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Attributable and unattributable risks and

fractions and other scenario comparisons

Roger B. Newson
National Heart and Lung Institute

Imperial College London
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r.newson@imperial.ac.uk

Abstract. Scenarios are alternative versions of the same dataset with the same
variables but different observations or values. Applied scientists frequently want
to predict how much good an intervention will do by comparing outcomes from
the same model between different scenarios. Alternatively, they may want to com-
pare outcomes between different models applied to the same scenario, for instance,
when standardizing statistics from different subpopulations to a common gender
and age distribution. Standard Stata tools for scenario means and comparisons
are margins and pwcompare. A suite of packages is presented for estimating sce-
nario means and comparisons by using margins, together with normalizing and
variance-stabilizing transformations implemented by using nlcom. margprev es-
timates marginal prevalences; marglmean estimates marginal arithmetic means;
regpar estimates the difference between two marginal prevalences (the popula-
tion attributable risk); punaf estimates the ratio between two marginal arithmetic
means (the population unattributable fraction); and punafcc estimates a marginal
mean between-scenario risk or hazard ratio for case–control or survival data (also
known as a population unattributable fraction). The population unattributable
fraction and its confidence limits are subtracted from 1 to estimate the population
attributable fraction. Formulas and examples are presented, including an example
from the Global Allergy and Asthma European Network.

Keywords: st0314, margprev, marglmean, regpar, punaf, punafcc, margins, nlcom,
population, unattributable, attributable, risk, fraction, PAR, PAF, PUF, scenario,
comparison, standardization

1 Introduction

Applied scientists, especially in the public health sector, usually want to know how much
good they can do. In particular, they might want to estimate, from the available data,
how much reduction they would see in a disease rate if everybody stopped smoking or
if all children received a proposed vaccine. Alternatively, they might compare disease
rates between different subpopulations, discover heterogeneity, and wonder whether that
heterogeneity is caused by confounding factors, such as differences in the age distribution
between different subpopulations. After all, if subpopulation A has a higher rate of a
particular cancer than subpopulation B, then this might be due to something in the
environment of subpopulation A, to which subpopulation B is not exposed, or it might
be due to subpopulation A being mostly older than subpopulation B. If we could

c© 2013 StataCorp LP st0314
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eliminate the second possibility by standardizing the disease rates to a standard age
distribution, then we might have evidence for the first possibility. In both cases, we
are comparing scenarios. In the first case, we are comparing two different scenarios,
using data from the same sample. In the second case, we are comparing the same
scenario, using data from two different samples, one from subpopulation A and one
from subpopulation B.

In statistics, scenarios are alternative versions of the same data matrix, with equiv-
alent columns (variables) but with different rows (observations). Different scenarios
have a one-to-one correspondence between the columns, so equivalent columns have the
same variable names. However, different scenarios may or may not have a one-to-one
correspondence between equivalent rows. If we use regression methods, then we might
want to estimate the scenario means of an outcome variable Y under different scenarios
defined by specifying values for particular X variables. The X variables that vary be-
tween scenarios are known as exposures, and the other X variables, which are invariant
between scenarios, are known as concomitant variables.

A seminal reference for scenario means and comparisons in generalized linear models
is Lane and Nelder (1982). However, an important case is the estimation of population
attributable fractions after fitting a logistic regression model, which is given with differ-
ent formulas for cohort studies and for case–control studies by Greenland and Drescher
(1993). These formulas were implemented in Stata by Brady (1998), who introduced the
Stata 5 aflogit command. This command is still downloadable by using the command
findit aflogit. However, it does not support factor variable lists, and the Stata 5
code sometimes has problems with the long variable names used in subsequent Stata
versions. Another special case of a scenario comparison is the population attributable
risk (PAR), which is defined in Gordis (2000).

In Stata 11, a new command, margins, was added (see [R] margins). margins

inputs a set of estimation results and a set of X variables and outputs scenario means for
expressions involving predicted Y values under one or more scenarios. These scenario
means are estimated with covariance matrices, so the user can calculate confidence
intervals for them. In Stata 12, the commands contrast and pwcompare were added
(see [R] contrast and [R] pwcompare), along with the pwcompare and pwcompare()

options for margins (see [R] margins, pwcompare). These commands can be used
to calculate confidence intervals for differences between scenario means. However, users
frequently want to estimate scenario means and their differences and ratios by using
normalizing and variance-stabilizing transformations to generate confidence limits in
which the user can have confidence. This can be done by using nlcom (see [R] nlcom).

This article introduces a suite of programs that call margins and nlcom to calculate
scenario prevalences and means, their differences, their ratios, and other comparison
statistics. These statistics are known as marginal means, marginal prevalences, and
attributable and unattributable risks and fractions. Section 2 describes the commands.
Section 3 describes the methods and formulas used. Finally, section 4 gives practical
examples of the use of these commands.
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2 The margprev, marglmean, regpar, punaf, and punafcc

commands

2.1 Syntax

margprev
[
if
] [

in
] [

weight
] [

, atspec(atspec) subpop(subspec)

predict(pred opt) vce(vcespec) noesample force iterate(#) eform

level(#) post
]

marglmean
[
if
] [

in
] [

weight
] [

, atspec(atspec) subpop(subspec)

predict(pred opt) vce(vcespec) noesample force iterate(#) eform

level(#) post
]

regpar
[
if
] [

in
] [

weight
] [

, atspec(atspec) atzero(atspec0) subpop(subspec)

predict(pred opt) vce(vcespec) noesample force iterate(#) level(#)

post
]

punaf
[
if
] [

in
] [

weight
] [

, atspec(atspec) atzero(atspec0) subpop(subspec)

predict(pred opt) vce(vcespec) noesample force iterate(#) eform

level(#) post
]

punafcc
[
if
] [

in
] [

weight
] [

, atspec(atspec) subpop(subspec) vce(vcespec)

noesample force iterate(#) eform level(#) post
]

where atspec and atspec0 are specifications recognized by the at() option of margins,
subspec is a subpopulation specification of the form recognized by the subpop() option
of margins, and vcespec is a variance–covariance specification of the form recognized
by margins and must have one of the values

delta | unconditional

pweights, aweights, fweights, and iweights are allowed and handled as margins.

2.2 Description

The margprev, marglmean, regpar, punaf, and punafcc commands are for use after
the parameters of a regression model have been fit by using an estimation command.
They estimate a range of scenario prevalences, means and mean risk ratios, and their
between-scenario comparisons (differences and ratios). These are estimated with con-
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fidence limits derived by using normalizing and variance-stabilizing transformations to
estimate the transformed parameters and their dispersion matrix. A difference between
two scenario prevalences is known as a PAR, and a ratio between two scenario arithmetic
means, or a mean between-scenario risk ratio or hazard ratio, is known as a popula-
tion unattributable fraction (PUF). When a PUF is estimated, a confidence interval is
also calculated, using end-point transformation, for the population attributable fraction
(PAF), which is derived by subtracting the PUF from 1. Table 1 lists the five commands,
the estimated parameters, and the transformations used.

Table 1. List of commands with estimated parameters and transformations used

Package Estimated parameters Transformations

margprev 1 marginal prevalence Logit
marglmean 1 marginal arithmetic mean Log
regpar 2 marginal prevalences and their Logit, Fisher’s z

difference (PAR)
punaf 2 marginal arithmetic means and their Log

ratio (PUF)
punafcc 1 mean between-scenario risk or hazard Log

ratio (PUF)

2.3 Options

atspec(atspec) is a specification allowed as a value of the at() option of margins

(see [R] margins). This specification must identify a single scenario (denoted “Sce-
nario 1” in the output), defined as a fantasy world in which a subset of the predic-
tor variables in the model is set to values that may be different from their values
in the real world. In the case of punafcc, which is intended for use with case–
control or survival data, the specification is restricted and may set variables only
to values (not to statistics). If atspec() is not specified, then its default value is
atspec((asobserved) all), implying that scenario 1 is the baseline scenario, rep-
resented by the predictor values actually present in the dataset currently in memory.

atzero(atspec0) is available for regpar and punaf only. It specifies a specification
allowed as a value of the at() option of margins. This specification must identify a
single baseline scenario (denoted “Scenario 0” in the output), defined as an alterna-
tive fantasy world in which a subset of predictors in the model is set to the values
specified by atspec0. Scenario 0 will then be compared with the scenario specified
by the atspec() option, scenario 1. If atzero() is not specified, then its default
value is atzero((asobserved) all), implying that scenario 0 is the baseline sce-
nario, represented by the predictor values actually present in the dataset currently
in memory.
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subpop(subspec), predict(pred opt), vce(vcespec), noesample, and force function
as the options of the same names for margins. subpop() specifies a subpopulation;
predict() specifies a predict option; vce() specifies the formula used for calculating
the dispersion matrix of the estimated parameters; noesample specifies that the
estimated statistics will not be restricted to the current estimation sample; and force
specifies that the scenario means will still be estimated even if there are potential
problems detected by margins. The predict() option is not currently available
for punafcc, but it enables the use of the other four commands after a multiple-
equation command. For instance, after mlogit, the option predict(outcome(2))

allows scenario prevalences to be estimated and compared for the second value of a
multinomial outcome. (See [R] mlogit.)

iterate(#) has the same form and function as the option of the same name for nlcom
(see [R] nlcom). iterate() specifies the number of iterations used by nlcom to find
the optimal step size to calculate the numerical derivatives of the transformed sce-
nario means and comparisons, with respect to the original scenario means calculated
by margins.

eform specifies that the command will display an estimate, p-value, and confidence
limits instead of the log estimate; see the help files for margprev, marglmean, punaf,
and punafcc for complete descriptions.

level(#) specifies the percentage confidence level to be used in calculating the confi-
dence intervals. If not specified, then level() is taken from the current value of the
c-class value c(level), which is usually level(95).

post specifies that the command will post in e() the estimation results for estimating
the transformed scenario means and any comparisons (differences or ratios). If post
is not specified, then any existing estimation results are left in e(). Note that
the estimation results posted are for the transformed parameters and not for the
parameters themselves. This is done because the estimation results are intended to
define symmetric confidence intervals for the transformed parameters, which can be
back transformed to define asymmetric confidence intervals for the untransformed
parameters and for the PAR in the case of punaf and punafcc.
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2.4 Stored results

margprev, marglmean, regpar, punaf, and punafcc store the following results in r():

Scalars
r(N) number of observations
r(rank) rank of r(V)
r(N sub) subpopulation observations
r(N clust) number of clusters
r(N psu) number of samples, primary sampling units, survey data only
r(N strata) number of strata, survey data only
r(df r) variance degrees of freedom, survey data only
r(N poststrata) number of post strata, survey data only
r(k margins) number of terms in marginlist

r(k by) number of subpopulations
r(k at) number of at() options
r(level) confidence level

Macros
r(atzero) atzero() option (regpar and punaf only)
r(atspec) atspec() option

Matrices
r(cimat) matrix of asymmetric confidence intervals (not stored by marglmean)
r(b) vector of estimated transformed parameters
r(V) dispersion matrix for transformed estimated parameters

The matrix r(cimat) is not stored by marglmean. It contains asymmetric confi-
dence intervals (one per row) for the untransformed marginal prevalence in the case of
margprev, for the untransformed marginal prevalences and their untransformed differ-
ence (the PAR) in the case of regpar, and for the PAF (equal to 1− PUF) in the case of
punaf and punafcc. The matrices r(b) and r(V) contain the estimate and dispersion
matrix, respectively, for the transformed parameters, as indicated in table 1.
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If post is specified, then margprev, marglmean, regpar, punaf, and punafcc also
store the following results in e():

Scalars
e(N) number of observations
e(rank) rank of e(V)
e(N sub) subpopulation observations
e(N clust) number of clusters
e(N psu) number of samples, primary sampling units, survey data only
e(N strata) number of strata, survey data only
e(df r) variance degrees of freedom, survey data only
e(N poststrata) number of post strata, survey data only
e(k margins) number of terms in marginlist

e(k by) number of subpopulations
e(k at) number of at() options

Macros
e(cmd) command name

e(predict) program used to implement predict
e(atzero) atzero() option (regpar and punaf only)
e(atspec) atspec() option
e(properties) b V

Matrices
r(cimat) matrix of asymmetric confidence intervals (not stored by marglmean)
e(b) vector of estimated transformed parameters
e(V) dispersion matrix for transformed estimated parameters

e(V srs) simple-random-sampling-without-replacement (co)variance, V̂srswor,
if svy

e(V srswr) simple-random-sampling-with-replacement (co)variance, V̂srswr, if svy
and fpc()

e(V msp) misspecification (co)variance, V̂msp, if svy and available

Functions
e(sample) marks estimation sample

3 Methods and formulas

This section is highly technical. The casual reader might like to skip it and proceed to
section 4 and possibly return to this section for reference later.

The methods used are a combination of those in margins and in nlcom. We denote
by θ the vector of parameters estimated by the most recent model fit and denote by
f(z,θ) the function of the covariate row vector z and the parameter vector θ whose
mean we want to estimate. In general, we aim to estimate a population parameter of
the form

p(θ) =
1

MR

M∑

j=1

Rjf(Zj ,θ) (1)
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where Zj is the value of the covariate vector in the jth member of the population of
M observations, Rj is a binary variable identifying membership of the jth observation
in a subpopulation (0 for nonmembers and 1 for members), and MR is the size of the
subpopulation identified by the Rj , equal to

MR =
M∑

j=1

Rj

(This population of M observations may or may not be the population from which our
data are sampled.)

We aim to estimate p(θ) using the sample statistic

p̂ =
1

w.

N∑

j=1

rjwjf
(
zj , θ̂

)
(2)

where N is the number of observations in the sample, zj is the vector of covariates in

the jth observation in the sample, θ̂ is the estimate of the parameter θ derived from
the sample, rj is a binary variable identifying membership of the jth observation in a
subsample corresponding to the subpopulation identified by the Rj , wj is the weight
for the jth observation in the sample, and

w. =
N∑

j=1

rjwj

is the sum of weights in the subsample. These weights are normally chosen so that (2)
is a consistent estimate of the population parameter p(θ) in (1).

3.1 Scenario means estimated

The margprev, marglmean, regpar, punaf, and punafcc commands all start by es-
timating one or two population scenario means of the form (1) by using one or two
corresponding sample scenario means of the form (2). Here scenarios are defined as
alternative versions of the population and sample datasets, identified by alternative
versions of the covariate vectors Zj and zj , respectively. The scenarios are denoted
scenario 1 (used by all five commands) and scenario 0 (currently used only by regpar

and punaf). We will denote by Z
(0)
j and Z

(1)
j the values of the covariate vector for the

jth population observation in scenarios 0 and 1, respectively, and denote by z
(0)
j and

z
(1)
j the values of the covariate vector for the jth sample observation in scenarios 0 and

1, respectively. (We will continue to denote by Zj and zj the real-world values of the
covariate vectors for the jth population observation and for the jth sample observation,
respectively. Furthermore, we will assume that a mathematical function exists, deriving

Z
(i)
j from Zj and deriving z

(i)
j from zj , for i ∈ {0, 1}.)
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Each of the commands estimates 1 or 2 scenario means p(i)(θ) of functions f (i)(z,θ),
using estimators p̂(i), for scenario indices i ∈ {0, 1}, over subpopulations defined by
subpopulation indicators Rj as in (1), using subsample indicators rj as in (2). The sub-
populations and subsamples are the same for both scenarios. Therefore, for scenario i,
the population scenario mean of (1) becomes

p(i)(θ) =
1

MR

M∑

j=1

Rjf
(i)(Zj ,θ) (3)

and the corresponding estimator of (2) becomes

p̂(i) =
1

w.

N∑

j=1

rjwjf
(i)
(
zj , θ̂

)
(4)

The commands vary in the specification of the functions to be averaged and of the
subpopulations over which these functions are to be averaged. The subpopulation is
governed by the subpop() option, which functions as the option of the same name for
margins (see [R] margins). For a population index j from 1 to M , we will denote by
Sj the binary variable indicating membership of the jth population observation in the
subpopulation specified by the subpop() option. Similarly, for a sample index j from 1
to N , we will denote by sj the binary variable indicating membership of the jth sample
observation in the subsample specified by the subpop() option.

In the case of the commands margprev, marglmean, regpar, and punaf, the right-
hand sides of (3) and (4) are specified by

Rj = Sj , rj = sj , f (i) (Zj ,θ) = µ
(
Z

(i)
j ,θ

)
, f (i)

(
zj , θ̂

)
= µ

(
z
(i)
j , θ̂

)

where µ(z,θ) specifies the conditional arithmetic mean calculated by predict for the
covariate vector z and the parameter vector θ.

In the case of the punafcc command, used for case–control and survival data, the
definitions are slightly more complicated and depend on whether the most recent esti-
mation command is stcox or some other estimation command. We will define the truth
value T (x) of a numeric value x to be 1 if x is nonzero, 0 if x is 0, and missing if x
is missing. For a population index j from 1 to M , we will define Yj to be the failure
indicator variable d, generated by the command stset, if the most recent estimation
command is stcox and to be the dependent variable given by the estimation result
e(depvar) if the most recent estimation command is another estimation command.
Similarly, for a sample index j from 1 to N , we will define yj to be the failure indicator
variable d, generated by the command stset, if the most recent estimation command
is stcox and to be the dependent variable given by the estimation result e(depvar) if
the most recent estimation command is another estimation command. (See [ST] stcox
for documentation of stcox and [ST] stset for documentation of stset.) We will also
denote by β the column vector containing the subvector of the parameter vector θ con-
taining the coefficients corresponding to the covariates of the z vector and denote by
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β̂ the column vector containing the corresponding subvector of the parameter-estimate
vector θ̂. The right-hand sides of (3) and (4) are then specified by

Rj = SjT (Yj)

rj = sjT (yj)

f (i)(Zj ,θ) = exp
{(

Z
(i)
j − Zj

)
β
}

f (i)
(
zj , θ̂

)
= exp

{(
z
(i)
j − zj

)
β̂
}

This implies that (3) is the population mean risk ratio (or hazard ratio) between sce-
nario i and the real world for the “subsubpopulation” of cases (or failures) of the sub-
population specified by the subpop() option and that (4) is a corresponding sample
mean risk ratio (or hazard ratio) for the “subsubsample” of cases (or failures) of the
subsample specified by the subpop() option. A mean between-scenario ratio is a subtly
different quantity from a ratio between scenario means; however, both of these quanti-
ties are known as population unattributable fractions and can be subtracted from 1 to
give population attributable fractions.

In all the above equations, the margprev, marglmean, regpar, and punaf commands
assume that predict specifies a conditional arithmetic mean and that the punafcc

command assumes that the parameters of the model are log odds or hazard ratios, while
the truth values of the dependent or failure variable indicate case status or failure. It
is the user’s responsibility to ensure that these assumptions are true.

Dispersion-matrix estimates for the estimated scenario means (4) are calculated by
using methods depending on the vce() option as discussed in [R] margins.

3.2 Symmetric confidence intervals for transformed parameters

Having estimated the scenario means and their sampling dispersion matrix by using
margins, we then estimate the transformed parameters by using the normalizing and
variance-stabilizing transformations specified in table 1. This is done by using nlcom,
so we will use similar notation to nlcom (see [R] nlcom). We will denote by H the
number of transformed parameters that we want to estimate and denote the vector of
transformed parameters by

g(θ) = {g1(θ), . . . , gH(θ)}
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The gh(θ) are functions of the originally estimated parameter vector θ that are esti-

mated by using the corresponding gh(θ̂). However, we will define them in terms of
the scenario means (3) estimated by margins. Table 2 lists the transformed parame-
ters estimated by each command and identified by their formulas and their commonly
used parameter names. The logit and log transformations are standard normalizing and
variance-stabilizing transformations for the prevalences of binary variables and for the
arithmetic means of nonnegative-valued variables and their ratios, respectively. The hy-
perbolic arctangent arctanh(), also known as Fisher’s z transform, was recommended
by Edwardes (1995) for the general Somers’ D parameter, which is discussed extensively
in Newson (2006) and includes as a special case the difference between two proportions,
exemplified in the scenario-comparison case by the PAR.

The nlcom command inputs the estimates and dispersion matrix for the scenario
means p(i)(θ), generated by margins, and outputs the estimates and dispersion matrix
for the gh(θ) by using numerically estimated derivatives of the transformed parameters
with respect to the scenario means. The output estimates vector and dispersion matrix
are stored in r(b) and r(V), respectively. If the user specifies the post option, then these
matrices are also stored in e(b) and e(V), respectively. In either case, the matrices can
be used in the same way to compute symmetric confidence intervals for the transformed
parameters.

Table 2. Transformed parameters expressed as functions of scenario means

Package Parameter formulas Parameter names

margprev g1(θ) = logit{ p(1)(θ) } Logit prevalence
marglmean g1(θ) = log{ p(1)(θ) } Log arithmetic mean
regpar g1(θ) = logit{ p(0)(θ) } Logit prevalence

g2(θ) = logit{ p(1)(θ) } Logit prevalence
g3(θ) = arctanh{ p(0)(θ) − p(1)(θ) } z transformed PAR

punaf g1(θ) = log{ p(0)(θ) } Log arithmetic mean
g2(θ) = log{ p(1)(θ) } Log arithmetic mean
g3(θ) = log{ p(1)(θ) / p(0)(θ) } Log PUF

punafcc g1(θ) = log{ p(1)(θ) } Log PUF

3.3 Asymmetric confidence intervals for untransformed parameters

Generally, the user really wants to see confidence intervals for arithmetic means and
their ratios or for prevalences and their differences instead of seeing confidence inter-
vals for the transformed parameters of table 2. In the case of the logged parameters
estimated by marglmean, punaf, and punafcc, the eform option allows the user to
view the untransformed parameters and their confidence limits. However, in the case of
margprev, the eform option displays the odds and not the prevalence, and the eform
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option is not available for regpar. Moreover, even in the case of the logged param-
eters of punaf and punafcc, the user wants to estimate the PAF instead of the PUF.
To cater for these cases, the commands of the punaf suite (except for marglmean) also
output a matrix of confidence intervals for the untransformed parameters of interest.
This confidence interval matrix is stored in r(cimat) and is also automatically listed
in the output. For each command, it has one row for each of the K parameters ck(θ)
for k ∈ {1 . . . K} and three columns containing the estimates, lower confidence limits,
and upper confidence limits, respectively, of these parameters. The confidence intervals
in this matrix are asymmetric.

Table 3 lists the parameters whose asymmetric confidence intervals are listed and
saved in the confidence interval matrix by the four commands that produce such a
matrix. In each case, the command computes a confidence interval for the transformed
parameter gh(θ), with estimates and lower and upper confidence limits corresponding
to the confidence level specified by the level() option, which defaults to level(95).
The estimate, lower confidence limit, and upper confidence limit for the untransformed
parameter ck(θ) are then derived by transforming the estimate, lower confidence limit,
and upper confidence limit, respectively, for the transformed parameter (in the case
of margprev and regpar) or by transforming the estimate, upper confidence limit, and
lower confidence limit, respectively, for the transformed parameter (in the case of punaf
and punafcc).

Table 3. Untransformed parameters expressed as functions of transformed parameters

Package Parameter formulas Parameter names

margprev c1(θ) = invlogit{ g1(θ) } Scenario 1 prevalence
regpar c1(θ) = invlogit{ g1(θ) } Scenario 0 prevalence

c2(θ) = invlogit{ g2(θ) } Scenario 1 prevalence
c3(θ) = tanh{ g3(θ) } PAR

punaf c1(θ) = 1 − exp{ g3(θ) } PAF (cohort or cross-sectional)
punafcc c1(θ) = 1 − exp{ g1(θ) } PAF (case–control or survival)
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4 Examples

4.1 Scenario comparisons in the lbw data using regpar

lbw.dta was discussed by Hosmer, Lemeshow, and Klar (1988) and is posted on the
Stata Press website. It has one observation for each of a sample of 189 pregnancies and
data on the birthweight of the baby and on a list of predictive variables. The most
interesting of these variables is probably the mother’s smoking status during pregnancy,
coded as the binary variable smoke, which is equal to 1 if the mother smoked during
pregnancy and 0 otherwise. We will estimate scenario comparisons from a logistic re-
gression model to predict the binary variable low, indicating that the baby’s birthweight
was below 2,500 grams.

After loading the lbw data, we fit a logistic model of low with respect to the exposure
factor smoke and the confounding factor race (1 for white, 2 for black, or 3 for other):

. use http://www.stata-press.com/data/r12/lbw.dta
(Hosmer & Lemeshow data)

. logit low i.race i.smoke, or vce(robust)

Iteration 0: log pseudolikelihood = -117.336
Iteration 1: log pseudolikelihood = -110.10441
Iteration 2: log pseudolikelihood = -109.98749
Iteration 3: log pseudolikelihood = -109.98736
Iteration 4: log pseudolikelihood = -109.98736

Logistic regression Number of obs = 189
Wald chi2(3) = 14.30
Prob > chi2 = 0.0025

Log pseudolikelihood = -109.98736 Pseudo R2 = 0.0626

Robust
low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

race
2 2.956742 1.420439 2.26 0.024 1.153162 7.581175
3 3.030001 1.187272 2.83 0.005 1.405753 6.530954

1.smoke 3.052631 1.10296 3.09 0.002 1.503568 6.197631
_cons .1587319 .0515235 -5.67 0.000 .0840173 .2998882

We see that maternal smoking triples the odds of low birthweight and that having a
mother of either of the two nonwhite maternal races has a similar effect on the odds.
However, few of the public really understand odds ratios. They might understand more
easily the difference that might result if all mothers quit smoking before pregnancy, but
their racial mix remained the same as in the real world. The regpar command can
estimate this difference, using the stored estimation results:
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. regpar, at(smoke=0)
Scenario 0: (asobserved) _all
Scenario 1: smoke=0
Symmetric confidence intervals for the logit proportions
under Scenario 0 and Scenario 1
and for the z-transformed population attributable risk (PAR)
Total number of observations used: 189

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Scenario_0 -.789997 .1519305 -5.20 0.000 -1.087775 -.4922187
Scenario_1 -1.215955 .2051031 -5.93 0.000 -1.61795 -.8139606

PAR .0837153 .0266196 3.14 0.002 .0315419 .1358887

Asymmetric 95% CIs for the untransformed proportions
under Scenario 0 and Scenario 1
and for the untransformed population attributable risk (PAR)

Estimate Minimum Maximum
Scenario_0 .31216931 .25203743 .37937104
Scenario_1 .22864901 .16548776 .30704715

PAR .08352031 .03153146 .13505843

regpar starts its output by specifying scenarios 0 and 1 in the language of the at()

option of margins. Scenario 0 is (asobserved) all, implying that all covariates and
factors are as observed in our real-world sample. Scenario 1 is smoke=0, implying that
no mothers smoke, but (by default) the factor race is distributed as in our real-world
sample. regpar then displays the logit proportions with low birth rate under scenarios 0
and 1 and the z transform of the difference between these proportions, known as the
PAR, with their standard errors, z statistics, p-values, and symmetric confidence limits.
Finally, it displays the more comprehensible asymmetric confidence intervals for the
untransformed scenario proportions and for their difference. We see that in the real
world (Scenario 0), 31.2% of babies are expected to have a low birthweight but that in
the dream scenario where no mothers smoke and their races stay the same (Scenario 1),
only 22.9% of babies are expected to have a low birthweight. The difference between
these scenario percentages (PAR) is 8.4%, with confidence limits from 3.2% to 13.5%.
The PAR can be interpreted as the proportion of all babies that have low birthweight
because they were born in scenario 0 instead of in scenario 1.

Alternatively, we might want to communicate our message to an audience of smoking
mothers, who might want to know how much they could do for their children if only they
quit smoking before pregnancy. To answer this, we might use regpar with a subpop()

option to compute an exposed-population attributable risk for the subpopulation of
smoking mothers:
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. regpar, at(smoke=0) subpop(if smoke==1)
Scenario 0: (asobserved) _all
Scenario 1: smoke=0
Symmetric confidence intervals for the logit proportions
under Scenario 0 and Scenario 1
and for the z-transformed population attributable risk (PAR)
Total number of observations used: 189

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Scenario_0 -.3829923 .2373852 -1.61 0.107 -.8482587 .0822742
Scenario_1 -1.436486 .2279922 -6.30 0.000 -1.883343 -.9896299

PAR .2166422 .0707321 3.06 0.002 .0780098 .3552746

Asymmetric 95% CIs for the untransformed proportions
under Scenario 0 and Scenario 1
and for the untransformed population attributable risk (PAR)

Estimate Minimum Maximum
Scenario_0 .40540541 .29979827 .52055695
Scenario_1 .19209003 .13200536 .27098519

PAR .21331537 .07785194 .34104503

This time, the option subpop(if smoke==1) restricts the prediction to the subpopula-
tion of smoking mothers, but scenarios 0 and 1 are defined as before. Once again, regpar
displays the incomprehensible symmetric confidence intervals for the transformed pa-
rameters followed by the asymmetric confidence intervals for the transformed parame-
ters, which are probably more easily explained to smoking mothers. We see that the
children of smoking mothers have a 40.1% prevalence of low birthweight, which might
be reduced to 19.2% if their mothers quit smoking before pregnancy, while their racial
mix remained the same. The difference is 21.3% with confidence limits from 7.8% to
34.1%.

Another possibility is to compare our zero-smoking dream scenario not with the
intermediate world in which we live but with the nightmare scenario where all mothers
started smoking. This is done by using the atzero() option, which can be used to reset
scenario 0, as follows:
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. regpar, at(smoke=0) atzero(smoke=1)
Scenario 0: smoke=1
Scenario 1: smoke=0
Symmetric confidence intervals for the logit proportions
under Scenario 0 and Scenario 1
and for the z-transformed population attributable risk (PAR)
Total number of observations used: 189

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Scenario_0 -.1697027 .2464163 -0.69 0.491 -.6526697 .3132642
Scenario_1 -1.215955 .2051031 -5.93 0.000 -1.61795 -.8139606

PAR .2331622 .0759652 3.07 0.002 .0842732 .3820512

Asymmetric 95% CIs for the untransformed proportions
under Scenario 0 and Scenario 1
and for the untransformed population attributable risk (PAR)

Estimate Minimum Maximum
Scenario_0 .45767584 .34238817 .57768182
Scenario_1 .22864901 .16548776 .30704715

PAR .22902683 .08407429 .36448745

We see that scenario 0 is set by the atzero() option to smoke=1, while scenario 1
is still smoke=0. Once again, regpar displays the symmetric confidence intervals for
the transformed parameters followed by the asymmetric confidence intervals for the
untransformed parameters. We see that if all mothers smoked and the racial mix stayed
the same, then 45.8% of children might have low birthweight. The dream scenario
prevalence, where no mothers smoke and the racial mix stays the same, is still 22.9%,
as before. The difference in prevalence between the nightmare scenario 0 and the dream
scenario 1 is 22.9% with confidence limits from 8.4% to 36.4%.

regpar might be even more useful if we had a large number of confounders instead
of the single confounder race. In that case, we might want to reduce the potentially
infinite-dimensioned confounder space to a finite-dimensioned confounder space by defin-
ing a propensity score for smoking, as recommended by Rosenbaum and Rubin (1983).
Such a propensity score might be defined by using a logistic regression model to regress
smoke with respect to the multiple confounders, then by using predict to define the
smoking propensity score for each subject as the predicted probability of smoking for
that subject. We might then define a grouping variable for the propensity score by using
xtile (see [D] pctile) and then use the propensity-group variable in a second logistic
regression model with low as the outcome and with smoking exposure and smoking-
propensity group as the predictors. A problem with using propensity scores or groups
as covariates in a logistic regression model is that the conditional odds ratio with re-
spect to exposure, adjusted for the propensity score, is not the same quantity as the
conditional odds ratio with respect to exposure, adjusted for the original confounders.
This is in contrast to conditional mean differences (including prevalence differences)
between exposed and unexposed subjects, where the mean difference conditional on the
propensity score is equal to the mean difference conditional on the original covariates.
Austin et al. (2007) argue that if we use the propensity-adjusted odds ratio to estimate
the confounder-adjusted odds ratio, then our estimate is likely to be biased toward the
null hypothesis that the odds ratio is 1, leading to an underestimation of the magnitude
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of the exposure effect. This problem can be arguably solved by fitting a logistic re-
gression of disease with respect to exposure propensity and exposure and then by using
regpar to define the exposure effect as a difference in marginal disease prevalences be-
tween a nightmare scenario where exposure propensity stays the same and all subjects
are exposed and a dream scenario where exposure propensity stays the same and all
subjects are unexposed.

4.2 Scenario comparisons in the lbw data using punaf

Then again, we might want to estimate the possibility for disease prevention as a pro-
portion of the total disease burden of low birthweight instead of as a proportion of all
babies. This can be done by using punaf after the same logistic regression model as
before. punaf compares scenario arithmetic means (including scenario prevalences) by
using ratios instead of differences. These ratios, known as PUFs, can then be subtracted
from 1 to obtain PAFs. As a simple example, we compare the smoking-free dream
scenario to the real world once again:

. punaf, at(smoke=0) eform
Scenario 0: (asobserved) _all
Scenario 1: smoke=0
Confidence intervals for the means under Scenario 0 and Scenario 1
and for the population unattributable faction (PUF)
Total number of observations used: 189

Mean/Ratio Std. Err. z P>|z| [95% Conf. Interval]

Scenario_0 .3121693 .0326225 -11.14 0.000 .2543534 .3831271
Scenario_1 .228649 .0361738 -9.33 0.000 .1676887 .3117704

PUF .7324519 .0818807 -2.79 0.005 .5883333 .911874

95% CI for the population attributable fraction (PAF)
Estimate Minimum Maximum

PAF .2675481 .08812601 .41166675

We see that the scenarios, as in our first example with regpar, and the scenario means,
computed by using punaf, are the same as the untransformed scenario prevalences using
regpar. The confidence limits are slightly different because they are computed by using
the log transform instead of the logit transform. The PUF is the ratio between the
scenario 1 mean and the scenario 0 mean and represents the fraction of the scenario 0
disease burden that would remain if the babies were born in scenario 1. (Note that the
eform option ensures that we see confidence intervals for the scenario means and their
ratio instead of for their logs.) Finally, punaf subtracts the PUF (and its lower and upper
confidence limits) from 1 to obtain the PAF (and its lower and upper confidence limits)
and displays these in the bottom line of output. We see that 26.8% of the disease burden
of low birthweight might be eliminated by eliminating maternal smoking, assuming that
the racial mix stays the same, with confidence limits from 8.8% to 41.2%.
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4.3 margprev and marglmean in the lbw data

We can also estimate marginal prevalences and means without comparing them between
different scenarios. The marglprev command can estimate marginal odds and the
corresponding marginal prevalences from the current estimation results. For instance,
the marginal odds and prevalence of low birthweight in a world of smoking mothers
with the existing race distribution could be estimated as follows:

. margprev, at(smoke==1) eform
Scenario 1: smoke==1
Confidence interval for the marginal odds
under Scenario 1
Total number of observations used: 189

Odds Std. Err. z P>|z| [95% Conf. Interval]

Scenario_1 .8439156 .2079545 -0.69 0.491 .5206539 1.367883

Asymmetric 95% CI for the untransformed marginal prevalence
under Scenario 1

Estimate Minimum Maximum
Scenario_1 .45767584 .34238817 .57768182

This time, only scenario 1 is specified because there is no scenario 0. margprev displays
first the marginal odds (not the marginal log odds, because eform has been specified)
and then a confidence interval for the marginal prevalence, which is the same as the one
calculated for the same nightmare scenario by regpar.

The marglmean command can estimate general marginal means for general nonneg-
ative variables, using the log transform to calculate confidence intervals. For instance,
we might fit a gamma-family regression model for the nonnegative variable bwt, repre-
senting birthweight in grams, with respect to race and smoking status, as follows, using
the glm command detailed in Hardin and Hilbe (2012):
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. glm bwt i.race i.smoke, family(gamma) link(log) eform vce(robust)

Iteration 0: log pseudolikelihood = -1698.0172
Iteration 1: log pseudolikelihood = -1697.9741
Iteration 2: log pseudolikelihood = -1697.9741

Generalized linear models No. of obs = 189
Optimization : ML Residual df = 185

Scale parameter = .0555296
Deviance = 12.0823464 (1/df) Deviance = .06531
Pearson = 10.27297009 (1/df) Pearson = .0555296

Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]

AIC = 18.01031
Log pseudolikelihood = -1697.974084 BIC = -957.6409

Robust
bwt exp(b) Std. Err. z P>|z| [95% Conf. Interval]

race
2 .8594198 .042562 -3.06 0.002 .7799205 .9470227
3 .863627 .0360104 -3.52 0.000 .795855 .9371702

1.smoke .8697043 .032986 -3.68 0.000 .8073975 .9368193
_cons 3332.454 97.62645 276.88 0.000 3146.499 3529.398

The parameters are a baseline arithmetic mean cons (in grams) for the babies of
nonsmoking white mothers, two arithmetic mean ratios for the babies of black and
miscellaneous-race mothers, and an arithmetic mean ratio for the babies of smoking
mothers compared with the babies of nonsmoking mothers of the same race. We can now
use marglmean to estimate the marginal arithmetic mean, with asymmetric confidence
limits, that would be expected if all mothers smoked and the race distribution remained
the same:

. marglmean, at(smoke=1) eform
Scenario 1: smoke=1
Asymmetric confidence interval for the marginal mean
under Scenario 1
Total number of observations used: 189

Mean Std. Err. z P>|z| [95% Conf. Interval]

Scenario_1 2702.087 80.18231 266.28 0.000 2549.416 2863.902

We see that the mean birthweight in this scenario would be 2,702 grams with confidence
limits from 2,549 grams to 2,864 grams. We could also use punaf to estimate the ratio
(or PUF) between this scenario mean and the scenario mean where no mothers smoked
(not shown to save space).

4.4 punafcc in case–control and survival data

The punafcc command calculates unattributable and attributable fractions for case–
control and survival data. The unattributable fraction in this case is a mean between-
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scenario odds ratio for cases (if used after a logistic estimation) or a mean between-
scenario hazard ratio for lifetimes that terminated from the cause of interest (if used
after a Cox survival regression) instead of a ratio of scenario means. Currently, the only
scenarios that can be compared in this way are scenario 1 and the world in which we
sampled the data.

downs.dta is an example of a case–control study dataset, described and used in
epitab (see [ST] epitab) to demonstrate the cci command. The data are from Roth-
man, Greenland, and Lash (2008) and represent a case–control study whose outcome
variable is Down syndrome in infants, with maternal spermicide use as the exposure
and maternal age group as a confounding factor. The dataset has eight observations
and four variables. These variables are three binary key variables (case, exposed, and
age) identifying the eight observations uniquely and indicating case status, exposure
status, and maternal age at or above 35 years, respectively, and one integer variable
(pop) containing frequency weights for the combination of case status, exposure status,
and age group indicated by the three key variables.

We start by loading downs.dta and fitting a full logistic regression model, allowing
age odds ratios and different exposure odds ratios for the two age groups:

. webuse downs, clear

. logit case i.age i.exposed i.age#i.exposed [fweight=pop], or vce(robust)

Iteration 0: log pseudolikelihood = -85.885722
Iteration 1: log pseudolikelihood = -82.752975
Iteration 2: log pseudolikelihood = -81.552365
Iteration 3: log pseudolikelihood = -81.451562
Iteration 4: log pseudolikelihood = -81.451332
Iteration 5: log pseudolikelihood = -81.451332

Logistic regression Number of obs = 1270
Wald chi2(3) = 11.64
Prob > chi2 = 0.0087

Log pseudolikelihood = -81.451332 Pseudo R2 = 0.0516

Robust
case Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.age 4.104651 2.775961 2.09 0.037 1.090465 15.45044
1.exposed 3.394231 2.290446 1.81 0.070 .9043692 12.73905

age#exposed
1 1 1.689141 2.389726 0.37 0.711 .105541 27.034

_cons .0084986 .002846 -14.24 0.000 .0044086 .0163831

These odds ratios are not easy to interpret at first sight, especially the interaction
odds ratio, which is a ratio of ratios. We might find it easier to understand the frac-
tions of Down syndrome births unattributable and attributable to spermicide expo-
sure. These can be estimated by using punafcc. It is probably a good idea to use the
vce(unconditional) option because the covariates exposure status and maternal age
will definitely be subject to sampling error if we sample cases and controls and then
measure exposure status and maternal age.
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. punafcc, at(exposed=0) eform vce(unconditional)
Scenario 0: (asobserved) _all
Scenario 1: exposed=0
Confidence interval for the population unattributable faction (PUF)
Total number of observations used: 1270

Ratio Std. Err. z P>|z| [95% Conf. Interval]

PUF .816142 .1181495 -1.40 0.160 .6145268 1.083903

95% CI for the population attributable fraction (PAF)
Estimate Minimum Maximum

PAF .18385804 -.08390349 .38547325

We see from the PUF that in a fantasy scenario where no mothers were exposed to
spermicide, we might expect the rate of Down syndrome to be 81.6% of that observed
in the population from which our cases and controls were sampled with 95% confidence
limits from 61.5% to 108.4%. This allows the possibility that spermicide use might
even be slightly protective, at least at some maternal ages. The PAF is computed by
subtracting the PUF from 1 and therefore has confidence limits from −8.4% to 38.5%.
These limits are wide enough to include 0 and even a small range of negative values.

Similarly, we can estimate unattributable and attributable fractions in the Stanford
heart transplant dataset heart3, with one observation per study subject per time inter-
val, where the time interval can be a pretransplant interval (present for all subjects) or
a posttransplant interval (present only for subjects who received a transplant). We will
fit the Cox regression model used in stcox (see [ST] stcox), where death is regressed
with respect to the quantitative covariates year (year of acceptance) and age (age in
years at start) and the binary variables posttran (indicating that the interval is post-
transplant) and surgery (indicating prior heart surgery on entry). We do not need to
use stset, because this has already been done to the dataset.
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. use http://www.stata-press.com/data/r12/stan3, clear
(Heart transplant data)

. stcox age posttran surg year, vce(robust)

failure _d: died
analysis time _t: t1

id: id

Iteration 0: log pseudolikelihood = -298.31514
Iteration 1: log pseudolikelihood = -289.7344
Iteration 2: log pseudolikelihood = -289.53498
Iteration 3: log pseudolikelihood = -289.53378
Iteration 4: log pseudolikelihood = -289.53378
Refining estimates:
Iteration 0: log pseudolikelihood = -289.53378

Cox regression -- Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31938.1

Wald chi2(4) = 19.68
Log pseudolikelihood = -289.53378 Prob > chi2 = 0.0006

(Std. Err. adjusted for 103 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.030224 .0148771 2.06 0.039 1.001474 1.059799
posttran .9787243 .2961736 -0.07 0.943 .5408498 1.771104
surgery .3738278 .1304912 -2.82 0.005 .1886013 .7409665

year .8873107 .0613176 -1.73 0.084 .7749139 1.01601

We see the hazard ratios associated with each binary or quantitative covariate, with
Huber (or robust) confidence limits.

We might want to know the fractions of mortality attributable and unattributable
to subjects not having prior surgery. That is, we might want to ask how much the death
rate in the study might have decreased if all patients had received heart surgery prior
to joining the study and if acceptance years, ages, and transplant history during the
study had been the same as in the real world, and to ask how much hazard would have
remained. This can be done by using punafcc with the option vce(unconditional)

as before because the covariate values of lifetimes that ended in death will be subject
to sampling error, assuming that deaths do not occur by design.
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. punafcc, at(surgery==1) eform vce(unconditional)
Scenario 0: (asobserved) _all
Scenario 1: surgery==1
Confidence interval for the population unattributable faction (PUF)
Total number of observations used: 172

Ratio Std. Err. z P>|z| [95% Conf. Interval]

PUF .4239216 .1317422 -2.76 0.006 .2305459 .7794955

95% CI for the population attributable fraction (PAF)
Estimate Minimum Maximum

PAF .5760784 .22050449 .76945406

From the PUF, we see that giving all the subjects prior surgery, and changing nothing
else, might have reduced mortality to 42.4% of the level observed. When this PUF is
subtracted from 100% to get a PAF, we conclude that 57.6% of the mortality observed
is attributable to subjects not having prior surgery with confidence limits from 22.1%
to 76.9%.

The option vce(unconditional), recommended here for use with punafcc, requires
that the user must specify vce(robust) in the estimation command generating the
parameter estimates. Also the interpretation of the unattributable and attributable
fractions requires the assumption that the association between the outcome and the
exposure altered in the fantasy scenarios is indeed causal, meaning that the outcome
will change as predicted if we intervene to change the exposure.

4.5 Standardization as out-of-sample prediction

We can also compare outcomes between different models applied to the same scenario
instead of between the same model applied to different scenarios. For instance, in
a multicenter study, we might fit a logistic regression model of disease with respect
to gender and age to the data from a center, input a dataset specifying a standard
distribution of gender and age, and use margprev to estimate the marginal prevalence
expected if the logistic model is applied to that standard population. This is an example
of out-of-sample prediction, and the five commands introduced here have a noesample

option to make this possible; this option is similar to the one of the same name for
margins.

The Global Allergy and Asthma European Network (GA2LEN) survey is part of a
multiregional European study on asthma and allergy in Europe. Sensitivity to a range
of allergens was measured on a subsample of subjects in each region, using skin prick
tests. We wanted to compare sensitivity prevalences, standardized to a common age
distribution, between 13 European regions. To do this, we fitted a logistic regression
model for sensitivity to each allergen in each region, with respect to gender and age,
and then used margprev to estimate a standardized sensitivity prevalence.
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For instance, in the case of sensitivity to cat allergen in the United Kingdom, the
logistic model (fit by using sampling probability weights) was as follows:

. logit spt_cat male fquesagec [pweight=sampwt5], or

Iteration 0: log pseudolikelihood = -1030.8768
Iteration 1: log pseudolikelihood = -977.80033
Iteration 2: log pseudolikelihood = -973.41056
Iteration 3: log pseudolikelihood = -973.39866
Iteration 4: log pseudolikelihood = -973.39866

Logistic regression Number of obs = 159
Wald chi2(2) = 4.04
Prob > chi2 = 0.1328

Log pseudolikelihood = -973.39866 Pseudo R2 = 0.0558

Robust
spt_cat Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

male 2.527963 1.535882 1.53 0.127 .7684525 8.316188
fquesagec .6700974 .2209261 -1.21 0.225 .3511585 1.278712

_cons .0794547 .0300632 -6.69 0.000 .0378487 .1667967

The variables spt cat and male are binary indicators of skin-prick sensitivity to cat
allergen and male gender, and the variable fquesagec is a continuous age centered by
subtracting 48 years and divided by 10 years to be expressed in decades over 48 years.
Therefore, the parameter cons is a baseline sensitivity odds for 48-year-old women;
the parameter male is a male-gender odds ratio; and the parameter fquesagec is a
per-decade odds ratio for age, assuming the effect of age on odds to be exponential.
To derive a standardized prevalence from these parameters, we first load (and list) a
new dataset with one observation per gender per age group and data on the numbers
of individuals in that gender and age group in a European standard population:
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. use estanpop, clear

. list male agemin agemax agemean fquesagec stanpop, abbr(32) sepby(male)

male agemin agemax agemean fquesagec stanpop

1. 0 20 24 22 -2.6 7000
2. 0 25 29 27 -2.1 7000
3. 0 30 34 32 -1.6 7000
4. 0 35 39 37 -1.1 7000
5. 0 40 44 42 -.6 7000
6. 0 45 49 47 -.1 7000
7. 0 50 54 52 .4 7000
8. 0 55 59 57 .9 6000
9. 0 60 64 62 1.4 5000
10. 0 65 69 67 1.9 4000
11. 0 70 74 72 2.4 3000

12. 1 20 24 22 -2.6 7000
13. 1 25 29 27 -2.1 7000
14. 1 30 34 32 -1.6 7000
15. 1 35 39 37 -1.1 7000
16. 1 40 44 42 -.6 7000
17. 1 45 49 47 -.1 7000
18. 1 50 54 52 .4 7000
19. 1 55 59 57 .9 6000
20. 1 60 64 62 1.4 5000
21. 1 65 69 67 1.9 4000
22. 1 70 74 72 2.4 3000

In this dataset, male indicates male gender; agemin, agemax, and agemean contain
minimum, maximum, and mean ages in years; fquesagec contains the mean age in
decades centered at 48 years; and stanpop contains the number of individuals with that
gender and age group in the European standard population. We can now estimate the
marginal odds and prevalence by applying our model to this dataset, using stanpop as
a frequency-weight variable:

. margprev [fweight=stanpop], eform noesample
Scenario 1: (asobserved) _all
Confidence interval for the marginal odds
under Scenario 1
Total number of observations used: 134000

Odds Std. Err. z P>|z| [95% Conf. Interval]

Scenario_1 .1782219 .07486 -4.11 0.000 .0782391 .4059742

Asymmetric 95% CI for the untransformed marginal prevalence
under Scenario 1

Estimate Minimum Maximum
Scenario_1 .15126346 .07256191 .2887494

We see the marginal odds and the more comprehensible marginal prevalence of 15.1%
(95% confidence interval: 7.3% to 28.9%). The marginal odds for this region (the
United Kingdom) and the 12 others were entered into the Statistical Software Com-
ponents parmhet package to compute heterogeneity statistics. The I2 statistic of
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Higgins and Thompson (2002) was 46.4%, with a p-value of 0.033, so there seems to
be heterogeneity in cat allergy prevalence between European regions not attributable
to heterogeneity in gender and age distribution.
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