

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, WZB, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch,

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $ 98 1-year subscription $138

2-year subscription $165 2-year subscription $245

3-year subscription $225 3-year subscription $345

1-year student subscription $ 75 1-year student subscription $ 99

1-year institutional subscription $245 1-year institutional subscription $285

2-year institutional subscription $445 2-year institutional subscription $525

3-year institutional subscription $645 3-year institutional subscription $765

Electronic only Electronic only

1-year subscription $ 75 1-year subscription $ 75

2-year subscription $125 2-year subscription $125

3-year subscription $165 3-year subscription $165

1-year student subscription $ 45 1-year student subscription $ 45

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2013 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html

The Stata Journal (2013)
13, Number 4, pp. 699–718

Dealing with identifier variables in data

management and analysis

P. Wilner Jeanty
Kinder Institute for Urban Research

and
Hobby Center for the Study of Texas

Rice University
Houston, TX

pwjeanty@rice.edu

Abstract. Identifier variables are prominent in most data files and, more often
than not, are essential to fully use the information in a Stata dataset. However,
rendering them in the proper format and relevant number of digits appropriate
for data management and statistical analysis might pose unnerving challenges to
inexperienced or even veteran Stata users. To lessen these challenges, I provide
some useful tips and guard against some pitfalls by featuring two official Stata
routines: the string() function and its elaborated wrapper, the tostring com-
mand. I illustrate how to use these two routines to address the difficulties caused
by identifier variables in managing and analyzing data from private institutions
and U.S. government agencies.

Keywords: dm0071, identifier variables, leading zeros, FIPS codes, U.S. Census
Bureau, Bureau of Economic Analysis, USDA, cross-sectional data, panel data

1 Introduction

Identifier variables are essential to fully use the information in a Stata dataset. The
most typical examples of identifier variables in databases provided to the public by
private and governmental institutions in the United States are geographic identifiers,
also known as federal information processing standards (FIPS) codes. Assigned by the
National Institute of Standards and Technology, FIPS codes are crucially useful for join-
ing geographic records or observations for different data files and databases originating
from different sources.

These standardized codes identify U.S. geographic areas from aggregate levels such
as states to finer levels such as census blocks. States have two-digit codes, and counties
have three-digit codes; there are also codes for metropolitan areas, census tracts, and
census block groups. In county-level databases maintained by various U.S. institutions,
each county is identified by a five-digit FIPS code, the first two digits of which identify the
state. Often, depending on the data management and analysis tasks at hand, the data
analyst must generate a new identifier variable by concatenating two or more existing
variables, extracting a certain number of digits from an existing variable, or converting
an existing variable from numeric to string and vice versa.

c© 2013 StataCorp LP dm0071

700 Dealing with ID variables in Stata

Centered on the premise that identifier variables are best stored in string format, this
article features two official Stata routines—the string() function and its well-carved-
out wrapper, the tostring command—to accomplish this task, which sometimes may
pose unnerving challenges to inexperienced or even veteran Stata users. Cox (2002)
provides a lucid discussion of these two routines and their uses but does not emphasize
their relevance for dealing with identifier variables. While the gist of my article revolves
around FIPS codes, the highlighted principles apply to most identifier variables. In what
follows, after a succinct overview of string() and tostring, I illustrate how the two
routines can be used in managing data from institutions such as the U.S. Department
of Agriculture (USDA), the U.S. Census Bureau, and the Bureau of Economic Analysis,
which provide data with FIPS codes to the public.

2 Overview of Stata’s tostring and string()

Stata provides two commands and two functions to convert data from numeric to
string format: the commands tostring and decode and the functions string() and
strofreal(). Because decode simply creates a new string variable named newvar based
on the “encoded” numeric variable varname and its value labels, it is not useful here.
The strofreal() function is essentially a synonym for string(). Thus the focus here
is on the tostring command and the string() function, although I will occasionally
use other commands or functions to help when necessary.

The syntax for the string() function is string(numvar, "%fmt"). The first argu-
ment, numvar, can be either the name of a variable stored in numeric format or simply
a number. The second argument, "%fmt", is useful for formatting numbers, time, or
dates. tostring relies heavily on string() to convert numeric variables into their
string equivalents. To mimic the format argument in string(), tostring provides a
format(%fmt) option with the default format being "%12.0g". Stata carries about 10
different formats that can be used with both string() and tostring (see [D] format,
[D] destring, and [D] functions).

Used with no format options specified, both string() and tostring will dutifully
convert variables from numeric to string format. However, when the expression is greater
than seven digits, using the string() function will result in loss of information. With
tostring, the loss arises when the variables to be converted hold values exceeding 10
digits, even though the default format is "%12.0g". To preempt loss of information in
these instances, the user must specify the second argument of string() or the format()
option of tostring. While the general format %g can be used to ward off the loss, it
is totally inadequate for handling leading zeros. The fixed format %f must be used to
instruct Stata that the leading zeros should be inserted before converting variables from
numeric to string. This will become more clear with examples.

P. Wilner Jeanty 701

3 Generating identifier variables by concatenation

A five-digit FIPS code is often needed for merging. Some governmental institutions, such
as the USDA or some units within the U.S. Census Bureau, publish data with separate
FIPS codes for states and counties; this makes it a little difficult to join their datasets
with datasets from other agencies delivering databases with a five-digit FIPS code. If
you want to create a five-digit FIPS code variable, then state and county FIPS codes
(most often read in as numeric in Stata) must be concatenated with leading zeros put
in place before concatenation.

The need for creating a new identifier variable in this way is commonplace in many
data management tasks where numeric variables have to be transformed into string
variables before string functions can carry out string manipulations. For instance,
researchers downloading Small Area Income and Poverty Estimates (SAIPE) data for
school districts and counties from the U.S. Census Bureau have to grapple with this
issue unless they have access to at least Stata 12 and elect to download SAIPE data
in Excel format. SAIPE data from 1989 to 2010 can be downloaded in Excel (.xls)
format or in text (.txt) format. In both file types, the state FIPS codes contain leading
zeros, while the county FIPS codes do not.1 Unless the data are in Excel format and
the user is using Stata 12 or higher, when read into Stata, both variables are stored as
numeric, and all leading zeros, if any, are dropped. Thus it pays to know how to obtain
a five-digit FIPS code variable stored in string format by concatenating state and county
FIPS codes stored in numeric format while retaining the leading zeros.

For illustration, I will use a dataset downloaded from the USDA’s National Agricul-
tural Statistics Service’s website via Quick Stats.2 A fraction of the dataset is displayed
below.

1. For more details on SAIPE, see http://www.census.gov/did/www/saipe/data/index.html.
2. The USDA’s Quick Stats version 2.0 is the most comprehensive tool for accessing agricultural data

published by the National Agricultural Statistics Service. Using Quick Stats, researchers can query
the National Agricultural Statistics Service database on the basis of commodity, location, or time
period; they then can visualize the data on a map, manipulate and export the results, or save a
link for future use. For more on Quick Stats, go to http://www.nass.usda.gov/Quick Stats/.

702 Dealing with ID variables in Stata

. use fixit_dat2

. list state stfips county cofips in 1/6

state stfips county cofips

1. ALABAMA 1 AUTAUGA 1
2. ALABAMA 1 BALDWIN 3
3. ARIZONA 4 GREENLEE 11
4. FLORIDA 12 PALM BEACH 99
5. GEORGIA 13 ECHOLS 101

6. GEORGIA 13 EFFINGHAM 103

Now suppose you wish to generate a variable, say, fips, containing five-digit FIPS

codes for each county by concatenating the variables stfips and cofips. You would
undoubtedly want the variable to be stored in a string format. As Cox (2002) force-
fully points out, code or identifier variables are better held as strings for ease of data
processing. Let us put all this into context: after the fips variable is created, the first
five observations should look like 01001, 01003, 04011, 12099, and 13101. This entails
adding leading zeros to the variables stfips and cofips and converting them from
numeric to string before concatenation.

Using tostring and its format() option, we can conveniently convert the two nu-
meric variables while inserting the appropriate number of leading zeros and finally per-
form the concatenation. Recall that quotes are not required when specifying a format
with the format() option of a command or the format command itself, which is different
when using the second argument of string().

. tostring stfips, gen(stateid) format(%02.0f)
stateid generated as str2

. tostring cofips, generate(countyid) format(%03.0f)
countyid generated as str3

. generate fips = stateid + countyid

. list fips in 1/5

fips

1. 01001
2. 01003
3. 04011
4. 12099
5. 13101

P. Wilner Jeanty 703

We can also use the concat() function of the egen command to concatenate string
variables because their values will remain unchanged at the time of concatenation.

. drop fips

. egen fips=concat(stateid countyid)

. list fips in 1/5

fips

1. 01001
2. 01003
3. 04011
4. 12099
5. 13101

egen’s concat() function is also a wrapper of string() because it converts variables
from numeric to string before concatenation. Similarly to tostring, egen’s concat()
function provides a format() option to accommodate the format argument in string().
However, you may not use concat() and its format() option to directly convert stfips
and cofips from numeric to string, insert the leading zeros, and finally concatenate.
The problem is that two different formats must be used. The format(%fmt) option of
any command allows only one format to be specified.

Coding

. egen str5 fips=concat(stfips cofips), format(%05.0f)

would generate a 10-digit rather than a 5-digit variable.

Using string() with a fixed format as the second argument, you can do everything
in one line.

. drop fips

. generate str5 fips= string(stfips, "%02.0f") + string(cofips, "%03.0f")

. list fips in 1/5

fips

1. 01001
2. 01003
3. 04011
4. 12099
5. 13101

Largely because of its ability to deal with more than one variable at a time and to
automatically determine which string type is needed, tostring provides some efficiency,
one of the purposes for which it was written (Cox and Wernow 2000). This feature
decreases when the string variables to be created require you to specify different formats.
Still, you will see tostring’s efficiency on display in section 5.

704 Dealing with ID variables in Stata

Often we would rather let Stata decipher the string data type to be created. In that
case, a variable of type str1, the most compact string type, would be created, and then
the replace command would automatically lead to the promotion of the variable to the
appropriate type:

. generate str1 fips= ""

. replace fips = string(stfips, "%02.0f") + string(cofips, "%03.0f")

Although identifier variables are better stored in string format, if you want the FIPS

codes to be numeric, you can use the real() function to make them so but at the cost
of losing the leading zeros (see another issue with the real() function in section 4.2).

. generate fips1 = real(fips)

Thus far, we have focused attention on cases where FIPS codes are read in numeric
format when insheeted, which is by far the most encountered situation. Nonetheless, it
may very well be the case that the variable is stored in string format but the leading zeros
are left out. For instance, you may have used the user-written command labcenswdi,
which somehow returns FIPS codes in string format but leaves out the leading zeros
(Jeanty 2011).

More concretely, suppose you are dealing with counties within only one state and
you have a three-digit county FIPS code variable for that state but want a five-digit
FIPS code for merging. Then you would need to concatenate the state FIPS with the
county FIPS while preserving the leading zeros. Suppose the variable holds the three-
digit county FIPS codes for the Texas counties and is called countyfips. How you will
obtain a five-digit FIPS code variable will depend on the storage format of countyfips,
which can be string or numeric.

Suppose the countyfips variable is stored as numeric (for some reason, county FIPS

codes take on only odd numbers: 1, 3, 5, . . . or 001, 003, 005, . . .). To obtain a five-digit
FIPS code, you code

. generate str5 fips="48" + string(countyfips, "%03.0f")

Now suppose countyfips is stored as a string. The leading zeros may or may not
be in place. If the leading zeros are in place, you code

. generate str5 fips="48" + countyfips

Otherwise, you code

. generate str5 fips="48" + string(real(countyfips), "%03.0f")

Relatedly, imagine that the previously discussed variables stfips and cofips were
read in string format without the leading zeros. Now suppose you wish to retain the
leading zeros and keep the same variable names. You would easily code

. replace stfips=string(real(stfips), "%02.0f")

. replace codefips=string(real(cofips), "%03.0f")

P. Wilner Jeanty 705

Concatenating the two variables to create a five-digit FIPS code variable simply
entails coding

. generate str5 fips=stfips+cofips

Or you can code everything in one line:

. generate str5 fips=string(real(stfips), "%02.0f") +
> string(real(cofips), "%03.0f")

As you can see, the way to concatenate two existing variables to generate a new
identifier variable depends largely on the storage format of the existing variables and
the presence or absence of leading zeros. How about generating a new identifier variable
by extracting a certain number of digits from an existing string or numeric variable?
This is the subject of the next section.

4 Generating identifier variables by extraction

This section covers the creation of identifier variables by extracting numerical characters
from either string or numeric variables.

4.1 The case of short identifier variables

Consider a dataset with the first few observations on the first four variables shown
below.

. use fixit_dat, clear

. list in 1/5

address city state zip

1. PO Box 93527 Cleveland OH 441043104
2. PO Box 14690 Hanoverton OH 44423
3. PO Box 12583 Valley City OH 442809327
4. PO Box 297098 Rogers OH 44455
5. 4724 Delbeach Rd Medina OH 442568489

Here zip is a numeric variable taking on zip codes in both five-digit and nine-digit
formats. Based on the variable zip, imagine you want to create a numeric five-digit
zip code for the purpose of merging with another dataset. Because of the lack in Stata
of a function like substr() for numeric variables, the zip variable must be converted
into its string equivalent before the five digits can be subtracted. One way to proceed is
to use the tostring command to do the conversion and then apply the substr() and
real() functions successively, as follows:

. tostring zip, gen(cutzip)
cutzip generated as str9

. generate zip1=real(substr(cutzip,1,5))

706 Dealing with ID variables in Stata

. list zip1 in 1/5

zip1

1. 44104
2. 44423
3. 44280
4. 44455
5. 44256

However, a more concise way would be to use the string() function with "%9.0f"

as the second argument.

. generate zip2=real(substr(string(zip,"%9.0f"),1,5))

. list zip2 in 1/5

zip2

1. 44104
2. 44423
3. 44280
4. 44455
5. 44256

With the string() function, however, missing values would have resulted for all the
nine-digit values of the zip variable if we had not specified the format "%9.0f" as a
second argument. In addition, using a format different from the fixed type (%f) would
do us a disservice. For example, consider

. generate zip3=real(substr(string(zip),1,5))
(14 missing values generated)

. list zip3 in 1/5

zip3

1. .
2. 44423
3. .
4. 44455
5. .

The default format of string() truncated all the nine-digit values by converting them to
scientific format as powers of 10, which caused loss of information. Against this backdrop
is specifying "%9.0f" as a second argument. If applying the real(), substr(), and
string(n, s) functions renders the generated variable in scientific format, you can
always fix it by using the format command as

format varname %fmt

P. Wilner Jeanty 707

However, in the case of long identifier variables, you may still be surprised by unex-
pected values even after applying the format command. This issue is taken up below.

4.2 The case of long identifier variables

Consider the 12-digit census block group identifier variable stfid:

. use blockdata, clear

. format stfid %18.0f

. list stfid in 1/6

stfid

1. 390998107003
2. 390998108003
3. 390998109001
4. 390998109001
5. 390998109001

Suppose you wish to extract an 11-digit census tract identifier variable from the 12-
digit census block group FIPS code stfid for merging. To do so, you can easily apply
the string() function with the format argument:

. generate tract_stid=substr(string(stfid,"%12.0f"),1,11)

. list tract_stid in 1/5

tract_stid

1. 39099810700
2. 39099810800
3. 39099810900
4. 39099810900
5. 39099810900

The extracted census tract identifier variable is stored in string format by con-
struction. What if, for some reason, you want it to be numeric rather than string?
Instinctively, you would code

. generate tract_numid=real(tract_stid)

. format tract_numid %12.0f

708 Dealing with ID variables in Stata

However, listing a few observations shows values countering expectations.

. list tract_numid in 1/6

tract_numid

1. 39099809792
2. 39099809792
3. 39099809792
4. 39099809792
5. 39099809792

The conversion process has anomalously resulted in loss of information. This is a fla-
grant example where tostring will refuse to process a conversion from numeric to string
unless the force option is specified to explicitly convey the approval of information loss.

How about typing the following?

. replace tract_numid=real(substr(string(stfid,"%12.0f"),1,11))
(0 real changes made)

The problem, not surprisingly, remains unsolved. The primary reason is that by default,
Stata creates float variables. With such a large number of digits, float variables can hold
only multiples of four (Cox 2006). If you need a numeric variable of this size, the key is
to specify the data storage type as double or long because the identifier variable takes
on values with more than nine digits. Doubles have as many as 16 digits of accuracy.

. drop tract_numid

. generate double tract_numid=real(substr(string(stfid,"%12.0f"),1,11))

. format tract_numid %12.0f

. list tract_numid in 1/5

tract_numid

1. 39099810700
2. 39099810800
3. 39099810900
4. 39099810900
5. 39099810900

Whereas the difficulty of storing a nine-digit identifier variable in numeric format
can be sidestepped, Cox (2002) provides two compelling reasons why identifier variables
must be stored in string format: precision and data size. Yet the need to export
your data to the ArcGIS3 software package for mapping and spatial statistical analysis
is another key reason why you might want to store your identifier variable in string
format. Stata and ArcGIS communicate fairly well. Data exported using the outsheet
command or the new Stata 12 export excel command are readily usable in ArcGIS
with no intermediary steps or other software.

3. ArcGIS is a registered trademark of Environmental Systems Research Institute Inc.

P. Wilner Jeanty 709

. outsheet using yourfilename.csv, names nolabel comma

Identifier variables generated in Stata and stored in string format can be used to
join your data with basemaps or shapefiles by using a matching key variable also in
string format. However, it is important to refrain from outsheeting variables holding
values in scientific format. Consider a variable with the value 268398565. Without
proper formatting, this number will be stored and displayed as 2.684e+08. And if
outsheeted as such, the value that will be rendered is 268400000, which results in loss of
information. To overcome this conundrum, you must use a %g or %f format to properly
format variables holding numbers in scientific format before outsheeting the data. Users
of Stata 12 or higher can now use the export excel command, which automatically
handles such problems (see [D] import excel). With export excel, there is no need
to apply any formatting for the correct values to be rendered in the Excel dataset.4 To
export data to ArcGIS using export excel, you code5

. export excel using yourfilename.xls, firstrow(variable) sheet("yoursheetname")
> nolabel

Conversely, text files generated from exporting attribute tables in ArcGIS can be
readily imported into Stata with no intermediary steps or other software by using the
insheet command.

. insheet using arcgisfile.txt, names clear

Certainly, your preference for either string or numeric will depend on your purpose,
but bear in mind that in certain circumstances, Stata processes string and numeric
variables differently. For instance, when sorting a string variable, Stata will sort “15”
before “5”, but when sorting a numeric variable, it will sort “5” before “15”. One
implication for a string variable taking on U.S. state or county FIPS codes is that the
usual sort order of the U.S. states or counties in a dataset will get messed up. To remedy
this, you must insert the leading zeros. With the leading zeros in place, Stata will sort
“05” before “15”, preserving the usual sort order of U.S. states and counties.

5 Importing identifier variables from a spreadsheet

Because many private and governmental institutions provide data to the public in
spreadsheets, I will now address how to import long and short identifier variables from
a spreadsheet. I begin with an emphasis on insheeting data in .csv format using the
insheet command, available in both Stata 12 and previous Stata versions. I then high-
light the advantages of importing the same data in Excel format using the new Stata 12
import excel command, not available in previous Stata versions. The data for this
section are taken from the U.S. Census Bureau and the Bureau of Economic Analysis.

4. Note that export excel does not carry the format of decimal numbers onto the Excel dataset.
5. If the Stata dataset contains missing values, those values will be converted to <Null> in ArcGIS.

710 Dealing with ID variables in Stata

5.1 Importing long identifier variables

The U.S. Census Bureau now requires census data users to download gazetteer files
containing variables on land area, water area, and geographic coordinates about the
areal units for which the data were downloaded. This illustration concerns a gazetteer
file containing census tract identifier variables (such as FIPS codes), land area, water
area, and latitude and longitude for all census tracts in Texas.6 A primary interest
here is to import into Stata the data provided in .csv format to create a small dataset
to merge with census demographic data. Yet it is ineffective for all string variables
holding value characters to be converted to their numeric representations when they are
imported.

At this time, there is no way to tell Stata to read in some variables as string and
others as numeric when insheeting a dataset containing string variables with numerical
contents. This inconvenience, far from being a downside per se, is offset by the great
amount of user friendliness and freedom of action that Stata provides. If you want to
keep identifier variables in string format, there are two ways to do so. The first way is
to insert a new row and place some text on top of the identifier variable you want to
remain as string after reading it into Stata. This can be done in Excel before insheeting
the data. Then you will need to drop the inserted row once you are in Stata. The
second way is to convert the numeric variables back to string format after loading the
data into Stata. We will take the second route, which is a little bumpier. For now, let
us bring in the data and list a few observations.

. insheet using Gaz_tracts_48_coord.txt, names clear
(8 vars, 5265 obs)

. list geoid aland_sqmi awater_sqmi intptlat intptlong in 1/5, abb(11)

geoid aland_sqmi awater_sqmi intptlat intptlong

1. 4.800e+10 186.606 3.037 31.97147 -95.55244
2. 4.800e+10 6.39 .115 31.73464 -95.81571
3. 4.800e+10 27.981 1.015 31.8 -95.91238
4. 4.800e+10 8.896 .038 31.78781 -95.6419
5. 4.800e+10 7.974 .128 31.7502 -95.66921

The geoid variable is displayed in scientific format for taking very large values where
the number of digits is greater than seven. But do not make too much of this glitch; it
can easily be undone by using the format command.

. format geoid %11.0f

6. The U.S. Census Bureau provides gazetteer files for counties and lower summary levels such
as census tracts, block groups, and so on. For the geographic units of interest, these files
contain data on land area, water area, and latitudes and longitudes in decimal degrees. See
http://www.census.gov/geo/www/gazetteer/gazette.html. Interestingly, the vintage of the geog-
raphy (that is, the FIPS code or geographic identifier) in the 2010 gazetteer files is the same as
that in the 2010 Census data downloads. If you download data from American FactFinder 2, you
might as well download one of these files should you need the corresponding latitudes, longitudes,
and land area for your geographies.

http://www.census.gov/geo/www/gazetteer/gazette.html

P. Wilner Jeanty 711

Using the format command at this point is as important as specifying the format()
option when tostring is invoked below. I now list a few observations to give you a
sense of the values taken by the geoid variable.

. list geoid in 1/5

geoid

1. 48001950100
2. 48001950401
3. 48001950402
4. 48001950500
5. 48001950600

If you want to keep the identifier variable as numeric, you can stop right there. But
the goal is to obtain a string identifier variable from geoid. There are two prominent
ways to proceed: keep the same variable name or use a new name such as fips. In the
first case, tostring can do it all in one call:

. tostring geoid, replace force format(%11.0f)
geoid was double now str11

Let us pause for a moment. Why do we need to specify three options here? The an-
swer is obvious. Specifying the force option explicitly conveys agreement on conversion
from numeric to string, even if the conversion is potentially irreversible. By specifying
the replace option, you confirm in essence that your old variable should be replaced
with a new one. The format() option—the most important one here—is to forestall
any loss of information. The default format used by tostring, %12.0g, is ineffective at
preventing the loss of information.

The line of code above works flawlessly, but Cox (2011) rightly recommends using
the underlying function directly when tostring’s force option has to be invoked. To
perform the conversion, you could directly use the string() function, the workhorse of
tostring. However, if you want to keep the same variable name, using the string()

function requires some intermediary steps.

. insheet using Gaz_tracts_48_coord.txt, names clear
(8 vars, 5265 obs)

. generate ngeoid=string(geoid, "%11.0f")

. drop geoid

. rename ngeoid geoid

As seen before, tostring obviates those intermediary steps. On the other hand,
should a different name be needed for the geoid variable, then tostring and the
string() function will involve the same number of calls. Whether to use string()

or tostring in this instance is essentially immaterial and depends on personal prefer-
ence. For example, suppose you want the new name to be fips. To use string(), you
code

712 Dealing with ID variables in Stata

. insheet using Gaz_tracts_48_coord.txt, names clear
(8 vars, 5265 obs)

. generate fips =string(geoid, "%11.0f")

. drop geoid

A similar call to tostring() is

. insheet using Gaz_tracts_48_coord.txt, names clear
(8 vars, 5265 obs)

. tostring geoid, format(%11.0f) force gen(fips)
fips generated as str11

. drop geoid

Note here the use of the gen() option rather than replace.

5.2 Importing short identifier variables

This example shows another downside of insheeting a spreadsheet in .csv format: the
deletion of the leading zeros in the insheeted dataset.7 This problem is inherent in iden-
tifier variables being automatically converted from string to numeric when a dataset is
insheeted. In the case of short identifier variables, the reverse conversion is much sim-
pler. Consider a simple five-digit county FIPS code downloaded with transfer payment
data from the website of the Bureau of Economic Analysis.

. insheet using transfer2009_csv.csv, names clear
(3 vars, 3138 obs)

. list fips in 1/5

fips

1. 1001
2. 1003
3. 1005
4. 1007
5. 1009

7. This problem is commonly encountered by 2010 U.S. Census data users. See the following frequently
asked question at https://ask.census.gov/faq.php?id=5000&faqld=1647: American FactFinder:
How do I replace the leading zeros in my database compatible (.csv) download when opening
the download in Microsoft Excel (that is, GEO ID2)?

P. Wilner Jeanty 713

Converting back to string format and inserting leading zeros with the same variable
name entail a simple call to tostring with the replace option. Also needed is the
format() option to retain the leading zeros.

. tostring fips, replace format("%05.0f")
fips was long now str5

. list fips in 1/5

fips

1. 01001
2. 01003
3. 01005
4. 01007
5. 01009

Notice that here I did not specify the force option: not doing so is unharmful.

5.3 Using the new import excel command in Stata 12 and higher

Earlier, I asserted that there is no way to tell Stata to treat some variables with nu-
merical content as string and others as numeric when insheeting a .csv data file. This
is true in Stata 12 and under. Yet a startling difference exists between Stata 12 and
previous Stata versions when it comes to importing spreadsheets.

Recall the four main problems encountered when using the insheet command. First,
string variables with numerical contents get converted to numeric. Second, all leading
zeros are dropped. Third, identifier variables with large values get converted to scientific
format. Fourth, numerical variables with 1,000-separator commas become characters.
Against these shortcomings is the new import excel command in Stata 12 and higher.
Interestingly, import excel leaves identifier variables utterly intact upon reading Excel
files. import excel can decipher for itself whether a variable holding value characters
is string or numeric. Thus with the advent of import excel, there is no need to
instruct Stata whether a variable with numerical characters should be stored as string
or numeric.

Consider import excel on the same gazetteer and transfer data files used earlier
but now saved in Excel rather than .csv or .txt format.

. import excel Gaz_tracts_48_coord.xls, firstrow case(lower) clear

. list geoid in 1/5

geoid

1. 48001950100
2. 48001950401
3. 48001950402
4. 48001950500
5. 48001950600

714 Dealing with ID variables in Stata

It does not matter whether you are dealing with long or short identifier variables.

. import excel transfer2009_xls, firstrow case(lower) clear

. list fips in 1/5

fips

1. 01001
2. 01003
3. 01005
4. 01007
5. 01009

In both examples, note the use of the case option to convert the variable names to
lowercase; import excel, by default, preserves the case.

If you are working with identifier variables and have access to at least Stata 12, then
you should save your data in Excel format. Even better is if you have access to Excel
2007 or 2010, in which case it would be wise to save the data in .xlsx format to take
advantage of the flexibility of the import excel command. If the data provider offers
both .csv and Excel formats, you have access to both Stata 12 and Excel 2007 or 2010,
and, most importantly, the two data files only differ by their formats, then choose the
Excel format. As indicated earlier, SAIPE provides data in both .csv and .xls formats.
At this time, Stata documentation lacks technical details with regard to the size of a
dataset that can be insheeted via the insheet command. Documentation on import

excel, on the other hand, is inordinately terse and self-contained (see [D] import
excel). An .xls worksheet may contain as many as 65,536 rows and 256 columns. The
string size limit is 255 characters. The size limits for an .xlsx worksheet are 1,048,576
rows by 16,384 columns with a string size limit of 32,767 characters. Thus it is worth
saving your data under the .xlsx format whenever possible. If your Stata flavor can load
more variables and observations than allowed by import excel, you always have the
option of importing your data bit by bit and then piecing the bits together afterward.8

6 Creating your own identifier variables

Often and for a number of reasons, you might need to generate your own identifier
variable, numeric or string. Even more important might be the need to create a unique
identification number (ID) for elements within panels. In such a case, an ID is required
not only for each group or panel but also for each element of each panel. Two key system
variables in Stata, n and N, upon which I will expand later, prove indispensable. To
create a unique ID for each observation in a cross-section dataset, you code

. generate uniqid=_n

The variable uniqid, stored in numeric format, will take on values ranging from 1
to N , where N is the current number of observations. There are many reasons why you

8. Type help limits to know the limits of your Stata flavor.

P. Wilner Jeanty 715

might want to keep uniqid numeric. For instance, several Stata commands require a
numeric ID variable. You might also want data points to be equally spaced on the x axis
when graphing, a job perfect for a numeric ID variable. But chances are that you might
also want this variable to be stored in string format. Again the string() function is
handy.

. generate uniqid=string(_n)

Because this is a string variable, adding the leading zeros makes it a little more
appealing. Doing so, however, requires some thinking because the number of leading
zeros to be inserted must be in accord with the string variable length or the number of
characters it contains.

. local slen=length(string(_N))

. generate str`slen´ uniqid=string(_n,"%0`slen´.0f")

As you can see, adding the leading zeros hinges upon knowing a priori the number
of observations in your dataset. In the case of a panel or repeated-observation dataset,
you first need to create an ID for each group and then an ID for each observation within
each group. You might have a variable, say, myidvar, taking on repeated values on
which you want to base the group or panel ID numbers. If that is the case, a simple
way to proceed is to code

. egen groupid=group(myidvar)

. by groupid, sort: generate obsid=_n

where myidvar is the variable containing the elements for which a unique ID is needed.

Nonetheless, the notion that you have in your dataset an existing variable on which
you can base the groups might be untenable. Instead, all you might want to do is group
observations using a unique group ID and a unique observation ID. To do this, you will
first have to decide how many groups you need and the number of elements in each
group. Once you decide, the egen command and its seq() function are all you need to
get the job done. Suppose you have a dataset of N observations and you want to create
n1 groups of n2 observations so that n1 × n2 = N . To assign an ID to the groups and
the group elements, you code

. egen groupid=seq(), from(1) to(n1) block(n2)

. by groupid, sort: generate obsid=_n

These two variables, of course, will be numeric.

In a panel-data setting, an interesting yet unnerving task is to generate a string
identifier variable where each member of a group carries the ID number of the group
and where the leading zeros are in place for both groups and group members. To
proceed, we will build on the foundation laid above.

. quietly tabulate groupid

. local lnf=length(string(`r(r)´))

716 Dealing with ID variables in Stata

. by groupid, sort: generate nb=_N

. quietly summarize nb

. local mln=length(string(`r(max)´))

. by goupid, sort: generate obsid=string(groupid, "%0`lnf´.0f") +
> string(_n, "%0`mln´.0f")

It is worth understanding these lines of code. Beginning with the second line, the
string() function feeds on one of the results, r(r), which is the number of rows
or, in this case, groups returned by the tabulate command. length() counts how
many digits that number contains. Because length() is essentially a string function,
string() is used to convert the number from numeric to string. The third line counts
how many elements are in each group. Assuming the number of elements is the same
for each group, lines 4 and 5 count the number of digits contained in that number.
Built on the hindsight gained from the previous sections, line 6 creates an identifier
variable by concatenating group ID and member ID after inserting leading zeros in both.
Admittedly, things might become obfuscated in an unbalanced panel-data setting.

Also noteworthy is the heavy reliance on the system variables n and N. n acts like
an observation counter or marker. Stata thinks of it as the observation number of
the current observation. N typically indicates the total number of observations in the
current dataset, including missing ones, or the number of observations in the current
by() group. It stands out as the subscript of the last observation in a dataset or in
the current by() group. In essence, typing display N will display the number of
observations in the dataset currently loaded in memory. These two crucially important
built-in variables deserve due acquaintance for serious data management tasks. For
more details, see [U] 13.4 System variables (variables) and [U] 13.7 Explicit
subscripting.

7 Checking identifier variables for duplicates

As stressed before, one of the many reasons for maintaining identifier variables is to
merge datasets obtained from different sources: to link data to geographic information
system databases such as geographic boundary files or topologically integrated geo-
graphic encoding and referencing line shapefiles representing geographic features such
as roads, rivers, and nonvisible legal boundaries; selected point features such as hospi-
tals; or selected areas such as parks.9 Before you embark on such an endeavor, it is
good practice to ensure that your identifier variable is unique, be it in cross-sectional
or panel-data settings. Note that duplicate FIPS code elements in a dataset are very
unlikely.

9. Topologically integrated geographic encoding and referencing LINE shapefiles for 2010 are available
for download from the U.S. Census Bureau’s website at
http://www.census.gov/cgi-bin/geo/shapefiles2010/main.

P. Wilner Jeanty 717

To check for duplicates using the variable myidvar in a cross-sectional dataset, you
type

. duplicates list myidvar

If duplicates are present, Stata will display their occurrence. Otherwise, Stata will
respond with the message 0 observations are duplicates, an indication that only
a one-to-one or a one-to-many merge can be done using the key variable myidvar.

To check for duplicates within panels in a panel dataset, you invoke the duplicates
command by listing the panel identifier and then the observation identifier. This idea
can be extended to census tracts within counties or block groups within census tracts.

. duplicates list panelidvar obsidvar

Once identified, duplicates can be easily dropped. To drop all but the first occurrence
of each group of duplicated observations, you code

. duplicates drop myidvar

or in a panel dataset,

. duplicates drop panelidvar obsidvar

If you are a Stata user who cannot afford to be without data from U.S. government
agencies, the string() function and its elaborated wrapper, the tostring command,
deserve to be part of your repertoire.

8 Conclusion

Identifier variables are key to data management and analysis. Importing and exporting
them from and to other statistical software packages and rendering them to the proper
format and relevant number of digits might be at times challenging for inexperienced
or even veteran Stata users. Arguably, the new import excel and export excel com-
mands provided in Stata 12 or higher can relieve Stata users from most of the data
management burdens inherent in importing or exporting identifier variables when the
data format is of the type .xls or .xlsx. Many private and governmental institutions
continue to deliver data to the public in .csv format. Dealing with identifier variables
when the data are in this format involves many unwieldy challenges. Featuring Stata’s
string() function and its discreetly carved-out wrapper, the tostring command, this
article addressed most, if not all, of those challenges. The principles highlighted here
will enable better and efficient management of data about U.S. geographic areas.

9 Acknowledgments

The author thanks an anonymous reviewer and Deborah Perez for their useful comments
on this article.

718 Dealing with ID variables in Stata

10 References

Cox, N. J. 2002. Speaking Stata: On numbers and strings. Stata Journal 2: 314–329.

———. 2006. Stata tip 33: Sweet sixteen: Hexadecimal formats and precision problems.
Stata Journal 6: 282–283.

———. 2011. Speaking Stata: Fun and fluency with functions. Stata Journal 11:
460–471.

Cox, N. J., and J. B. Wernow. 2000. dm80: Changing numeric variables to string. Stata
Technical Bulletin 56: 8–12. Reprinted in Stata Technical Bulletin Reprints, vol. 10,
pp. 24–28. College Station, TX: Stata Press.

Jeanty, P. W. 2011. Managing the U.S. Census 2000 and World Development Indicators
databases for statistical analysis in Stata. Stata Journal 11: 589–604.

About the author

P. Wilner Jeanty is a research scientist for the Kinder Institute for Urban Research and the
Hobby Center for the Study of Texas, Rice University. Jeanty has broad interests in urban and
regional economics, environmental economics, development economics, and applied economet-
rics. His research applies statistical theory and modeling techniques from the fields of spatial,
environmental, and regional economics, including the applications of spatial econometrics, geo-
graphic information systems, and econometrics of nonmarket valuation and panel data. Jeanty
also has experience in survey design and implementation and in statistical software program-
ming.

