), this class of models has become a popular tool for
efficiency analysis; a stream of research has produced many reformulations and exten-
sions of the original statistical models, generating a flourishing industry of empirical
studies. An extended review of these models can be found in the recent survey by
Greene (2012).

The SF model is motivated by the theoretical idea that no economic agent can exceed
the ideal “frontier”, and deviations from this extreme represent individual inefficiencies.
From the statistical point of view, this idea has been implemented by specifying a
regression model characterized by a composite error term in which the classical idiosyn-
cratic disturbance, aiming at capturing measurement error and any other classical noise,
is included with a one-sided disturbance that represents inefficiency.1 Whether cross-
sectional or panel data, production or cost frontier, time invariant or varying inefficiency,
parametric SF models are usually estimated by likelihood-based methods, and the main
interest is on making inference about both frontier parameters and inefficiency.

The estimation of SF models is already possible using official Stata routines. How-
ever, the available commands cover a restricted range of models, especially in the panel-
data case.

The sfcross command mirrors the frontier command’s functionality but adds
new features such as i) the estimation of normal-gamma models via simulated maximum
likelihood (SML) (Greene 2003); ii) the estimation of the normal-truncated normal model
proposed by Wang (2002), in which both the location and the scale parameters of the
inefficiency distribution can be expressed as a function of exogenous covariates; and
iii) the opportunity to manage complex survey data characteristics (via the svyset

command).

As far as panel-data analysis is concerned, the Stata xtfrontier command allows
the estimation of a normal-truncated normal model with time-invariant inefficiency
(Battese and Coelli 1988), and a time-varying version named the “time decay” model
(Battese and Coelli 1992). Our sfpanel command allows one to fit a wider range of
time-varying inefficiency models, including the model of Cornwell, Schmidt, and Sick-
les (1990), that of Lee and Schmidt (1993), the flexible model of Kumbhakar (1990),
the time decay and the inefficiency effects models of Battese and Coelli (1992, 1995),
and the “true” fixed- (TFE) and random-effects (TRE) models of Greene (2005a). For
the last two models, the command allows different distributional assumptions, provid-
ing the modeling of both inefficiency location and scale parameters. Furthermore, the
command allows the estimation of the random-effects time-invariant inefficiency mod-
els of Pitt and Lee (1981) and Battese and Coelli (1988), as well as the fixed-effects
version of the model of Schmidt and Sickles (1984), which is characterized by no distri-
butional assumptions on the inefficiency term. In addition, because the main objective

1. The literature distinguishes between production and cost frontiers. The former represents the
maximum amount of output that can be obtained from a given level of inputs, while the latter
characterizes the minimum expenditure required to produce a bundle of outputs given the prices
of the inputs used in its production.
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of SF analysis is the estimation of inefficiency, we provide postestimation routines to
compute both inefficiency and efficiency scores, as well as their confidence intervals
(Jondrow et al. 1982; Battese and Coelli 1988; Horrace and Schmidt 1996). Finally,
sfcross and sfpanel also allow the simultaneous modeling of heteroskedasticity in the
idiosyncratic error term.

In the development of these new commands, we make extensive use of Mata to speed
up the estimation process. We allow for the use of Stata factor variables, weighted esti-
mation, constrained estimation, resampling-based variance estimation, and clustering.
Moreover, by using Mata structures and libraries, we provide a very readable code that
can be easily developed further by other Stata users. All of these features make the
commands simple to use, extremely flexible, and fast; they also ensure the opportunity
to fit state-of-the-art SF models.

Finally, we would like to emphasize that sfpanel offers the possibility of performing
a constrained fixed-effects estimation, which is not yet available with xtreg. Moreover,
the models of Cornwell, Schmidt, and Sickles (1990) and Lee and Schmidt (1993), al-
though proposed in the SF literature, are linear panel-data models with time-varying
fixed effects and thus potentially very useful in other contexts.

The article is organized as follows. In section 2, we present a brief review of the SF

approach evolution, focusing on the models that can be estimated using the proposed
commands. Sections 3 and 4 describe the syntax of sfcross and sfpanel, focusing on
the main options. Sections 5 and 6 illustrate the two commands using simulated data
and two empirical applications from the SF literature. Finally, section 7 offers some
conclusions.

2 A review of stochastic frontier models

We begin our discussion with a general formulation of the SF cross-sectional model and
then review extensions and improvements that have been proposed in the literature,
focusing on those models that can be estimated using sfcross and sfpanel. Given
the large number of estimators allowed by the two commands, we deliberately do not
discuss the derivation of the corresponding criterion functions. We refer the reader to
the cited works for details on the estimation of each model. A summary of all estimable
models and their features is reported in table 1.

2.1 Cross-sectional models

Consider the following SF model,

yi = α+ x′
iβ + εi, i = 1, . . . , N (1)

εi = vi − ui (2)

vi ∼ N (0, σ2
v) (3)

ui ∼ F (4)
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where yi represents the logarithm of the output (or cost) of the ith productive unit,
xi is a vector of inputs (input prices and quantities in the case of a cost frontier),
and β is the vector of technology parameters. The composed error term εi is the
sum (or the difference) of a normally distributed disturbance, vi, representing mea-
surement and specification error, and a one-sided disturbance, ui, representing ineffi-
ciency.2 Moreover, ui and vi are assumed to be independent of each other and inde-
pendent and identically distributed across observations. The last assumption about
the distribution F of the inefficiency term is needed to make the model estimable.
Aigner, Lovell, and Schmidt (1977) assumed a half-normal distribution, that is, ui ∼
N+

(
0, σ2

u

)
, while Meeusen and van den Broeck (1977) opted for an exponential one,

ui ∼ E (σu). Other commonly adopted distributions are the truncated normal (Steven-
son 1980) and the gamma distributions (Greene 1980a,b, 2003).

The distributional assumption required for the identification of the inefficiency term
implies that this model is usually fit by maximum likelihood (ML), even if modified
ordinary least-squares or generalized method of moments estimators are possible (often
inefficient) alternatives.3 In general, SF analysis is based on two sequential steps: in

the first, estimates of the model parameters θ̂ are obtained by maximizing the log-
likelihood function ℓ(θ), where θ = (α,β′, σ2

u, σ
2
v)

′.4 In the second step, point estimates
of inefficiency can be obtained through the mean (or the mode) of the conditional

distribution f(ui|ε̂i), where ε̂i = yi − α̂− x′
iβ̂.

The derivation of the likelihood function is based on the independence assumption
between ui and vi. Because the composite model error εi is defined as εi = vi − ui, its
probability density function is the convolution of the two component densities as

fε(εi) =

∫ +∞

0

fu(ui)fv(εi + ui)dui (5)

Hence, the log-likelihood function for a sample of n productive units is

ℓ(θ) =

n∑

i=1

logfε(εi|θ)

The marginalization of ui in (5) leads to a convenient closed-form expression only for
the normal-half normal, normal-exponential, and normal-truncated normal models. In
all other cases (for example, the normal-gamma model), numerical- or simulation-based
techniques are necessary to approximate the integral in (5).

The second estimation step is necessary because the estimates of the model param-
eters allow for the computation of residuals ε̂ but not for the inefficiency estimates.

2. In this section, we consider only production functions. However, the sign of the ui term in (2) is
positive or negative depending on whether the frontier describes a cost or a production function,
respectively.

3. Notice that when a distributional assumption on u is made, sfcross and sfpanel estimate model
parameters by likelihood-based techniques.

4. Different model parameterizations are used in the SF literature as, for example, θ = (α,β′, σ2, λ)′,
where σ2 = σ2

u + σ2
v and λ = σu/σv .
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Because the main objective of SF analysis is the estimation of technical (or cost) effi-
ciency, a strategy for disentangling this unobserved component from the compounded
error is required. As mentioned before, the most well-known solutions to this problem,
proposed by Jondrow et al. (1982) and Battese and Coelli (1988), exploit the condi-
tional distribution of u given ε. Thus a point estimate of the inefficiencies can be
obtained using the mean E(u|ε̂) (or the mode M[u|ε̂]) of this conditional distribution.
Once point estimates of u are obtained, estimates of the technical (cost) efficiency can
be derived as

Eff = exp (−û)

where û is either E(u|ε̂) or M(u|ε̂).5

2.2 Panel-data models

The availability of a richer set of information in panel data allows one to relax some of
the assumptions previously imposed and to consider a more realistic characterization of
the inefficiencies.

Pitt and Lee (1981) were the first to extend the model (1–4) to longitudinal data.
They proposed the ML estimation of the following normal-half normal SF model:

yit = α+ x′
itβ + εit, i = 1, . . . , N, t = 1, . . . , Ti (6)

εit = vit − ui

vit ∼ N (0, σ2
v)

ui ∼ N+
(
0, σ2

u

)

The generalization of this model to the normal-truncated normal case has been proposed
by Battese and Coelli (1988).6 As pointed out by Schmidt and Sickles (1984), the esti-
mation of an SF model with time-invariant inefficiency can also be performed by adapting
conventional fixed-effects estimation techniques, thereby allowing inefficiency to be cor-
related with the frontier regressors and avoiding distributional assumptions about ui.
However, the time-invariant nature of the inefficiency term has been questioned, espe-
cially in the presence of empirical applications based on long-panel datasets. To relax
this restriction, Cornwell, Schmidt, and Sickles (1990) have approached the problem by
proposing the following SF model with individual-specific slope parameters,

yit = α+ x′
itβ + vit ± uit, i = 1, . . . , N, t = 1, . . . , Ti

uit = ωi + ωi1t+ ωi2t
2 (7)

in which the model parameters are estimated by extending the conventional fixed- and
random-effects panel-data estimators. This quadratic specification allows for a unit-
specific temporal pattern of inefficiency but requires the estimation of a large number
of parameters (N × 3).

5. A general presentation of the postestimation procedures implemented in the sfcross and sfpanel

routines is given by Kumbhakar and Lovell (2000) and Greene (2012), to whom we refer the reader
for further details.

6. The normal-exponential model is another straightforward extension allowed by sfpanel.
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Following a slightly different estimation strategy, Lee and Schmidt (1993) proposed
an alternative specification in which the uit is specified as

uit = g(t)× ui

where g(t) is represented by a set of time dummy variables. This specification is more
parsimonious than (7), and it does not impose any parametric form, but it is less flexible
because it restricts the temporal pattern of uit to be the same for all productive units.7

Kumbhakar (1990) was the first to propose the ML estimation of a time-varying SF

model in which g(t) is specified as

g(t) =
{
1 + exp

(
γt+ δt2

)}−1

This model contains only two additional parameters to be estimated, γ and δ, and the
hypothesis of time-invariant technical efficiency can be easily tested by setting γ = δ = 0.
A similar model called “time decay” has been proposed by Battese and Coelli (1992) in
which

g(t) = exp {−η (t− Ti)}
The common feature of all of these time-varying SF models is that the intercept α is the
same across productive units, thus generating a misspecification bias in the presence of
time-invariant unobservable factors, which are unrelated with the production process
but affect the output. Therefore, the effect of these factors may be captured by the
inefficiency term, producing biased results.

Greene (2005a) approached this issue through a time-varying SF normal-half normal
model with unit-specific intercepts, obtained by replacing (6) by the following specifi-
cation:

yit = αi + x′
itβ + εit (8)

Compared with previous models, this specification allows one to disentangle time-
varying inefficiency from unit-specific time-invariant unobserved heterogeneity. For this
reason, Greene (2005a) termed these models TFE or TRE according to the assumptions
on the unobserved unit-specific heterogeneity. While the estimation of the TRE speci-
fication can be easily performed using simulation-based techniques, the ML estimation
of the TFE variant requires the solution of two major issues related to the estima-
tion of nonlinear panel-data models. The first is purely computational because of the
large dimension of the parameter space. Nevertheless, Greene (2005a,b) showed that
a maximum-likelihood dummy variable (MLDV) approach is computationally feasible
also in the presence of a large number of nuisance parameters αi (N > 1000). The
second, the so-called incidental parameters problem, is an inferential issue that arises

7. Han, Orea, and Schmidt (2005) and Ahn, Hoon Lee, and Schmidt (2001) propose estimating the
models of Cornwell, Schmidt, and Sickles (1990) and Lee and Schmidt (1993), respectively, through
a generalized method of moments (GMM) approach. They show that GMM is preferable be-
cause it is asymptotically efficient. Currently, sfpanel allows for the estimation of the models of
Cornwell, Schmidt, and Sickles (1990) and Lee and Schmidt (1993) through modified least-squares
dummy variables and iterative least-squares approaches, respectively. We leave for future updates
the implementation of the GMM estimator.
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when the number of units is relatively large compared with the length of the panel. In
these cases, the unit-specific intercepts are inconsistently estimated as N → ∞ with
fixed T because only Ti observations are used to estimate each unit-specific parame-
ter (Neyman and Scott 1948; Lancaster 2002). As shown in Belotti and Ilardi (2012),
because this inconsistency contaminates the variance parameters, which represent the
key ingredients in the postestimation of inefficiencies, the MLDV approach appears to
be appropriate only when the length of the panel is large enough (T ≥ 10).8

Although model (8) may appear to be the most flexible and parsimonious choice
among the several existing time-varying specifications, one can argue that a portion of
the time-invariant unobserved heterogeneity does belong to inefficiency, or these two
components should not be disentangled at all. The sfpanel command provides options
for the estimation of these two extremes: for the models of Schmidt and Sickles (1984),
Pitt and Lee (1981), and Battese and Coelli (1988), in which all time-invariant unob-
served heterogeneity is considered as inefficiency, and for the two “true” specifications,
in which all time-invariant unobserved heterogeneity is ruled out from the inefficiency
component. As pointed out by Greene (2005b), neither formulation is completely satis-
factory a priori, and the choice should be driven by the features of the data at hand.9

Despite the usefulness of SF models in many contexts, a practical disclaimer is in
order: in both cross-sectional and panel-data models, the identification through dis-
tributional assumptions of the two components u and v heavily depends on how the
shape of their distributions is involved in defining the shape of the ε distribution. Iden-
tification problems may arise when either the shapes are very similar (as pointed out
by Ritter and Simar [1997] in the case of small samples for the normal-gamma cross-
sectional model), or one of the two components is responsible for most of the shape
of the ε distribution. The latter is the case where the ratio between the inefficiency
and measurement error variability (the so-called signal-to-noise ratio, σu/σv) is very
small or very large. In these cases, the profile of the log likelihood becomes quite “flat”,
producing nontrivial numerical maximization problems.

2.3 Exogenous inefficiency determinants and heteroskedasticity

A very important issue in SF analysis is the inclusion in the model of exogenous vari-
ables that are supposed to affect the distribution of inefficiency. These variables, which
usually are neither the inputs nor the outputs of the production process but nonetheless

8. A common approach to solve this problem is based on the elimination of the αi through a
data transformation. The consistent estimation of the fixed-effects variant of Greene’s (2005a)
model is still an open research issue in SF literature. Promising solutions have been pro-
posed by Chen, Schmidt, and Wang (2011) for a homoskedastic normal-half normal model and
Belotti and Ilardi (2012) for a more flexible heteroskedastic specification in normal-half normal
and normal-exponential models. We are currently working to update the sfpanel command along
these directions.

9. A way to disentangle unobserved heterogeneity from inefficiency is to include explanatory vari-
ables that are correlated with inefficiency but not with the remaining heterogeneity. The use of
(untestable) exclusion restrictions is a quite standard econometric technique to deal with identifi-
cation issues.
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affect the productive unit performance, have been incorporated in a variety of ways: i)
they may shift the frontier function and the inefficiency distribution; ii) they may scale
the frontier function and the inefficiency distribution; and iii) they may shift and scale
the frontier function and the inefficiency distribution. Moreover, Kumbhakar and Lovell
(2000) stress that in contrast with the linear regression model, in which the misspecifi-
cation of the second moment of the errors distribution determines only efficiency losses,
the presence of uncontrolled observable heterogeneity in ui and vi may affect the infer-
ence in SF models. Indeed, while neglected heteroskedasticity in vi does not produce
any bias for the frontier’s parameter estimates, it leads to biased inefficiency estimates,
as we show in section 5.3.

In this section, we present the approaches that introduce heterogeneity in the loca-
tion parameter of the inefficiency distribution and heteroskedasticity of the inefficiency
as well as in the parameter of the idiosyncratic error term for the models implemented in
the sfcross and sfpanel commands. Because these approaches can be easily extended
to the panel-data context, we deliberately confine the review to the cross-sectional
framework.

As pointed out by Greene (2012), researchers have often incorporated exogenous
effects using a two-step approach. In the first step, estimates of inefficiency are obtained
without controlling for these factors, while in the second, the estimated inefficiency
scores are regressed (or otherwise associated) with them. Wang and Schmidt (2002)
show that this approach leads to severely biased results; thus we shall focus only on
model extensions based on simultaneous estimation.

A natural starting point for introducing exogenous variables in the inefficiency model
is in the location of the distribution. The most well-known approaches are those sug-
gested by Kumbhakar, Ghosh, and McGuckin (1991) and Huang and Liu (1994). They
proposed to parameterize the mean of the pretruncated inefficiency distribution. Basi-
cally, model (1)–(3) can be completed with

ui ∼ N+
(
µi, σ

2
u

)
(9)

µi = z′iψ

where ui is a realization from a truncated normal random variable, zi is a vector of
exogenous variables (including a constant term), and ψ is the vector of unknown pa-
rameters to be estimated (the so-called inefficiency effects). One interesting feature of
this approach is that the vector zi may include interactions with input variables, thus
allowing one to test the hypothesis that inefficiency is neutral with respect to its impact
on input usage.10

10. Battese and Coelli (1995) proposed a similar specification for panel data.
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An alternative approach to analyzing the effect of exogenous determinants on inef-
ficiency is obtained by scaling its distribution. Then a model that allows heteroskedas-
ticity in ui and vi becomes a straightforward extension. For example, Caudill and Ford
(1993), Caudill, Ford, and Gropper (1995), and Hadri (1999) proposed to parameterize
the variance of the pretruncated inefficiency distribution in the following way:

ui ∼ N+
(
0, σ2

ui

)
(10)

σ2
ui = exp (z′iψ) (11)

Hadri (1999) extends this last specification by allowing the variance of the idiosyncratic
term to be heteroskedastic so that (3) can be rewritten as

vi ∼ N (0, σ2
vi)

σ2
vi = exp (h′

iφ) (12)

where the variables in hi do not necessarily appear in zi.

As in Wang (2002), both sfcross and sfpanel allow one to combine (9) and (10)
for the normal-truncated normal model. In postestimation, it is possible to compute
nonmonotonic effects of the exogenous factors zi on ui. A different specification has
been suggested by Wang and Schmidt (2002), in which both the location and variance
parameters are scaled by the same positive (monotonic) function h(zi,ψ). Their model,

ui = h(zi,ψ)u
∗
i with u∗i ∼ N

(
µ, σ2

)+
, is equivalent to the assumption that ui ∼

N{µh(zi,ψ), σ2h(zi,ψ)
2}+, in which the zi vector does not include a constant term.11

11. We are currently working to extend the sfcross command to normal-truncated normal models
with scaling property (Wang and Schmidt 2002).
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3 The sfcross command

The new Stata command sfcross provides parametric ML estimators of SF models,
where the default is represented by production. The general syntax of this command is
as follows:

sfcross depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, distribution(distname)

emean(varlist m
[
, noconstant

]
) usigma(varlist u

[
, noconstant

]
)

vsigma(varlist v
[
, noconstant

]
) svfrontier(listname) svemean(listname)

svusigma(listname) svvsigma(listname) cost simtype(simtype)

nsimulations(#) base(#) postscore posthessian
]

This command and its panel analog, sfpanel, are written using the moptimize()

suite of functions, the optimization engine used by ml, and share the same features of
all Stata estimation commands, including access to the estimation results and options
for the maximization process (see help maximize). Stata 11.2 is the earliest version
that can be used to run the commands. aweight, fweight, iweight, and pweight are
allowed (see help weight). sfcross supports the svy prefix (see help survey). The
default is the normal-exponential model. Most options are similar to those of other
Stata estimation commands. A full description of all available options is provided in
the sfcross help file.

3.1 Main options for sfcross

distribution(distname) specifies the distribution for the inefficiency term as half nor-
mal (hnormal), truncated normal (tnormal), exponential (exponential), or gamma
(gamma). The default is distribution(exponential).

emean(varlist m
[
, noconstant

]
) may be used only with distribution(tnormal).

With this option, sfcross specifies the mean of the truncated normal distribu-
tion in terms of a linear function of the covariates defined in varlist m. Specifying
noconstant suppresses the constant in this function.

usigma(varlist u
[
, noconstant

]
) specifies that the technical inefficiency component

is heteroskedastic, with the variance expressed as a function of the covariates defined
in varlist u. Specifying noconstant suppresses the constant in this function.

vsigma(varlist v
[
, noconstant

]
) specifies that the idiosyncratic error component is

heteroskedastic, with the variance expressed as a function of the covariates defined
in varlist v. Specifying noconstant suppresses the constant in this function.

svfrontier(listname) specifies a 1 × k vector of initial values for the coefficients of
the frontier. The vector must have the same length of the parameter vector to be
estimated.
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svemean(listname) specifies a 1 × km vector of initial values for the coefficients of the
conditional mean model. This can be specified only with distribution(tnormal).

svusigma(listname) specifies a 1× ku vector of initial values for the coefficients of the
technical inefficiency variance function.

svvsigma(listname) specifies a 1× kv vector of initial values for the coefficients of the
idiosyncratic error variance function.

cost specifies that sfcross fit a cost frontier model.

simtype(simtype) specifies the method for random draws when distribution(gamma)

is specified. runiform generates uniformly distributed random variates; halton

and genhalton create, respectively, Halton sequences and generalized Halton se-
quences where the base is expressed by the prime number in base(#). The default
is simtype(runiform). See help mata halton() for more details on generating
Halton sequences.

nsimulations(#) specifies the number of draws used when distribution(gamma) is
specified. The default is nsimulations(250).

base(#) specifies the number, preferably a prime, used as a base for the generation
of Halton sequences and generalized Halton sequences when distribution(gamma)

is specified. The default is base(7). Note that Halton sequences based on large
primes (# > 10) can be highly correlated, and their coverage may be worse than
that of the pseudorandom uniform sequences.

postscore saves an observation-by-observation matrix of scores in the estimation re-
sults’ list. Scores are defined as the derivative of the objective function with respect
to the parameters. This option is not allowed when the size of the scores’ matrix is
greater than the Stata matrix limit; see [R] limits.

posthessian saves the Hessian matrix corresponding to the full set of coefficients in
the estimation results’ list.

3.2 Postestimation command after sfcross

After the estimation with sfcross, the predict command can be used to compute linear
predictions, (in)efficiency, and score variables. Moreover, the sfcross postestimation
command allows one to compute the (in)efficiency confidence interval through the option
ci as well as nonmonotonic marginal effects in the manner of Wang (2002) using, when
appropriate, the option marginal. The syntax of the command is the following,

predict
[
type

]
newvar

[
if
] [

in
] [

, statistic
]

predict
[
type

]
{stub* |newvar xb newvar v newvar u}

[
if
] [

in
]
, scores

where statistic includes xb, stdp, u, m, jlms, bc, ci, and marginal.
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xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of (technical or cost) inefficiency via E(u|ε) using the estimator of
Jondrow et al. (1982).

m produces estimates of (technical or cost) inefficiency via M(u|ε), the mode of the
conditional distribution of u|ε. This option is not allowed when the estimation is
performed with the distribution(gamma) option.

jlms produces estimates of (technical or cost) efficiency via exp{−E(u|ε)}.
bc produces estimates of (technical or cost) efficiency via E{exp(−u|ε)}, the estimator

of Battese and Coelli (1988). This option is not allowed when the estimation is
performed with the distribution(gamma) option.

ci computes the confidence interval using the approach proposed by Horrace and
Schmidt (1996). It can be used only when u or bc is specified. The default is
level(95), or a 95% confidence interval. If the option level(#) is used in the
previous estimation command, the confidence interval will be computed using the
# level. This option creates two additional variables: newvar LBcilevel and new-

var UBcilevel, the lower and the upper bound, respectively. This option is not
allowed when the estimation is performed with the distribution(gamma) option.

marginal calculates the marginal effects of the exogenous determinants on E(u) and
Var(u). The marginal effects are observation specific and are saved in the new
variables varname m M and varname u V, the marginal effects on the mean and the
variance of the inefficiency, respectively. varname m and varname u are the names of
each exogenous determinant specified in options emean(varlist m

[
, noconstant

]
)

and usigma(varlist u
[
, noconstant

]
). marginal can be used only if the estima-

tion is performed with the distribution(tnormal) option. When they are both
specified, varlist m and varlist u must contain the same variables in the same order.
This option can be specified in two ways: i) together with u, m, jlms, or bc; and ii)
alone without specifying newvar.

scores calculates score variables. When the argument of the option distribution() is
hnormal, tnormal, or exponential, score variables are generated as the derivative
of the objective function with respect to the parameters. When the argument of
the option distribution() is gamma, they are generated as the derivative of the
objective function with respect to the coefficients. This difference is due to the
different moptimize() evaluator type used to implement the estimators (see help

mata moptimize()).



732 Stochastic frontier using Stata

4 The sfpanel command

sfpanel allows for the estimation of SF panel-data models through ML and least-squares
techniques. The general sfpanel syntax is the following:

sfpanel depvar
[
indepvars

] [
if
] [

in
] [

weight
]
, model(modeltype)

[
options

]

As for its cross-sectional counterpart, version 11.2 is the earliest version of Stata that
can be used to run sfpanel. Similarly, all types of weights are allowed, but the de-
clared weight variable must be constant within each unit of the panel. Moreover, the
command does not support the svy prefix. The default model is the time-decay model
of Battese and Coelli (1992). A description of the main command-specific estimation
and postestimation options is provided below. A full description of all available options
is provided in the sfpanel help file.

4.1 Main options for sfpanel

True fixed- and random-effects models (Greene 2005a,b)

distribution(distname) specifies the distribution for the inefficiency term as half-
normal (hnormal), truncated normal (tnormal), or exponential (exponential). The
default is distribution(exponential).

emean(varlist m
[
, noconstant

]
) may be used only with distribution(tnormal).

With this option, sfpanel specifies the mean of the truncated normal distribu-
tion in terms of a linear function of the covariates defined in varlist m. Specifying
noconstant suppresses the constant in this function.

usigma(varlist u
[
, noconstant

]
) specifies that the technical inefficiency component

is heteroskedastic, with the variance expressed as a function of the covariates defined
in varlist u. Specifying noconstant suppresses the constant in this function.

vsigma(varlist v
[
, noconstant

]
) specifies that the idiosyncratic error component is

heteroskedastic, with the variance expressed as a function of the covariates defined
in varlist v. Specifying noconstant suppresses the constant in this function.

feshow allows the user to display estimates of individual fixed effects, along with struc-
tural parameters. Only for model(tfe).

simtype(simtype) specifies the method to generate random draws for the unit-specific
random effects. runiform generates uniformly distributed random variates; halton
and genhalton create, respectively, Halton sequences and generalized Halton se-
quences where the base is expressed by the prime number in base(#). The default
is simtype(runiform). See help mata halton() for more details on generating
Halton sequences. Only for model(tre).

nsimulations(#) specifies the number of draws used in the simulation. The default is
nsimulations(250). Only for model(tre).
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base(#) specifies the number, preferably a prime, used as a base for the generation of
Halton sequences and generalized Halton sequences. The default is base(7). Note
that Halton sequences based on large primes (# > 10) can be highly correlated,
and their coverage may be worse than that of the pseudorandom uniform sequences.
Only for model(tre).

ML random-effects time-varying inefficiency effects model (Battese and Coelli 1995)

emean(varlist m
[
, noconstant

]
) fits the Battese and Coelli (1995) conditional mean

model, in which the mean of the truncated normal distribution is expressed as a linear
function of the covariates specified in varlist m. Specifying noconstant suppresses
the constant in this function.

usigma(varlist u
[
, noconstant

]
) specifies that the technical inefficiency component

is heteroskedastic, with the variance expressed as a function of the covariates defined
in varlist u. Specifying noconstant suppresses the constant in this function.

vsigma(varlist v
[
, noconstant

]
) specifies that the idiosyncratic error component is

heteroskedastic, with the variance expressed as a function of the covariates defined
in varlist v. Specifying noconstant suppresses the constant in this function.

ML random-effects flexible time-varying efficiency model (Kumbhakar 1990)

bt(varlist bt
[
, noconstant

]
) fits a model that allows a flexible specification of tech-

nical inefficiency, handling different types of time behavior, using the formulation
uit = ui [1 + exp(varlist bt)]

−1
. Typically, explanatory variables in varlist bt are rep-

resented by a polynomial in time. Specifying noconstant suppresses the constant
in the function. The default includes a linear and a quadratic term in time without
constant, as in Kumbhakar (1990).

4.2 Postestimation command after sfpanel

After the estimation with sfpanel, the predict command can be used to compute linear
predictions, (in)efficiency, and score variables. Moreover, the sfpanel postestimation
command allows one to compute the (in)efficiency confidence interval through the option
ci as well as nonmonotonic marginal effects in the manner of Wang (2002) using, when
appropriate, the option marginal. The syntax of the command is the following,

predict
[
type

]
newvar

[
if
] [

in
] [

, statistic
]

predict
[
type

]
{stub* |newvar xb newvar v newvar u}

[
if
] [

in
]
, scores

where statistic includes xb, stdp, u, u0, m, jlms, bc, ci, marginal, and trunc(tlevel).

xb, the default, calculates the linear prediction.
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stdp calculates the standard error of the linear prediction.

u produces estimates of (technical or cost) inefficiency via E(u|ε) using the estimator of
Jondrow et al. (1982).

u0 produces estimates of (technical or cost) inefficiency via E(u|ε) using the estimator
of Jondrow et al. (1982) when the random effect is zero. This statistic can only be
specified when the estimation is performed with the model(tre) option.

m produces estimates of (technical or cost) inefficiency via M(u|ε), the mode of the con-
ditional distribution of u|ε. This statistic is not allowed when the estimation is per-
formed with the option model(fecss), model(fels), model(fe), or model(regls).

jlms produces estimates of (technical or cost) efficiency via exp{−E(u|ε)}.
bc produces estimates of (technical or cost) efficiency via E {exp(−u|ε)}, estimator of the

Battese and Coelli (1988). This statistic is not allowed when the estimation is per-
formed with the option model(fecss), model(fels), model(fe), or model(regls).

ci computes the confidence interval using the approach of Horrace and Schmidt (1996).
This option can only be used with the u, jlms, and bc statistics but not when the es-
timation is performed with the option model(fels), model(bc92), model(kumb90),
model(fecss), model(fe), or model(regls). The default is level(95), or a 95%
confidence interval. If the option level(#) is used in the previous estimation com-
mand, the confidence interval will be computed using the# level. This option creates
two additional variables: newvar LBcilevel and newvar UBcilevel, the lower and the
upper bound, respectively.

marginal calculates the marginal effects of the exogenous determinants on E(u) and
Var(u). The marginal effects are observation specific and are saved in the new vari-
ables varname m M and varname u V, the marginal effects on the unconditional
mean and the variance of inefficiency, respectively. varname m and varname u are
the names of each exogenous determinant specified in options emean(varlist m

[
,

noconstant
]
) and usigma(varlist u

[
, noconstant

]
). marginal can only be used

if estimation is performed with the model(bc95) option or if the inefficiency in
model(tfe) or model(tre) is distribution(tnormal). When they are both speci-
fied, varlist m and varlist u must contain the same variables in the same order. This
option can be specified in two ways: i) together with u, m, jlms, or bc; and ii) alone
without specifying newvar.

trunc(tlevel) excludes from the inefficiency estimation the units whose effects are, at
least at one time period, in the upper and bottom tlevel% range. trunc() can only be
used if the estimation is performed with model(fe), model(regls), model(fecss),
and model(fels).

scores calculates score variables. This option is not allowed when the estimation is per-
formed with the option model(fecss), model(fels), model(fe), or model(regls).
When the argument of the option model() is tfe or bc95, score variables are gen-
erated as the derivative of the objective function with respect to the parameters.
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When the argument of the option model() is tre, bc88, bc92, kumb90, or pl81,
they are generated as the derivative of the objective function with respect to the
coefficients. This difference is due to the different moptimize() evaluator type used
to implement the estimators (see help mata moptimize()).

5 Examples with simulated data

In this section, we use simulated data to illustrate sfcross and sfpanel estimation
capabilities, focusing on some of the models that cannot be estimated using official
Stata routines.12

5.1 The normal-gamma SF production model

There is a large debate in the SF literature about the (non)identifiability of the normal-
gamma cross-sectional model. Ritter and Simar (1997) pointed out that this model
is difficult to distinguish from the normal-exponential one, and that the estimation of
the shape parameter of the gamma distribution may require large sample sizes (up to
several thousand observations). On the other hand, Greene (2003) argued that their
result “was a matter of degree, not a definitive result”, and that the (non)identifiability
of the true value of the shape parameter remains an empirical question. In this section,
we illustrate the sfcross command by fitting a normal-gamma SF production model.
We consider the following data-generating process (DGP),

yi = 1 + 0.3x1i + 0.7x2i + vi − ui, i = 1, . . . , N

vi ∼ N (0, 1)

ui ∼ Γ(2, 2)

where the inefficiency is gamma distributed with shape and scale parameters equal to
2, the idiosyncratic error is N (0, 1), and the two regressors, x1i and x2i, are normally
distributed with 0 means and variances equal to 1 and 4, respectively. The sample size
is set to 1,000 observations, a large size as noted by Ritter and Simar (1997) but in
general not so large given the current availability of microdata. Let us begin by fitting
the normal-exponential model using the following syntax:

12. We report the Mata code used for the DGP and the models’ estimation syntax for each example
in the sj examples simdata.do ancillary file.
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. sfcross y x1 x2, distribution(exp) nolog

Stoc. frontier normal/exponential model Number of obs = 1000
Wald chi2(2) = 419.88
Prob > chi2 = 0.0000

Log likelihood = -2423.0869

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Frontier
x1 .3709605 .068792 5.39 0.000 .2361306 .5057904
x2 .6810641 .0339945 20.03 0.000 .6144361 .747692

_cons -.1474677 .1131198 -1.30 0.192 -.3691784 .0742431

Usigma
_cons 2.173649 .0957468 22.70 0.000 1.985989 2.361309

Vsigma
_cons .3827463 .1498911 2.55 0.011 .0889652 .6765274

sigma_u 2.964844 .1419372 20.89 0.000 2.699305 3.256505
sigma_v 1.210911 .0907524 13.34 0.000 1.045487 1.40251
lambda 2.448441 .2058941 11.89 0.000 2.044895 2.851986

. estimates store exp

. predict uhat_exp, u

Note that the normal-exponential model is the sfcross default, so we might omit
the option distribution(exponential).13 As can be seen, although there is only one
equation to be estimated in the model, the command fits three of Mata’s moptimize()
equations (see [M-5] moptimize( )). Indeed, given that sfcross allows both the inef-
ficiency and the idiosyncratic error to be heteroskedastic (see table 1), the output also
reports variance parameters estimated in a transformed metric according to (11) and
(12), respectively. In this example, the inefficiency is assumed to be homoskedastic, so
sfcross estimates the coefficient of the constant term in (11) rather than directly esti-
mating σu. To make the output easily interpretable, sfcross also displays the variance
parameters in their natural metric.

As expected, the normal-exponential model produces biased results, especially for
the frontier’s constant term and the inefficiency scale parameter σu. We also run the
predict command using the u option. In this way, inefficiency estimates are obtained
through the approach of Jondrow et al. (1982). Because the inefficiencies are drawn
from a gamma distribution, a better fit can be obtained using the following command:

13. The option nolog allows one to omit the display of the criterion function iteration log. sfcross

and sfpanel allow one to use all maximize options available for ml estimation commands (see help

maximize) and the additional options postscore and posthessian, which report the score and the
Hessian as an e() vector and matrix, respectively.
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. sfcross y x1 x2, distribution(gamma) nsim(50) simtype(genha) base(7) nolog

Stoc. frontier normal/gamma model Number of obs = 1000
Wald chi2(2) = 438.02
Prob > chi2 = 0.0000

Log simulated-likelihood = -2419.0008
Number of Randomized Halton Sequences = 50
Base for Randomized Halton Sequences = 7

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Frontier
x1 .3809769 .0670487 5.68 0.000 .2495639 .5123899
x2 .6877634 .0336088 20.46 0.000 .6218914 .7536354

_cons .9361791 .4121864 2.27 0.023 .1283087 1.74405

Usigma
_cons 1.53519 .226486 6.78 0.000 1.091286 1.979094

Vsigma
_cons -.2734356 .333033 -0.82 0.412 -.9261682 .379297

sigma_u 2.154578 .2439909 8.83 0.000 1.725717 2.690016
sigma_v .8722163 .1452384 6.01 0.000 .6293397 1.208825
lambda 2.470234 .1969744 12.54 0.000 2.084171 2.856297
g_shape 1.879186 .3845502 4.89 0.000 1.125482 2.632891

. estimates store gamma

. predict uhat_gamma, u

In the normal-gamma cross-sectional model, the parameters are estimated using sim-
ulated maximum likelihood (SML). A better approximation of the log-likelihood function
requires the right choice about the number of draws and the way they are created. In
this example, we use generalized Halton sequences (simtype(genhalton)) with base
equal to 7 (base(7)) and only 50 draws (nsim(50)). Indeed, a Halton sequence gen-
erally has a more uniform coverage than a sequence generated from pseudouniform
random numbers. Moreover, as noted by Greene (2003), the computational efficiency,
when compared with that of pseudouniform random draws, appears to be at least 10
to 1. Thus, in our example, the same results can be approximately obtained using 500
pseudouniform draws (see help mata halton()).14

14. For all models fit using SML, the default option of sfcross and sfpanel is simtype(uniform) with
nsim(250). In our opinion, small values (for example, 50 for Halton sequences and 250 for pseu-
douniform random draws) are sufficient for exploratory work. On the other hand, larger values, in
the order of several hundreds, are advisable for more precise results. We suggest using Halton se-
quences rather than pseudorandom random draws. However, as pointed out by Drukker and Gates
(2006), “Halton sequences based on large primes (d > 10) can be highly correlated, and their
coverage can be worse than that of the pseudorandom uniform sequences”.
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As expected, in this example, the parameters of the normal-gamma model are prop-
erly estimated. Furthermore, this model is preferable to the normal-exponential one, as
corroborated by the following likelihood-ratio test.15

. lrtest exp gamma

Likelihood-ratio test LR chi2(1) = 8.17
(Assumption: exp nested in gamma) Prob > chi2 = 0.0043

Similar conclusions may be drawn by comparing the estimated mean inefficiencies
with the true simulated one, even if the Spearman rank correlation with the latter is
high and very similar for both uhat gamma and uhat exp.16

. summarize u uhat_gamma uhat_exp

Variable Obs Mean Std. Dev. Min Max

u 1000 4.097398 2.91035 .0259262 19.90251
uhat_gamma 1000 4.048885 2.839368 .4752663 20.27557

uhat_exp 1000 2.964844 2.64064 .363516 18.95619

. spearman u uhat_gamma uhat_exp
(obs=1000)

u uhat_g~a uhat_exp

u 1.0000
uhat_gamma 0.9141 1.0000

uhat_exp 0.9145 0.9998 1.0000

5.2 Panel-data time-varying inefficiency models

Cornwell, Schmidt, and Sickles (1990) and Lee and Schmidt (1993) provide a fixed-
effects treatment of models like those proposed by Kumbhakar (1990) and Battese and
Coelli (1992). Currently, sfpanel allows for the estimation of the models of Corn-
well, Schmidt, and Sickles (1990) and Lee and Schmidt (1993) by means of modified
least-squares dummy variables and iterative least squares (ILS), respectively. An in-
teresting aspect of these models is that although they have been proposed in the SF

literature, they are actually linear panel-data models with time-varying fixed effects
and thus potentially very useful in other contexts. However, their consistency requires
white noise errors, and they are less efficient than the GMM estimator proposed by
Ahn, Hoon Lee, and Schmidt (2001) and Han, Orea, and Schmidt (2005).

15. Notice that exp and gamma are the names of the exponential and gamma models’ estimation results
saved with the estimates store command.

16. In line with Ritter and Simar (1997), our simulation results indicate that in the normal-gamma
model, a relatively large sample is needed to achieve a reasonable degree of precision in the estimates
of inefficiency distribution parameters.
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In this section, we report the main syntax to fit such models. We start by specifying
the following stochastic production frontier translog model:

yit = uit + 0.2x1it + 0.6x2it + 0.6x3it + 0.2x21it + 0.1x22it + 0.2x23it

+ 0.15x1itx2it − 0.3x1itx3it − 0.3x2itx3it + vit

vit ∼ N (0, 0.25), i = 1, . . . , n, t = 1, . . . , T

As already mentioned, the main feature of these models is the absence of any distri-
butional assumption about inefficiency. In this example, the DGP follows the Lee and
Schmidt (1993) model, where ui = δiξ. For each unit, the parameter δi is drawn from
a uniform distribution in [0,

√
12τ + 1 − 1] with τ = 0.8. The elements of the vector

ξ = (ξ1, . . . , ξT ) are equally spaced between −2 and 2. This setup implies a standard
deviation of the inefficiency term σu ≈ 1.83.

Once the sample is declared to be a panel (see help xtset), the models of Lee and
Schmidt (1993) and Cornwell, Schmidt, and Sickles (1990) can be estimated using the
following syntaxes:

. sfpanel y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, model(fels)

(output omitted )

. estimates store fels

. predict uhat_fels, u

. sfpanel y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, model(fecss)

(output omitted )

. estimates store fecss

. predict uhat_fecss, u

Notice that we use the predict command with the u option to postestimate inef-
ficiency. As an additional source of comparison, we use the same simulated data to
assess the behavior of the Schmidt and Sickles (1984) time-invariant inefficiency model.
The fixed-effects version of this model can be fit using sfpanel and the official xtreg
command. However, when the estimation is performed using sfpanel, the predict

command with the option u can be used to obtain inefficiency estimates.17

. sfpanel y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, model(fe)

(output omitted )

. estimates store fess_sf

. predict uhat_fess, u

. xtreg y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, fe

(output omitted )

. estimates store fess_xt

Table 2 reports the estimation results from the three models. Unsurprisingly, both
the frontier and variance parameters are well estimated in the ls93 and css90 models.
This result shows that when the DGP follows the model by Lee and Schmidt (1993), the

17. Both xtreg and sfpanel also allow for the estimation of the random-effects version of this model
through the feasible generalized least-squares approach.
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estimator by Cornwell, Schmidt, and Sickles (1990) provides reliable results. On the
other hand, being the data generated from a time-varying model, variance estimates
from the ss84 model show a substantial bias.

Table 2. Schmidt and Sickles (ss84), Cornwell, Schmidt, and Sickles (css90), and
Lee and Schmidt (ls93) estimation results

ss84 css90 ls93

x1 0.254*** 0.185*** 0.171***
(0.0695) (0.0237) (0.0230)

x2 0.626*** 0.619*** 0.611***
(0.0354) (0.0121) (0.0117)

x3 0.602*** 0.591*** 0.596***
(0.0220) (0.0073) (0.0075)

x1 sq 0.193*** 0.204*** 0.209***
(0.0234) (0.0078) (0.0076)

x2 sq 0.099*** 0.103*** 0.101***
(0.0080) (0.0027) (0.0026)

x3 sq 0.198*** 0.201*** 0.201***
(0.0036) (0.0012) (0.0012)

x1 x2 0.149*** 0.142*** 0.145***
(0.0198) (0.0066) (0.0064)

x1 x3 −0.293*** −0.295*** −0.295***
(0.0130) (0.0043) (0.0043)

x2 x3 −0.306*** −0.300*** −0.301***
(0.0076) (0.0026) (0.0025)

cons −0.050
(0.0866)

σu 0.223 1.859 1.832
σv 2.096 0.499 0.497

We do not expect large differences with regard to inefficiency scores, given the sim-
ilarities in terms of variance estimates between css90 and ls93. Note that for these
models (including ss84), inefficiency scores are retrieved in postestimation, with the as-
sumption that the best decision-making unit is fully efficient.18 As seen in the following
summarize command, both css90 and ls93 average inefficiencies are close to the true
values, while the Spearman rank correlations are almost equal to 1. As expected, the
ss84 estimated inefficiencies are highly biased, and the corresponding units’ ranking is
completely unreliable.

18. This assumption involves calculating ûi = α̂ − α̂i with α̂ = maxi=1,...,n(α̂i) in the case of time-
invariant inefficiency models and ûit = α̂t − α̂it with α̂t = maxi=1,...,n(α̂it) in the case of time-
varying inefficiency models.
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. summarize u uhat_fels uhat_fecss uhat_fess

Variable Obs Mean Std. Dev. Min Max

u 2500 1.345894 1.265155 0 4.486315
uhat_fels 2500 1.669869 1.419268 0 5.550043

uhat_fecss 2500 2.214224 1.314245 0 6.500714
uhat_fess 2500 .645184 .2232496 0 1.27254

. spearman u uhat_fels uhat_fecss uhat_fess
(obs=2500)

u uhat_~ls uhat~css uhat~ess

u 1.0000
uhat_fels 0.9794 1.0000

uhat_fecss 0.8974 0.9129 1.0000
uhat_fess 0.0005 0.0092 0.1991 1.0000

Finally, we show additional features of sfpanel: i) the possibility of computing
elasticities via the official lincom command; and ii) the possibility of performing a
constrained fixed-effects estimation, which is not yet available with xtreg.

With respect to the former point, it is well known that parameters in a translog pro-
duction frontier do not represent output elasticities. In particular, a linear combination
of frontier parameters is needed for computing such elasticities. Moreover, to calculate
output elasticities at means, we first need to compute and store the mean for each input
variable using the following syntax:

. quietly summarize x1

. scalar x1m = r(mean)

. quietly summarize x2

. scalar x2m = r(mean)

. quietly summarize x3

. scalar x3m = r(mean)

Then the lincom command can be used to combine estimated frontier parameters
using the following standard syntax:

. lincom x1 + x1_sq * x1m + x1_x2*x2m + x1_x3*x3m

( 1) x1 + 1.108946*x1_sq + 1.074533*x1_x2 + 1.05167*x1_x3 = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .3203578 .05348 5.99 0.000 .2154752 .4252405

. lincom x2 + x2_sq * x2m + x1_x2*x1m + x2_x3*x3m

( 1) x2 + 1.074533*x2_sq + 1.108946*x1_x2 + 1.05167*x2_x3 = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .5751999 .0254143 22.63 0.000 .5253585 .6250413
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. lincom x3 + x3_sq * x3m + x1_x3*x1m + x2_x3*x2m

( 1) x3 + 1.05167*x3_sq + 1.108946*x1_x3 + 1.074533*x2_x3 = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .156379 .0158945 9.84 0.000 .1252075 .1875505

Finally, the constant return to scale (CRS) hypothesis can be trivially tested by using
the following syntax:

. lincom (x1 + x1_sq * x1m + x1_x2*x2m + x1_x3*x3m)
> + (x2 + x2_sq * x2m + x1_x2*x1m + x2_x3*x3m)
> + (x3 + x3_sq * x3m + x1_x3*x1m + x2_x3*x2m) - 1

( 1) x1 + x2 + x3 + 1.108946*x1_sq + 1.074533*x2_sq + 1.05167*x3_sq +
2.18348*x1_x2 + 2.160617*x1_x3 + 2.126204*x2_x3 = 1

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .0519367 .0609852 0.85 0.395 -.0676648 .1715383

In this example, the CRS hypothesis cannot be rejected. To run a constrained fixed-
effects estimation, we can define the required set of constraints to impose CRS through
the official Stata command constraint using the following syntax:

. // Constraints definition

. constraint define 1 x1 + x2 + x3 = 1

. constraint define 2 x1_sq + x1_x2 + x1_x3 = 0

. constraint define 3 x2_sq + x1_x2 + x2_x3 = 0

. constraint define 4 x3_sq + x1_x3 + x2_x3 = 0

Then the constrained model can be estimated using sfpanel with the model(fe)

and constraints(1 2 3 4) options.
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. sfpanel y x1 x2 x3 x1_sq x2_sq x3_sq x1_x2 x1_x3 x2_x3, model(fe)
> constraints(1 2 3 4)

Time-invariant fixed-effects model (LSDV) Number of obs = 2500
Group variable: id Number of groups = 500
Time variable: time Obs per group: min = 5

avg = 5.0
max = 5

( 1) x1 + x2 + x3 = 1
( 2) x1_sq + x1_x2 + x1_x3 = 0
( 3) x2_sq + x1_x2 + x2_x3 = 0
( 4) x3_sq + x1_x3 + x2_x3 = 0

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .3530365 .0851901 4.14 0.000 .1860671 .520006
x2 .5092917 .0434568 11.72 0.000 .4241179 .5944655
x3 .1376718 .0270375 5.09 0.000 .0846792 .1906644

x1_sq -.0343576 .0287476 -1.20 0.232 -.0907019 .0219868
x2_sq .1282553 .0098209 13.06 0.000 .1090067 .1475039
x3_sq .21594 .004442 48.61 0.000 .2072339 .2246461
x1_x2 .0610211 .0242651 2.51 0.012 .0134624 .1085799
x1_x3 -.0266635 .0159577 -1.67 0.095 -.0579401 .0046131
x2_x3 -.1892764 .0092834 -20.39 0.000 -.2074716 -.1710813
_cons .2326412 .1062126 2.19 0.029 .0244682 .4408141

sigma_u .7140381
sigma_v 2.5700643

The constrained frontier estimates are more biased than the unconstrained ones but
are still not too far from the true values. This is an artifact of our DGP because the
scale elasticity has been simulated without imposing CRS.

5.3 “True” fixed- and random-effects models

As already discussed in section 2.2, the “true” fixed- and random-effects models allow
one to disentangle time-invariant heterogeneity from time-varying inefficiency. In this
section, we present the main syntax and some of the options to fit such models. We start
by specifying the following normal-exponential stochastic production frontier model,

yit = 1 + αi + 0.3x1it + 0.7x2it + vit − uit

vit ∼ N (0, 1) (13)

uit ∼ E (2) , i = 1, . . . , n, t = 1, . . . , T (14)

where the nuisance parameters αi (i = 1, . . . , n) are drawn from a N (0, θ2) with θ = 1.5.
In the fixed-effects design (TFEDGP), the two regressors x1it and x2it are distributed for
each unit according to a normal distribution centered in the corresponding unit-effect αi

with variances equal to 1 and 4, respectively. This design ensures correlation between
regressors and individual effects, a typical scenario in which the fixed-effects specification
represents the consistent choice.19

19. Notice that higher values of θ correspond to higher correlations between the regressors and the
unit-specific effects.
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As far as the random-effects design is concerned (TREDGP), x1it and x2it are not
correlated with the unit-specific effects and are distributed according to a normal dis-
tribution with 0 mean, and variances equal to 1 and 4, respectively.

The generated sample consists of a balanced panel of 1,000 units observed for 10
periods for a total of 10,000 observations. Once the sample is declared as a panel, we
fit the following models:

i) a normal-exponential TFE model on TFEDGP data (tfe1)20

. sfpanel yf x1_c x2_c, model(tfe) distribution(exp) rescale

(output omitted )

. estimates store tfe_c

. predict u_tfe_c, u

ii) a normal-exponential TRE model on TFEDGP data (tre1)

. sfpanel yf x1_c x2_c, model(tre) distribution(exp) nsim(50)
> simtype(genhalton) base(7) rescale

(output omitted )

. estimates store tre_c

. predict u_tre_c, u

iii) a normal-exponential TRE model on TREDGP data (tre2)

. sfpanel yr x1_nc x2_nc, model(tre) distribution(exp) nsim(100)
> simtype(genhalton) base(7) rescale

(output omitted )

. estimates store tre_nc

. predict u_tre_nc, u

. predict u0_tre_nc, u0

As shown in the first column of table 3, when the model is correctly specified, the frontier
parameters are properly estimated. However, in this example, the MLDV estimator of
σv is slightly biased by the incidental parameter problem even if the length of the panel
is quite large.21 This problem does not seem to affect variance estimates in the tre1

model. In this case, the parameters are estimated using the SML technique assuming
that the unobserved heterogeneity is distributed as N (0, θ2) (where θ represents the
standard deviation of the unobserved heterogeneity) and that E(αi|x1it, x2it) = 0. Thus,
because the estimates are obtained using the TFEDGP data, the frontier and θ parameter
estimates are biased.

20. Note that yf, x1 c, and x2 c are the variables from the TFEDGP, while yr, x1 nc, and x2 nc are
from the TREDGP.

21. See section 2.2 for a discussion of the MLDV estimator problems in the TFE model.
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Table 3. TFE and TRE estimation results

tfe1 tre1 tre2

x1 c 0.304*** 0.776***
(0.0164) (0.0198)

x2 c 0.700*** 0.811***
(0.0081) (0.0094)

x1 nc 0.295***
(0.0176)

x2 nc 0.706***
(0.0089)

cons 1.062*** 1.090***
(0.0342) (0.0540)

σu 2.075 2.035 2.023
σv 0.770 1.095 0.973
θ 0.602 1.542

On the contrary, by fitting a correctly specified TRE model on TREDGP data (column
tre2 in table 3), all parameters, including the frontier ones, are accurately estimated.

After each estimation, we use the predict command to obtain inefficiency esti-
mates. As already mentioned, option u instructs the postestimation routine to com-
pute inefficiencies through the estimator of Jondrow et al. (1982) (see help sfpanel

postestimation). In the case of the TRE model, the predict command also allows for
the option u0 to estimate inefficiencies assuming the random effects are zero. At this
point, we can summarize the estimated inefficiencies to compare them with the actual
values.

. summarize u u_tfe_c u_tre_c u_tre_nc u0_tre_nc

Variable Obs Mean Std. Dev. Min Max

u 10000 2.004997 2.00852 .0003777 20.83139
u_tfe_c 10000 2.075017 1.948148 .2008319 20.42197
u_tre_c 10000 2.034946 1.818154 .2430926 18.76244

u_tre_nc 10000 2.025002 1.831147 .2656734 19.98998
u0_tre_nc 10000 2.200728 2.086419 .1338385 19.47738

. spearman u u_tfe_c u_tre_c u_tre_nc u0_tre_nc
(obs=10000)

u u_tfe_c u_tre_c u_tre_nc u0_tre~c

u 1.0000
u_tfe_c 0.7654 1.0000
u_tre_c 0.7541 0.9291 1.0000

u_tre_nc 0.7700 0.9925 0.9464 1.0000
u0_tre_nc 0.6297 0.7313 0.8168 0.7965 1.0000
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All the estimates of Jondrow et al. (1982) are very close to the true simulated ones
(u). Actually, the estimated average inefficiency after a correctly specified TRE model
shows a lower bias than the estimated average inefficiency after a correctly specified
TFE model. This is due to the incidental parameters problem. Also note the good
performances of the TRE model when it is fit on the TFEDGP data (u tre c).

Introducing heteroskedasticity

Finally, we deal with the problem of heteroskedasticity, a very important issue for
applied research. For both TFE and TRE models, we compare the estimates obtained
from a model that neglects heteroskedasticity with those obtained from a heteroskedastic
one. To introduce heteroskedasticity, we replace equations (13)–(14) with the following,

vit ∼ N (0, σvit)

uit ∼ E (σuit)

σvit = exp {0.5(1 + .5× zvit)}
σuit = exp {0.5(2 + 1× zuit)}

where both inefficiency and idiosyncratic-error scale parameters are now a function of
a constant term and of an exogenous covariate (zuit and zvit), drawn from a standard-
normal random variable. Note that because of the introduction of heteroskedasticity, we
will deal with “average” σu and σv, which in our simulated sample are approximately 3.1
and 1.7, respectively. In this case, each observation has a different signal-to-noise ratio,
which implies an average of about 1.9. We estimate four different models:

i) a homoskedastic TFE model on heteroskedastic TFEDGP data (tfe1)

. sfpanel yf x1_c x2_c, model(tfe) distribution(exp) rescale

(output omitted )

. estimates store tfe_hom

. predict u_tfe_hom, u

ii) a heteroskedastic TFE model on heteroskedastic TFEDGP data (tfe2)

. sfpanel yf x1_c x2_c, model(tfe) distribution(exp) usigma(zu) vsigma(zv)

(output omitted )

. estimates store tfe_het

. predict u_tfe_het, u

iii) a homoskedastic TRE model on heteroskedastic TREDGP data (tre1)

. sfpanel yr x1_nc x2_nc, model(tre) distribution(exp) nsim(50)
> simtype(genhalton) base(7) rescale

(output omitted )

. estimates store tre_hom

. predict u_tre_hom, u
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iv) a heteroskedastic TRE model on heteroskedastic TREDGP data (tre2)

. sfpanel yr x1_nc x2_nc, model(tre) distribution(exp) usigma(zu) vsigma(zv)
> nsim(50) simtype(genhalton) base(7) rescale

(output omitted )

. estimates store tre_het

. predict u_tre_het, u

. predict u0_tre_het, u0

Estimation results are reported in table 4. As expected, tfe1 variance estimates are
biased by both the incidental parameters problem and the neglected heteroskedasticity
in u and v. These estimates can be significantly improved by considering both sources
of heteroskedasticity using the options usigma(varlist u) and vsigma(varlist v) (tfe2).
Exactly the same argument applies in the TRE case (tre1 versus tre2) but without the
incidental parameters problem.

Table 4. TFE and TRE estimation results (homoskedasticity versus heteroskedasticity)

tfe1 tfe2 tre1 tre2

x1 c 0.324*** 0.295***
(0.0271) (0.0245)

x2 c 0.723*** 0.732***
(0.0134) (0.0121)

x1 nc 0.316*** 0.310***
(0.0290) (0.0264)

x2 nc 0.681*** 0.689***
(0.0147) (0.0135)

cons 1.576*** 1.113***
(0.0637) (0.0652)

σu 3.717 3.264 3.642 3.168
σv 1.185 1.402 1.526 1.693
θ 1.579 1.565

As we mentioned in section 2.3, neglecting heteroskedasticity in u and v leads to
biased inefficiency estimates. This conclusion is confirmed by the summarize command.

. summarize u u_tfe_hom u_tfe_het u_tre_hom u_tre_het u0_tre_het

Variable Obs Mean Std. Dev. Min Max

u 10000 3.091925 3.915396 .000169 52.20689
u_tfe_hom 10000 3.717061 3.941147 .3442658 51.54804
u_tfe_het 10000 3.271297 3.828366 .2642199 52.06564
u_tre_hom 10000 3.641955 3.788298 .3739219 51.76109
u_tre_het 10000 3.173224 3.709123 .3241621 51.83721

u0_tre_het 10000 3.2855 3.844297 .1828969 54.2632
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The average inefficiency is upward biased (by about 15%) for both TFE and TRE

models in which heteroskedasticity has been neglected. A slightly better result is also
obtained in terms of Spearman’s rank correlation.

. spearman u u_tfe_hom u_tfe_het u_tre_hom u_tre_het u0_tre_het
(obs=10000)

u u_tfe_~m u_tfe_~t u_tre_~m u_tre_~t u0_tre~t

u 1.0000
u_tfe_hom 0.7287 1.0000
u_tfe_het 0.7536 0.9589 1.0000
u_tre_hom 0.7380 0.9830 0.9531 1.0000
u_tre_het 0.7623 0.9461 0.9835 0.9642 1.0000

u0_tre_het 0.7039 0.8173 0.8455 0.8944 0.9121 1.0000

6 Empirical applications

In this section, we illustrate sfcross and sfpanel capabilities through two empirical
applications from the SF literature. The first analyzes the cost inefficiency of Swiss
railways using data from the Swiss Federal Office of Statistics on public transport com-
panies; the second focuses on the technical inefficiency of Spanish dairy farms, using
data from a voluntary record-keeping program.22

6.1 Swiss railways

This application is based on an unbalanced panel of 50 railway companies over the
period 1985–1997, which resulted in 605 observations. We think that this application is
interesting for at least two reasons: i) cost frontiers are much less diffuse in the literature
compared with production frontiers, given the lack of reliable cost and price data; and
ii) the length of the panel makes this database quite unusual in the SF literature. A
detailed description of the Swiss railway transport system and complete information on
the variables used are available in Farsi, Filippini, and Greene (2005).

To estimate a Cobb–Douglas cost frontier, we impose linear homogeneity by nor-
malizing total costs and prices through the price of energy. Therefore, the model can
be written as

ln

(
TCit

Peit

)
= β0 + βY lnYit + βQ lnQit + βN lnNit+

+ βPk ln

(
Pkit
Peit

)
+ βPl ln

(
Plit
Peit

)
+

1997∑

t=1986

βtdyeart + uit + vit (15)

where i and t are the subscripts denoting the railway company and year, respectively. As
is common, uit is interpreted as a measure of cost inefficiency. Two output measures are
included in the cost function: passenger output and freight output. Length of network

22. Both datasets are freely available from the webpage of professor William Greene
(http://people.stern.nyu.edu/wgreene/).
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is included as an output characteristic. Further, we have price data for three inputs:
capital, labor, and energy. All monetary values, including total costs, are in 1997 Swiss
Francs (CHF). We have also included a set of time dummies, dyeart, to control for
unobserved time-dependent variation in costs.

We consider three time-varying inefficiency specifications—the Kumbhakar (1990)
model (kumb90), the Battese and Coelli (1992) model (bc92), and the Greene (2005a)
random-effects model (tre)—and three time-invariant models. With respect to the lat-
ter group, we estimate the fixed-effects version of the Schmidt and Sickles (1984) model
(ss84), the Pitt and Lee (1981) (pl81) model, and the Battese and Coelli (1988) (bc88)
model. All models are fit assuming that the inefficiency is half-normally distributed—
that is, all except bc88 and bc92, in which u ∼ N+(µ, σ2

u), and ss84, in which no
distributional assumption is made. The choice of also including Greene’s specification
is driven by the multioutput technology that characterizes a railway company, for which
unmeasured quality, captured by the random effects, may play an important role in the
production process. Finally, as a benchmark, we fit a pooled cross-sectional model
(pcs).

Table 5 shows the results. Coefficient estimates of input prices and outputs are all
significant across the seven models and have the expected signs (positive marginal costs
and positive own-price elasticities). Looking at table 6, we further observe that the three
time-invariant specifications provide inefficiency estimates that are highly correlated.
Perhaps the most interesting result is that inefficiency scores obtained from kumb90 and
bc92 models are also highly correlated with those coming from time-invariant models
(table 6 and figure 1). This is not surprising, because the two time-invariance hypothe-
ses, H0 : t = t2 = 0 in the kumb90 model and H0 : η = 0 in the bc92 specification,
cannot be rejected at the 5% level. Hence, we may conclude that there is evidence of
time-invariant technical inefficiency in the Swiss railway transport system, at least for
the study period.

Consistently with this result, we also find that the tre model provides inefficiency
estimates that have no link with those obtained from any of the other models. Moreover,
because of a very low estimate of the inefficiency variance, the estimated signal-to-noise
ratio, λ̂, is the lowest one. In our opinion, these results are driven from the peculiar
time-varying inefficiency specification of this model. Indeed, when the inefficiency term
is constant over time, the tre specification does not allow one to disentangle time-
invariant unobserved heterogeneity from inefficiency. This interpretation is supported
by the fact that the estimated standard deviation of the random effects (θ) dominates
the inefficiency one (σu).
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Table 5. Swiss railways estimation results (50 firms for a total of 605 observations)

pcs ss pl81 bc88 kumb90 bc92 tre

b/se b/se b/se b/se b/se b/se b/se

lnY 0.492*** 0.114*** 0.200*** 0.199*** 0.193*** 0.199*** 0.201***
(0.015) (0.032) (0.034) (0.033) (0.033) (0.033) (0.026)

lnQ 0.030*** 0.014* 0.021*** 0.021*** 0.020*** 0.020*** 0.028***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.005)

lnN 0.393*** 0.448*** 0.485*** 0.503*** 0.477*** 0.499*** 0.583***
(0.027) (0.051) (0.045) (0.047) (0.044) (0.047) (0.034)

lnpk 0.171*** 0.318*** 0.310*** 0.311*** 0.311*** 0.313*** 0.311***
(0.032) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

lnpl 0.592*** 0.546*** 0.548*** 0.546*** 0.538*** 0.543*** 0.560***
(0.074) (0.037) (0.037) (0.037) (0.037) (0.037) (0.037)

dyear1986 0.009 0.010 0.009 0.009 0.015 0.008 0.015
(0.056) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

dyear1987 0.003 0.020 0.012 0.012 0.023 0.009 0.018
(0.056) (0.015) (0.015) (0.015) (0.017) (0.015) (0.015)

dyear1988 0.010 0.039* 0.028 0.027 0.043* 0.023 0.034*
(0.057) (0.015) (0.015) (0.015) (0.019) (0.016) (0.016)

dyear1989 0.036 0.065*** 0.052*** 0.052*** 0.070*** 0.046** 0.058***
(0.057) (0.016) (0.016) (0.016) (0.021) (0.016) (0.016)

dyear1990 0.024 0.084*** 0.068*** 0.068*** 0.086*** 0.060*** 0.074**
(0.058) (0.016) (0.016) (0.016) (0.022) (0.017) (0.016)

dyear1991 0.030 0.098*** 0.078*** 0.078*** 0.096*** 0.069*** 0.086***
(0.058) (0.017) (0.018) (0.017) (0.024) (0.019) (0.018)

dyear1992 0.046 0.111*** 0.094*** 0.094*** 0.109*** 0.083*** 0.101***
(0.058) (0.017) (0.017) (0.017) (0.023) (0.019) (0.017)

dyear1993 0.015 0.100*** 0.081*** 0.081*** 0.092*** 0.069*** 0.089***
(0.057) (0.017) (0.017) (0.017) (0.023) (0.020) (0.017)

dyear1994 −0.001 0.082*** 0.063*** 0.063*** 0.069** 0.049* 0.070***
(0.056) (0.017) (0.017) (0.017) (0.022) (0.020) (0.017)

dyear1995 0.019 0.059*** 0.048** 0.047** 0.045* 0.031 0.050**
(0.057) (0.016) (0.016) (0.016) (0.022) (0.021) (0.016)

dyear1996 0.027 0.037* 0.028 0.027 0.018 0.010 0.017
(0.057) (0.017) (0.016) (0.016) (0.022) (0.022) (0.017)

dyear1997 0.019 0.038* 0.030 0.029 0.009 0.009 0.029
(0.060) (0.018) (0.017) (0.017) (0.023) (0.024) (0.017)

Constant −8.310*** −2.682*** −4.895*** −4.929*** −4.626*** −4.871*** −4.894***
(0.976) (0.652) (0.643) (0.634) (0.637) (0.637) (0.531)

Continued on next page
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pcs ss pl81 bc88 kumb90 bc92 tre

b/se b/se b/se b/se b/se b/se b/se

t - - - - 0.023 - -
- - - - (0.015) - -

t2 - - - - −0.002 - -
- - - - (0.001) - -

η - - - - - −0.002 -
- - - - - (0.002) -

λ 2.882 7.803 11.366 7.716 23.930 7.887 1.634
σ 0.464 0.560 0.807 0.551 1.682 0.562 0.098
σu 0.438 0.555 0.804 0.546 1.681 0.557 0.083
σv 0.152 0.071 0.071 0.071 0.070 0.071 0.051
θ - - - - - - 0.347

Estimated cost inefficiencies, ûit

Mean 0.350 0.807 0.663 0.679 0.687 0.682 0.091
SD 0.233 0.550 0.429 0.425 0.445 0.428 0.076
Min 0.060 0.000 0.015 0.020 0.015 0.019 0.018
Max 1.134 2.507 2.006 1.991 2.124 2.031 0.629

Log likelihood −116.572 - 595.159 596.523 597.649 597.285 595.516

Notes: Standard errors for ancillary parameters are not reported.

Table 6. Swiss railways correlation of inefficiency estimates

Variables pcs ss84 pl81 bc88 kumb90 bc92 tre

pcs 1.000
ss84 0.439 1.000
pl81 0.595 0.975 1.000
bc88 0.608 0.971 0.991 1.000
kumb90 0.573 0.984 0.990 0.998 1.000
bc92 0.603 0.974 0.991 1.000 0.998 1.000
tre −0.140 −0.378 −0.405 −0.407 −0.400 −0.406 1.000

6.2 Spanish dairy farms

This application is based on a balanced panel of 247 dairy farms located in Northern
Spain over a six-year period (1993–1998). This dataset is interesting because it repre-
sents what is generally available to researchers: short panel, information only on input
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Figure 1. Swiss railways inefficiency scatterplots

and output volumes, heterogeneity of output, and less than ideal proxies for inputs. The
output variable is given by the liters of milk produced per year. This measure explains
only partially the final output of this industry: milk can also be considered an inter-
mediate input to produce dairy products. Furthermore, variables such as slaughtered
animals should also be considered part of the final output.

The functional form employed in the empirical analysis is the following translog
production function with time dummy variables to control for neutral technical change,

ln yit = β0 +
4∑

j=1

βj lnxjit +
1

2

4∑

j=1

4∑

k=1

βjk lnxjit lnxkit

+
1998∑

t=1993

βtdyeart − uit + vit (16)

where j and t are the subscripts denoting farm and year, respectively. Four inputs
have been employed in the production frontier: number of milking cows (x1), number
of man-equivalent units (x2), hectares of land devoted to pasture and crops (x3), and
kilograms of feedstuffs fed to the dairy cows (x4). More details on these variables are
available in Cuesta (2000) and Alvarez and Arias (2004).

We have fit three models with time-varying inefficiency: the normal-half normal
Kumbhakar (1990) model (kumb90), a random-effects model, fit through the feasi-
ble generalized least-squares method; the Cornwell, Schmidt, and Sickles (1990) model
(css90), fit through the modified least-squares dummy variable technique; and finally,
the Lee and Schmidt (1993) model (ls93), fit through ILS. Note that the last two mod-
els are fit using approaches that do not allow intercept (β0) and time dummies (dyeart)
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to be simultaneously included in the frontier equation. Finally, we also considered two
models with time-invariant inefficiency, that is, the uit term reduced to ui in (16): the
first was proposed by Schmidt and Sickles (1984) and estimated without any distri-
butional assumption through the least-squares dummy variable approach (ss84); the
second was proposed by Pitt and Lee (1981) and estimated through ML assuming a
half-normal inefficiency (pl81).

Table 7 reports the results of our exercise. There is a certain degree of similarity
between the different models because both parameter significance and magnitudes are
comparable. For the ss84, css90, and ls93models, the most efficient firm in the sample
for each period is considered as fully efficient; thus the smallest value of inefficiency is
0. On average and as expected, the css90 model shows a higher level of inefficiency,
and its distribution also has more variability, while the other models seem to behave
very similarly in this application. Finally, as we can see in table 8, linear correlations
between inefficiencies are very high. This does not come as a surprise given the similarity
of the estimated frontier parameters, and it looks like an indication that in medium-
short panels and in certain economic sectors and contexts, a time-invariant inefficiency
specification is a valid solution.
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Table 7. Spanish dairy farms estimation results (247 firms for a total of 1,482 obs.)

ss84 css90 ls93 kumb90 pl81

b/se b/se b/se b/se b/se

x1 0.642*** 0.527*** 0.641*** 0.661*** 0.660***
(0.036) (0.065) (0.036) (0.028) (0.028)

x2 0.037* 0.043 0.037* 0.038** 0.041**
(0.017) (0.027) (0.017) (0.015) (0.015)

x3 0.011 0.079 0.010 0.050** 0.049**
(0.025) (0.063) (0.025) (0.018) (0.018)

x4 0.308*** 0.226*** 0.307*** 0.351*** 0.356***
(0.020) (0.035) (0.020) (0.018) (0.017)

x11 0.135 −0.187 0.133 0.308 0.314
(0.157) (0.192) (0.155) (0.171) (0.178)

x22 −0.002 0.060 −0.001 −0.111 −0.112
(0.069) (0.111) (0.068) (0.064) (0.067)

x33 −0.242 −0.168 −0.243 −0.129 −0.131
(0.188) (0.317) (0.187) (0.119) (0.115)

x44 0.105* −0.125 0.105* 0.112* 0.118*
(0.050) (0.084) (0.050) (0.048) (0.049)

x12 −0.010 0.059 −0.009 −0.060 −0.064
(0.073) (0.100) (0.072) (0.077) (0.081)

x13 0.084 −0.114 0.085 0.088 0.091
(0.102) (0.158) (0.101) (0.090) (0.090)

x14 −0.075 0.142 −0.074 −0.140 −0.146
(0.083) (0.132) (0.082) (0.084) (0.088)

x23 0.001 0.067 0.002 0.020 0.011
(0.050) (0.107) (0.050) (0.049) (0.050)

x24 −0.011 −0.062 −0.011 0.025 0.025
(0.041) (0.060) (0.041) (0.039) (0.040)

x34 −0.012 0.110 −0.013 −0.015 −0.017
(0.046) (0.085) (0.046) (0.041) (0.041)

dyear1994 0.035*** - - 0.042*** 0.027***
(0.007) - - (0.010) (0.007)

dyear1995 0.062*** - - 0.072*** 0.048***
(0.009) - - (0.014) (0.008)

dyear1996 0.072*** - - 0.078*** 0.052***
(0.010) - - (0.016) (0.009)

dyear1997 0.075*** - - 0.074*** 0.051***
(0.010) - - (0.017) (0.009)

dyear1998 0.092*** - - 0.077*** 0.064***
(0.012) - - (0.018) (0.010)

Constant 11.512*** - - 11.695*** 11.711***
(0.016) - - (0.019) (0.016)

Continued on next page
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ss84 css90 ls93 kumb90 pl81

b/se b/se b/se b/se b/se

t - - - −0.347 -
- - - (0.212) -

t2 - - - 0.045 -
- - - (0.028) -

λ 1.948 3.711 2.010 4.485 2.775
σ 0.168 0.237 0.171 0.356 0.230
σu 0.149 0.229 0.153 0.348 0.216
σv 0.077 0.062 0.076 0.077 0.078

Estimated technical inefficiencies, ûit

Mean 0.315 0.531 0.316 0.182 0.179
SD 0.149 0.227 0.150 0.119 0.117
Min 0.000 0.000 0.000 0.008 0.009
Max 0.873 1.412 0.879 0.667 0.623

Log likelihood - - - 1355.248 1351.826

Notes: Cluster–robust standard errors are in parentheses. Standard errors for
ancillary parameters are not reported.

Table 8. Spanish dairy farms, correlation of inefficiency estimates

Variables ss84 css90 ls93 kumb90 pl81

ss84 1.000
css90 0.868 1.000
ls93 1.000 0.871 1.000
kumb90 0.938 0.726 0.936 1.000
pl81 0.931 0.709 0.929 0.995 1.000

7 Concluding remarks

In this article, we introduced the new Stata commands sfcross and sfpanel, which
implement an extensive array of SF models for cross-sectional and panel data. With
respect to the available official Stata commands, frontier and xtfrontier, we add
multiple features for estimating frontier parameters and for postestimating unit inef-
ficiency and efficiency. In the development of the commands, we widely exploit Mata
potentiality. By using Mata structures, we provide a very readable code that can be
easily developed further by other Stata users.

We illustrated the commands’ estimation capabilities through simulated data, fo-
cusing on some of the models that cannot be estimated using official Stata commands.
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Finally, we illustrated the proposed routines using real datasets under different possible
empirical scenarios: short versus long panels, cost versus production frontiers, homoge-
neous versus heterogeneous outputs.
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